
 
 
 
 

Stabilization Techniques for Finite 
Element Analysis of  

Convection-Diffusion Problems 
 
 
 
 

E. Oñate 
M. Manzan 

 
 

 

              
 
 
 
 
 
 
 

 
 

Publication CIMNE Nº-183, February 2000 



 
 
 

 
Stabilization Techniques for Finite 

Element Analysis of  
Convection-Diffusion Problems 

 
 
 
 
 

E. Oñate 
M. Manzan 

 
 
 
 
 
 
 
 

Publication CIMNE Nº-183, February 2000 
Chapter of the book “Computational Analysis of Heat Transfer”, G. Comini and 

B. Sundén (Eds.), WIT Press, Southampton, 2000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

International Center for Numerical Methods in Engineering 
Gran Capitán s/n, 08034 Barcelona, España 



Stabilization techniques for finite element analysis
of convection-diffusion problems
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Abstract

The accurate solution of convection type problems on practical grids has been ever a chal-
lenging issue, and invariably some sort of stabilization is needed in order to get a physical
solution. This has pushed researchers to develop various stabilization algorithms used in
every day practice by numerical analysts. In this chapter some methods are presented along
with a new finite calculus approach to obtain the different algorithms using higher order con-
servation equations.

1 Introduction

It is well known that the numerical methods used to solve convection type and fluid flow
problems suffer from the inherently negative numerical diffusion when the centered type
discretization is used for the advective terms.1, 2, 4 This problem is shared by finite differ-
ence,1, 2 finite volume,3 Galerkin finite element methods4 and meshless procedures.5–7 The
lack of stability is shown by the presence of spurious node to node oscillations when the
convective terms become important. These oscillations can be simply avoided by a smart
refinement of the solution grid or mesh. Unfortunately this is not a viable solution due to the
cost of simulations on very fine grids.
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Several methods have been introduced in numerical literature to avoid this misbehavior.
Among the more popular techniques we can name the so called Artificial Diffusion, 1, 2, 4

Streamline-Upwind Petrov-Galerkin (SUPG),8, 22 Generalized Galerkin,23, 24 Taylor-Galer-
kin,4, 25 Characteristic Galerkin (CG),4, 26 Galerkin Least Squares (GLS),19, 22, 27, 28 Subgrid
Scale (SGS),22, 29–31 Bubble Functions32–35 and Finite Calculus (FIC)36–40 procedures. In
this chapter we will present some of these techniques used to obtain “stable” finite element
solutions for the convection-diffusion equation.

Although the methods have been developed independently from each other, in this chap-
ter we will show that the FIC method, based on a new concept of flow balance over a “fi-
nite size” domain, allows to reinterpret and derive most stabilized methods using physical
arguments. Moreover, the FIC approach provides a general framework for computing the
stabilization parameters in an objective manner. Examples of application of the FIC sta-
bilization procedure to the solution of 1D and 2D convection-diffusion problems using the
finite element method are presented.

2 The steady state convection-diffusion equation

Solution of the steady state convection-diffusion equation can be considered the starting
point for the development of any numerical algorithm for solving more general transport
equations such as those of convection-diffusion-reaction, viscous fluid flow, etc.

The steady state convection-diffusion equation can be written in general form as

−uT ∇φ + ∇TD∇φ + Q = 0 in Ω (1)

where φ is the transported variable (i.e. the temperature in a thermal problem or the con-
centration in a pollution transport problem, etc.), u is the velocity vector, ∇ is the gradient
operator, D is the diffusivity matrix and Q is the source term. For 2D isotropic problems

u = [u, v]T , ∇ =

{
∂
∂x
∂
∂y

}
, D =

[
k 0
0 k

]
(2)

where k is the diffusivity parameter.
The simplest boundary conditions associated to eqn. (1) are

φ − φ = 0 on Γφ (3a)

nT D∇φ + qn = 0 on Γq (3b)

where Γφ and Γq denote the Dirichlet and Neumann parts of the analysis domain boundary
Γ of Ω(Γ = Γφ ∪ Γq) where the variable and the normal flux are prescribed to values φ and
qn, respectively and n is the unit vector normal to the boundary Γ q.

The transient form of eqn. (1) will be dealt with in Section 6.

2.1 Finite element discretization

Let us construct a finite element discretization over the analysis domain Ω. The standard
interpolation within an element e with n nodes and area Ω e can be written as4
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φ � φ̂ =
n∑

i=1

Niφi (4)

where Ni are the element shape functions and φi are nodal values of the approximate function
φ̂.

The discrete weighted residual form of eqns. (1)–(3) is written as

∫
Ω

wi(−uT ∇φ̂ + ∇TD∇φ̂ + Q)dΩ +
∫
Γq

wi(n
TD∇φ + qn)dΓ = 0 i = 1,N (5)

In (5) wi and wi are test functions satisfying wi = wi = 0 on Γφ and N is the total
number of nodes in the mesh. Integration by parts of the diffusion term in the first integral
of (5) and choosing wi = −wi gives

∫
Ω
(wiu

T ∇φ̂ + (∇Twi)D∇φ̂)dΩ =
∫
Ω

wiQdΩ −
∫
Γq

wiqndΓ − qφ
n (6)

where qφ
n is the outgoing normal flux across the Dirichlet boundary Γφ where the value of φ

is prescribed. Note that qφ
n can be computed “a posteriori” once the approximate solution φ̂

is found.
Eqn. (6) is usually written in matrix form

Kφ̂ = f (7)

where φ̂ = [φ1, φ2 · · ·φN ]T and matrix K and vector f are obtained by standard assembly of
the element contributions given by

K
(e)
ij =

∫
Ωe

(wiu
T∇Nj + ∇T wiD∇Nj)dΩ (8a)

f
(e)
i =

∫
Ωe

wiQdΩ −
∫

Γq

wiqndΓ − qφ
n (8b)

Indeed the terms involving qn and qφ
n in (8b) only appear when the element has a side

over the boundaries Γq or Γφ, respectively.
The Galerkin form of eqns. (6) and (8) is simply obtained by making w i = Ni. It is

interesting to note that the equations resulting from the Galerkin FEM formulation using
linear 1D elements coincide with those derived from the standard central finite difference
scheme. Unfortunately, the discrete set of equations resulting from this choice is unstable,
as shown next.

3 A simple example of the onset of numerical instability

Let us consider the simplest 1D convection-diffusion equation excluding the source term, i.e.

−u
dφ

dx
+ k

d2φ

d x2
= 0 (9)
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Let us obtain the numerical solution of eqn. (9) in the 1D domain of Figure 1b of length
2l with the following Dirichlet boundary conditions

φ = 0 at x = 0 (10)

φ = φ̄ at x = 2l

The “exact” analytical solution of eqn. (9) is:

φ = A e
u
k

x + B (11)

where the constants A and B are computed from the boundary conditions at the two ends of
the 1D domain.

For simplicity a numerical solution is attempted with the mesh of two equal size 2-node
elements shown in Figure 1a. The application of the Galerkin finite element method (or the
equivalent central finite difference scheme) leads in this case to the same system of equations
as expected. This can be written as

−u
φ3 − φ1

2 l
+ k

φ3 − 2 φ2 + φ1

l2
= 0 (12)

substitution of φ1 = 0 and φ3 = φ̄ from eqn. (10) gives

φ2 =
1

2
(1 − γ) φ̄ (13)

where γ = ul
2k

is the so called element (or cell) Peclet number.

Note that for γ = 0 (i.e. the pure diffusive case) the solution φ2 = φ̄
2

coincides with
the exact linear distribution shown in Figure 1b. However eqn. (13) shows clearly that φ 2

becomes negative for γ > 1. Indeed this is a non physical result as φ2 should be ≥ 0 ∀ u, k
as deduced from the exact solution (11) plotted in Figure 1b.

It is clearly deduced from this simple test that the standard numerical schemes (such as
Galerkin FEM and central finite difference) fail for high values of the Peclet number (high
u or small k). Indeed, the solution will improve with mesh refinement as a small value of
the element length will also reduce the cell Peclet number so as to guarantee γ > 1. This
however leads to prohibitive small element sizes for large values of the velocity.

3.1 Artificial diffusion scheme

A study of the truncation error of the Galerkin/Central difference scheme for the standard
three nodes grid of Figure 2 leads to the following stencil

−u
φi+1 − φi−1

2 l
+ k

φi+1 − 2 φi + φi−1

l2
= −uφ′

i + (k − k∗) φ′′
i (14)
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Figure 1: Simple 1d problem: a) two element discretization b) analytical solution

where (·)i and (·)′ denote values computed at point i and the x derivative respectively, and

k∗ =
k

2 γ

{
sinh(2 γ) − 1

γ
[ cosh(2 γ) − 1]

}
≥ 0 (15)

is a positive constant which can be interpreted as an additional diffusion subtracting from the
physical diffusion k. Eqn. (14) indicates that the numerical algorithm chosen solves in exact
form at the nodes the following equation

−u φ′ + (k − k∗) φ′′ = 0 (16)

A study of eqn. (15) shows that k∗ > k for γ ≥ 1. Clearly for k∗ > k the “effective”
diffusion in the numerical solution scheme becomes negative and this leads to the instability
described in previous section.

u

l l

i-1 i i+1 x

Figure 2: Simple 1d two element stencil

An obvious remedy to the “underdiffusive” character of the Galerkin/Central differences
scheme is to add to the original differential equation an “artificial” or “balancing” diffusion
term. From previous section it is clear that this diffusion term should be proportional to the
Peclet number; i.e. it should increase with the velocity and the mesh size. The modified
governing equation is therefore usually written as

−u φ′ +

(
k + α

u l

2

)
φ′′ = 0 (17)
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where α ≥ 0 is a parameter controlling the amount of “artificial diffusion” introduced into
the balance differential equation.

Repetition of the simple two element example of Figure 1a starting now with eqn. (17)
gives

φ2 =
1

(1 + α γ)
(1 + α γ − γ) φ̄ (18)

clearly φ2 ≥ 0 if

α ≥ 1 − 1

γ
(19)

which is the so called critical value of the stabilization parameter α ensuring a physical
(stable) solution.

The value of α giving the “exact” solution at the nodes can be also simply obtained as
follows. Eqn. (17) gives

α =
u φ′ − k φ′′

u l
2

φ′′ =
2 φ′

l φ′′ −
1

γ
(20)

Application of the Galerkin/Central difference scheme yields

α =
2

φi+1 − φi−1

2 l

l
φi+1 − 2 φi + φi−1

l2

− 1

γ
=

=
φi+1 − φi−1

φi+1 − 2 φi + φi−1

− 1

γ
(21)

Substitution of the exact solution (11) into (21) gives after small algebra

α =
eγ + e−γ

eγ − e−γ
− 1

γ
= coth γ − 1

γ
(22)

which is the so called optimal value for the stability parameter α giving exact nodal solution
values.4, 19

The critical and optimal values of the stabilization parameter given by eqns. (19) and
(22) practically coincide for γ > 2. The simplest expression (19) (which by the way does
not require knowledge of the exact solution) is therefore chosen in practice.

3.2 Upwind finite difference scheme

Several authors soon blamed the central difference scheme (or the equivalent Galer-kin finite
element method) as being the source of the numerical instabilities. An alternative difference
scheme was proposed on the basis of a kind of “causality” argument: information down-
stream a point should not be used to provide insight on the changes in the convective term
at the point. In other words, the convective derivative at a point should be computed using
upstream information only. This was the conceptual origin of the “upwind” scheme which
uses a backward difference to compute the convective derivative, while the diffusive term is
still evaluated with the central difference formula.1, 2, 41–43
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The upwind stencil for the two cell grid of Figure 2 may be therefore written as

−u
φi − φi−1

l
+ k

φi+1 − 2 φi + φi−1

l2
= 0 (23)

The solution of the simple Dirichlet problem of Figure 2 using above scheme is

φ2 =
1

2 (1 + γ)
φ̄ (24)

note that φ2 → φ̄/2 for γ → 0 and φ2 → 0 for γ → ∞. Consequently, the upwind difference
scheme preserves a physical solution as it eliminates the spurious negative values obtained
with the full central difference scheme.

3.3 Relationship between the upwind difference scheme and the artifi-
cial diffusion method

Let us examine in detail the stencil obtained when applying the full central difference scheme
(or the Galerkin FEM) to the modified equation (17) incorporating the artificial diffusion
term. After very simple algebra we obtain

−u
φi − φi−1

l
α − u

φi+1 − φi−1

2 l
(1 − α) + k

φi+1 − 2 φi + φi−1

l2
= 0 (25)

Note now that for α = 0 the form of the full central difference scheme when applied
to all terms of the original unmodified convection equation (9) is obtained (see eqn. (12) for
2 = i). Alternatively for α = 1 the stencil obtained with the upwind scheme is found (see
eqn. (23)).

It is therefore concluded that the upwind scheme provides the same stable solution that
the artificial diffusion method for the limit value of α = 1. This explains the well known fact
that the upwind scheme yields generally over-diffusive results. Obviously, the exact nodal
solution for all the range of Peclet numbers is no longer possible with the upwind scheme as
this only yields accurate results for large values of the Peclet number.

Eqn. (25) also provides a very instructive interpretation of the artificial diffusion method.
The parameter α can be viewed as an interpolation parameter providing values of the con-
vective derivative term ranging from the expression of the central difference scheme (α = 0)
and that of the backward difference (upwind) scheme (α = 1). Obviously the optimal value
of α given by eqn. (22) must be used in order to obtain an exact nodal solution for any value
of the Peclet number.

3.4 Petrov-Galerkin scheme

The deficiencies observed in the Galerkin FEM scheme led some authors to use a different
class of weighting functions defined as4, 8, 19, 44

wi = Ni + α Fi (26)

where Ni is the standard shape function of node i, Fi is a new test function and α is the
stabilization parameter.
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The resulting procedure is known as Petrov-Galerkin formulation as the weighting func-
tions are now different from the shape functions.

It can be shown that for two node elements choosing F i = (−1)i+1 3
4
(1 − ξ2) leads to

the same stable stencil for the sourceless case given by eqn. (25).16 This obviously also leads
to the same optimal value for the stabilization parameter of eqn. (22).

A popular Petrov-Galerkin procedure is based on the following definition for the weight-
ing function

wi = Ni +
α l

2

dNi

dx
(27)

where l is the element length.
The weighted residual form for 1D Dirichlet problems is now written as

∫
L

(
Ni +

α l

2

dNi

dx

)(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
dx = 0 (28)

where L is the length of the 1D domain.
Note that the derivative dNi

dx
is discontinuous between elements. This problem is over-

come by applying the discontinuous weighting term on the element interiors only. Eqn. (28)
is therefore usually written as

∫
L

Ni

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
dx+

+
∑
ne

∫
le

α le

2

dNi

dx

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
dx = 0 (29)

where the sum in the second term is taken over all the elements ne and le is the length of
element e.

Eqn. (29) is usually termed consistent perturbed Galerkin form as it adds to the original
Galerkin expression a term which is residual based; that is, a term which vanishes as the
numerical solution approaches the exact analytical value. 22

A general expression of the perturbed Galerkin form can be written as∫
L

Ni r̂ dx −∑
ne

∫
le

τ e P (Ni) r̂ dx = 0 (30)

where τ e is the so called intrinsic time parameter defined for each element as

τ e =
α le

2 |u| (31)

and P (·) is a stabilizing operator acting on the shape functions N i. Clearly in eqn. (29)
P := −u d

dx
. Obviously, many other forms for P are possible as shown later.

The term r̂ in eqn. (30) denotes the point-wise error or “residual” of the numerical solu-
tion at each mesh point given by

r̂ = −u
dφ̂

dx
+ k

d2φ̂

d x2
+ Q (32)
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3.5 Equivalence of the Petrov-Galerkin scheme and the artificial diffu-
sion scheme

Let us apply the standard Galerkin method to the modified equation (17) incorporating the
artificial diffusion term; i.e.∫

L
Ni

[
−u

dφ̂

dx
+

(
k + α

u l

2

)
d2φ̂

d x2

]
dx = 0 (33)

The term α u l
2

d2φ
d x2 is now integrated by parts to give
∫

L

[(
Ni + α

l

2

dNi

dx

)(
−u

dφ̂

dx

)
+ Ni k

d2φ̂

d x2

]
dx + b.c. = 0 (34)

Eqn. (34) clearly shows that application of the Galerkin method to the artificial diffusion
equation leads to a Petrov-Galerkin weighting of the convective term using the test functions
wi given by eqn. (27). Note also that in the case of linear elements and Q = 0 eqns. (28) and
(34) are identical as the term α l

2
dNi

dx
k d2φ̂

d x2 in (28) vanishes (even after integration by parts!).
This explains why the artificial diffusion scheme and the Petrov-Galerkin scheme with w i

defined as in eqn. (27) give the same result for the solution of eqn. (9).
This equivalence does not apply if the source term is taken into account. Hence although

both the artificial diffusion method and the consistent Petrov-Galerkin formulation give sta-
ble results, the latter procedure is recommended for consistency and accuracy reasons.4

3.6 Galerkin Least Squares method

The Galerkin Least Square (GLS) method can be formulated as a particular case of the
general Petrov-Galerkin procedure with the weighting functions defined as 19, 22, 27, 28

wi = Ni + τ e

(
−u

dNi

dx
+ k

d2Ni

d x2

)
(35)

The GLS method can also be seen as a particular class of a perturbed Galerkin method written
as ∫

L
Ni

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
dx−

−∑
ne

∫
le

τ e

(
−u

dNi

dx
+ k

d2Ni

d x2

)(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
dx = 0 (36)

Comparison of eqns. (30) and (36) gives the form of the stabilization operator for the
GLS method as

P := −u
d

dx
+ k

d2

d x2
(37)

The name least-squares in the GLS method emerges as the second term in eqn. (36) can be
interpreted as the minimization of the following functional

I =
∑
ne

∫
le

τ e

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)2

dx (38)

which is a typical approach used in least-square approximation procedures.
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3.7 The Subgrid Scale method

The Subgrid Scale (SGS) method, first introduced by Hughes,29–31 has demonstrated to be
a general method able to generate various different stabilized methods. A particular form
of the SGS method was proposed by Douglas and Wang45 for the Stokes problem, and then
extended by Franca et al.17 for the convection-diffusion equation. A generalization of the
SGS method for incompressible flows has been recently proposed by Codina.46 The SGS
formulation is very similar to the GLS method, the only difference being the sign of the
diffusive term in the operator P (·) of eqn. (37).

The basis of the SGS method is the assumption that the numerical solution of the govern-
ing differential equations is viewed as a multiscale phenomena where two sets of scales are
present. Clearly, only the large scales can be resolved by the computational grid, whereas the
small scales, defined as subgrid scales, are much smaller than the element or cell dimension.

We will present in this section the development of the method for the 1D steady state
convection-diffusion equation (9) with Dirichlet boundary conditions (10).

The presence of two sets of scales suggests the splitting of the field variable, as φ = φ̂ + φ∗

where φ̂, and φ∗ represent the large and small scales respectively. As a consequence only φ̂
can be resolved by the mesh.

To proceed further the SGS method needs now a strong assumption: the unresolvable
scales φ∗ are forced to vanish on the element boundaries, i.e. φ∗ = 0 at x = 0 and x = le for
e = 1, 2, . . . , ne.

The same splitting is applied to the test function, i.e. w = ŵ + w ∗ where ŵ and w∗ are
again the resolvable and unresolvable contributions respectively and w ∗ = 0 at the element
boundaries.

Introducing the splitting of the variable and the test function into the weighted residual
approximation of the 1D Dirichlet problem (viz eq.(5) with w̄ i = 0) two sets of equation are
obtained, one for the resolved scales

∫
L

[(
−u

dφ̂

dx
+ k

d2φ̂

d x2

)
ŵi +

(
−u

dφ∗

dx
+ k

d2φ∗

d x2

)
ŵi + Qŵi

]
dx = 0 (39)

and one for the unresolved scales

∫
L

[(
−u

dφ̂

dx
+ k

d2φ̂

d x2

)
w∗

i +

(
−u

dφ∗

dx
+ k

d2φ∗

d x2

)
w∗

i + Qw∗
i

]
dx = 0 (40)

The Euler-Lagrange equations for eqn. (40) are

−u
dφ∗

dx
+ k

d2φ∗

d x2
= −r̂ (41)

φ∗ = 0 for x = 0, x = le (42)

where the residual r̂ is defined as in eqn. (32). Note that in eqn. (41) the unresolved part
of the unknown φ∗ is driven by the residual of the resolved part φ̂. Furthermore, due to the
strong form of the Dirichlet boundary conditions, the problem is made local, that is it can be
solved on the element interiors.
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Problem (41) can be solved using a Green’s function g giving

φ∗(x) =
∫

le
g(x, y)r̂(y)dy (43)

where the Green’s function g(x, y) is the solution of the following equations

−u
dg

dx
+ k

d2g

d x2
= δ(y − x) (44a)

with
g = 0 for x = 0, x = le (44b)

where δ(·) is the Dirac delta function. As an example in Figure 3 the form of the Green’s
functions g(x, y) for y = 0.6 and different values of the Peclet number are plotted.
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Figure 3: Element Green’s function for the 1D advection-diffusion problem, a)
γ = 500, b) γ = 40, c) γ = 1, d) γ = 0.

A stabilized numerical algorithm can be now obtained integrating by parts the second
term of eqn. (39) giving

∫
L

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
ŵidx

+
∑
ne

∫
le

(
u

dŵi

dx
φ∗ − k

dφ∗

dx

dŵi

dx

)
dx = 0 (45)

In eqn. (45) the boundary terms have canceled as w and w∗ (and, consequently, ŵ = w − w∗)
vanish on x = 0 and x = L.

As usual the second integral in eqn. (45) is computed on the element interiors only to ac-
count for the discontinuity of the derivatives of the weighting function ŵ between elements.
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Integrating by parts again the second term of the second integral of (45) gives

∫
L

(
−u

dφ̂

dx
+ k

d2φ̂

d x2
+ Q

)
ŵdx +

∑
e

∫
le

(
u

dŵ

dx
+ k

d2ŵ

d x2

)
φ∗dx = 0 (46)

where again the boundary terms automatically vanish.
Substituting the value of φ∗ from (43) into (46) gives finally

∫
L

ŵr̂dx −
∫

l′x

∫
l′y

(
−u

dŵ

dx
− k

d2ŵ

d x2

)
g(x, y) r̂(y) dy dx = 0 (47)

where ∫
l′

=
∑
ne

∫
le

(48)

and r̂ is given by eqn. (32).
Eqn. (47) can be cast in the form of eqn. (30) if the Green’s function g(x, y) is approxi-

mated in a suitable way. For example the following assumption can be made

g(x, y) ≈ g̃(x, y) := τ (y) · δ(y − x) (49)

where τ (y) is the stabilization function and δ is the Dirac delta function. Inserting eqn. (49)
into (46) gives

∫
L

ŵr̂dx −∑
e

∫
le

(
−u

dŵ

dx
− k

d2ŵ

d x2

)
τ r̂(x) dx = 0 (50)

Note that in this case the operator P (·) of eqn. (30) is

P := −u
d

dx
− k

d2

d x2
(51)

Comparison of eqns. (51) and (37) show that the differences between the SGS and GLS
schemes arise only in the sign of the stabilizing diffusive term in P .

Eqn. (49) can be also used to obtain a formula for the computation of the stabilization
function. A double integration gives

∫
le

∫
le

τ · δ(y − x)dxdy =
∫

le

∫
le

g(x, y)dxdy (52)

For the simple 1D sourceless case the expression of τ is found as26, 28

τ =
1

l

∫
le

∫
le

g(x, y) dx dy =
l

2 u
(coth γ − 1

γ
) (53)

Substituting eqn.(53) into (31) gives the expression of the optimal stabilization param-
eter α = coth γ − 1

γ
. The same expression was obtained in eqn. (22) using very different

arguments.
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4 Finite Calculus procedure

The methods presented in the previous sections, although widely used in practice, are based
on somewhat heuristic arguments. They require the addition of some balancing terms and the
effectiveness of the underlying method is ruled by a quite mysterious stabilization parameter.
In this section it will be shown how the stabilization terms appearing in the schemes so far
described, emerge naturally applying higher order flow balance (or equilibrium) laws over a
“finite” size domain.

4.1 Basic stabilized equation

Let us consider eqns. (9) to be solved in 1D domain of length L (Figure 4a). Figure 4b shows
a typical segment AB of length AB = h where balance of fluxes must be satisfied.36

x

-q

x

a)

b)

h

q

[u φ ]

B

B

u(x)

Q(x)

Q

A B

q

[u φ ]A

A

L

Figure 4: (a) One dimensional convection-diffusion problem. (b) Finite balance
domain AB

Assuming a linear distribution of the external source Q over AB, the balance of fluxes
between points A and B can be written as

q(x) + [uφ](x) − q(x − h) − [uφ](x − h) − 1

2
[Q(x) + Q(x − h)] h = 0 (54)

The values of the diffusive flow rate q and the advective transport rate uφ at point A can be
approximated starting with values at point B and using a higher order Taylor’s expansion,
i.e.

[uφ](xB − h) = [uφ](xB) − h
d[uφ]

dx

∣∣∣∣
B

+
h2

2

d2[uφ]

d x2

∣∣∣∣
B
− O(h3) (55)

q(x − h) = q(x) − h
dq

dx
+

h2

2

d2q

d x2
− O(h3) (56)

Q(x − h) = Q(x) − h
dQ

dx
+ O(h2) (57)

13



Substituting eqns. (55), (56) and (57) into (54) gives after simplification (taking u = constant)

−u
dφ

dx
+

d

dx

(
k
dφ

dx

)
+ Q − h

2

d

dx

[
−u

dφ

dx
+

d

dx

(
k
dφ

dx

)
+ Q

]
= 0 (58)

Eqn. (58) can be rewritten in a more compact form as36

r − h

2

dr

dx
= 0 , 0 < x < L (59)

where

r = −u
dφ

dx
+ k

d2φ

d x2
+ Q (60)

Note that for h = 0 the standard infinitesimal form of the 1D convection-diffusion equa-
tions (see eqn. (9)) is obtained.

4.1.1 Stabilized Neumann boundary condition

The essential (Dirichlet) boundary condition for eqn. (59) is the standard one given by
eqn. (3a). For consistency a stabilized Neumann boundary condition must be obtained.

A B

q

[u φ ]A

A

Q

x L

h/2

q-

Figure 5: Balance domain next to a Neumann boundary point B

The length of the balance segment AB next to a Neumann boundary is taken now as one
half of the characteristic length h for the interior domain (Figure 5). The balance equation,
assuming a constant distribution for the source Q over AB, is now

q̄ − q(xA) − [uφ]A − h

2
Q = 0 (61)

where q̄ is the prescribed total flux at x = L and xA = xB − h
2
.

Using a second order expansion for the advective and diffusive fluxes at point A gives 36

−uφ + k
dφ

dx
+ q̄ − h

2
r on x = L (62)

where r is given by eqn. (60).
Note that if only the diffusive flux is prescribed at the Neumann boundary eqn. (62)

modifies as

k
dφ

dx
+ q̄ − h

2
r on x = L (63)

Again for h = 0 the infinitesimal form of the 1D Neumann boundary conditions is
obtained.
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4.2 Equivalence with the artificial diffusion scheme

A particular case of the general stabilized equation can be obtained neglecting the diffusive
and source parts in the term multiplied by h in eqn. (58) yielding

−u
dφ

dx
+

d

dx

(
k
dφ

dx

)
+ Q +

h

2

d

dx

(
u

dφ

dx

)
= 0 (64)

Writing the characteristic length h as h = αl, where l is the element or cell size, gives

−u
dφ

dx
+

d

dx

(
k + α

ul

2

)
dφ

dx
+ Q = 0 (65)

The analogy of eqn. (65) with the artificial diffusion method (see eqn. (17)) is readily
seen.

4.3 Equivalence of the FIC method with the Petrov-Galerkin FE for-
mulation

The standard Galerkin form for the FE solution of eqns. (59) and (63) is equivalent to the
Petrov-Galerkin formulation described in Section 3.4.36 To proof this let us construct a finite
element discretization. Inserting eqn. (4) into ( 59) and (63) gives

r̂ − h

2

dr̂

dx
= rΩ in 0 ≤ x ≤ L (66)

φ̂ − φ̄ = rφ on x = 0 (67a)

k
dφ̂

dx
+ q̄ − h

2
r̂ = rq on x = L (67b)

where r̂ = r(φ̂) and rΩ, rφ and rq are the residuals of the approximate solution in the domain
and on the Dirichlet and Neumann boundaries, respectively.

The weighted residual expression of eqns. (66) and (67) is

∫ L

0
wi

(
r̂ − h

2

dr̂

dx

)
dx +

[
wi

(
k
dφ̂

dx
+ q̄ − h

2
r̂

)]
x=L

= 0 (68)

where as usual the test functions wi and wi are assumed to be zero on the Dirichlet boundary,
therefore implying the satisfaction of the essential boundary conditions. 4

Integrating by parts the term wi
h
2

dr̂
dx

in eqn. (68) in a distributional sense and choosing
wi = −wi gives

∫ L

0
wir̂dx −

[
wi

(
k
dφ̂

dx
+ q

)]
x=L

+
∑
ne

∫
le

h

2

dwi

dx
r̂dx = 0 (69)

The Galerkin form is readily obtained by making wi = Ni in eqn. (69). Note the analogy
of the resulting expression with the perturbed Galerkin form of eqn. (30) with P = − h

2
d
dx

.
Also choosing h = αle eqn. (69) coincides with the form resulting from the Petrov-Galerkin
scheme of eqn. (29).
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4.3.1 Equivalence of the FIC method with the Subgrid Scale model

A stabilization scheme similar to the Subgrid Scale model can be obtained from the FIC
method. Assuming a quadratic distribution of the source term Q, eqn. (54) can be rewritten
as

q(x)+[uφ](x)−q(x−h)− [uφ](x−h)+
h

6

[
Q(x) + 4Q

(
x − h

2

)
+ Q(x − h)

]
= 0 (70)

A new balance equation can be obtained by inserting in eqn. (70) Taylor’s expansions up
to third order of the advective and diffusive fluxes at point (x − h) and up to second order
for the source term at (x − h

2
) and (x − h).37 This gives

r − h

2

dr

dx
+

h2

6

d2r

d x2
= 0 (71)

where r is defined in eqn. (60).
The weighted residual form of eqn. (71) for the Dirichlet problem can be written as

∫ l

0
w

[
r̂ − h

2

dr̂

dx
+

h2

6

d2r̂

d x2

]
dx = 0 (72)

Integrating by parts once the term w h
2

dr̂
dx

, twice the term w h2

6
d2r̂
d x2 and making wi = Ni gives

∫ l

0
Nir̂dx −∑

e

∫
le

(
−h

2

dNi

dx
− h2

6

d2Ni

d x2

)
r̂dx + b.c. = 0 (73)

Note the analogy of this expression with eqn. (50) derived using the Subgrid Scale ap-
proach.

5 Multidimensional case

The Galerkin solution of the multidimensional equations (1)–(3) leads to the same unstability
problems encountered when solving the 1D equation. The different stabilization techniques
explained for the 1D case have been extended with different success to solve 2D and 3D
problems. A summary of the basic ingredients of these extensions is given next.

5.1 Multidimensional artificial diffusion and perturbed Galer-kin
forms

Extensions of the artificial diffusion scheme have followed the idea of adding the necessary
balancing diffusion along the streamlines directions only. The modified differential equation
in this case is

−uT ∇φ + ∇T (D + D∗)∇φ + Q = 0 (74)

where D∗ = αle

2|u|u uT is the additional diffusivity matrix, α is the stabilization parameter

and le is a characteristic element dimension. Typically le = (Ωe)1/d with d = 1, 2, 3 for 1D,
2D and 3D problems, respectively.
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Let us write the Galerkin finite element form for the modified eqn. (74) (assuming
Dirichlet boundary conditions). This gives

∫
Ω

Ni[−uT ∇φ̂ + ∇T (D + D∗)∇φ̂ + Q] = 0 (75)

Integration by parts of the artificial diffusion term gives

∫
Ω

[
−
(

Ni +
αle

2|u|u
T ∇Ni

)
uT∇φ̂ + Ni(∇TD∇φ̂ + Q)

]
dΩ + b.c. = 0 (76)

Eqn. (76) clearly shows that introducing the artificial diffusion D∗ leads to a Petrov-
Galerkin weighting of the convective term similarly as in the 1D case (see eqn. (34)).

Above procedure has been widely used in practice choosing for α the optimal value
deduced from the simplified 1D case (i.e. eq.(22) with γ = |u|l(e)

2k
).4, 10, 19, 39

A more rigorous approach is based on the perturbed Galerkin form, i.e. viz eqn. (30) with
r̂ = −uT ∇φ̂+∇TD∇φ̂+Q and the following expressions for the perturbation function P

Method Perturbation function

Streamline Upwind P := −uT ∇ (77a)
Petrov-Galerkin (SUPG)

Galerkin Least-Square (GLS) P := −uT ∇ + ∇TD∇ (77b)

Subgrid Scale (SGS) P := −uT ∇ − ∇T D∇ (77c)

Note that the SUPG method adds a balancing diffusion along the streamline direction.
The resulting integral expression is similar to eqn. (76), the difference being that the pertur-
bation function is also affecting the diffusive and source terms in the SUPG case.

5.2 Multidimensional finite calculus formulation

Extending the concept of finite calculus (FIC) to 2D and 3D problems leads to the consis-
tently modified differential equations37

r − 1

2
hT∇r = 0 in Ω (78a)

φ − φ = 0 on Γp (78b)

nT D∇φ + qn − 1

2
hT nr = 0 on Γq (78c)

with the characteristic vector h defined as (for 2D problems)

h = [hx, hy]
T (79)

Again note that for h = 0 the infinitesimal form of the multidimensional convection-
diffusion equations is obtained (see eqns. (1)–(3)).
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Application of the Galerkin finite element method to eqns. (79) leads to the following
integral expression (after integration by parts of the terms involving h)

∫
Ω

Nir̂dΩ −
∫
Γq

Ni(n
TD∇φ + qn)dΓ +

∑
ne

∫
Ωe

1

2
hT∇Nir̂dΩ = 0 (80)

The expression of the perturbation function P can be identified in this case as P = − 1
2
hT∇.

A particular expression of h can be found if the characteristic vector is chosen aligned
with the velocity vector, i.e. h = h

|u|u, where h is a characteristic distance. Choosing h = αle

where le is an element dimension recovers the form of the perturbation function defined for
the SUPG method.37 The intrinsic time parameter is now defined as

τ =
h

2|u| (81)

Note that this coincides with the time taken for a particle to travel the distance h/2 at the
speed |u|.

5.2.1 The role of the stabilizing crosswind dissipation

The assumption of the characteristic length vector h being parallel to the velocity vector u is
a simplification which eliminates any transverse diffusion effect. However it is well known
that when arbitrary sharp transverse layers are present, additional transverse (or crosswind)
diffusion is required to capture these discontinuities. Different “ad hoc” expressions for the
transverse diffusion terms, typically of non linear nature, have been proposed.19, 47–49 The in-
troduction of this additional stabilizing effect can be simply reproduced in the FIC approach
by abandoning the assumption of h being parallel to u and keeping the two characteristic
lengths hx and hy as “free” stabilization parameters. A technique for computation of these
two parameters is described in the following section.

5.2.2 Computation of the stabilization parameters in the FIC method

Let us consider the finite element solution of an advective-diffusive problem. The solution
residual of the modified equation is

r̂ − 1

2
hT∇r̂ = rΩ in Ω (82)

where r̂ = r(φ̂) and φ̂ is the approximate finite element solution.
Let us now define the average residual of a particular numerical solution over an element

as

r(e) =
1

Ω(e)

∫
Ω(e)

rΩ dΩ (83)

Substituting eqn. (82) into (83) gives

r(e) = r̂(e) −
(

1

2
hT ∇r̂

)(e)

(84)
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where

a(e) :=
1

Ω(e)

∫
Ω(e)

a dΩ (85)

For simplicity the characteristic length vector will be assumed to be constant over each
element, i.e. h = h(e). With this assumption eqn. (84) can be simplified to

r(e) = r̂(e) − 1

2

[
h(e)

]T
(∇r̂)(e) (86)

Let us express the characteristic length vector in terms of the components along the
velocity vector u and an arbitrary direction v as

h = hs
u

|u| + ht
v

|v| (87)

where hs and ht are streamline and transverse (crosswind) characteristic lengths, respec-
tively.

Excellent results have been found taking v = ∇ φ following the ideas of shock capturing
schemes.19, 47–49 Other expressions for v are however possible and they should all lead to
stable results.

Substituting eqn. (87) into (86) gives

r(e) = r̂(e) − 1

2

[
hs

uT

|u| + ht
vT

|v|
](e)

(∇r̂)(e) (88)

The characteristic lengths hs and ht can be expressed now as a proportion of a typical
element dimension l(e)

h(e)
s = α(e)

s l(e) , ht = α
(e)
t l(e) (89)

where α(e)
s and α

(e)
t are the streamline and transverse stabilization parameters, respectively.

In the examples shown next l(e) has been taken equal to (Ωe)1/d.
Clearly for α

(e)
t = 0 just the streamline diffusion effect, typical of the SUPG approach,

is reproduced.
Let us consider now that an enhanced numerical solution has been found for a given

finite element mesh. This can be simply achieved by projecting into the original mesh an im-
proved solution obtained via global/local smoothing or superconvergent recovery of deriva-
tives.4, 50, 51 If r

(e)
1 and r

(e)
2 respectively denote the element residuals of the original and the

enhanced numerical solutions for a given mesh it is obvious that

r
(e)
1 − r

(e)
2 ≥ 0 (90)

Clearly in the limit case of the exact solution r
(e)
1 = r

(e)
2 = 0.

Eqn. (90) assumes that r1 is positive. For the negative case the inequality should be
appropriately reversed.

Combining eqns. (88), (89, (90) gives

[αs
uT

|u| + αt
vT

|v| ]
(e)(∇r̂

(e)
2 − ∇r̂

(e)
1 ) ≥ 2

l(e)
(r̂

(e)
2 − r̂

(e)
1 ) (91)
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Eqn (91) is the basis for computing iteratively the stabilization parameters αs and αt as
shown in next section.

In the 2D examples of Section 5.4 solved with linear four node quadrilaterals the first
derivatives of φ are first computed at the 2 × 2 Gauss points within each element. The
enhanced derivative field is then computed by projecting the Gauss point values to the ele-
ment nodes using a bi-linear interpolation and then averaging the discontinuous nodal values
contributed by the elements sharing the node.

5.2.3 Alpha-adaptive stabilization scheme

The following scheme can be devised to obtain a stable numerical solution in an adaptive
manner.37, 38

1. Solve the stabilized problem defined by eqn. (78) using the FEM with an initial guess
of the stabilization parameters, i.e.

α(e)
s = oα(e)

s , α
(e)
t = oα

(e)
t (92)

2. Recover an enhanced derivatives field. Evaluate r̂
(e)
1 , r̂

(e)
2 ,∇r̂

(e)
1 and ∇r̂

(e)
2 .

3. Compute an enhanced value of the streamline stabilization parameter α (e)
s from eqn. (91)

by
1α(e)

s = |u|
uT (∇r̂

(e)
2 −∇r̂

(e)
1 )

[
2

l(e)
(r̂

(e)
2 − r̂

(e)
1 ) − α

(e)
t

vT

|v| (∇r̂
(e)
2 − ∇r̂

(e)
1 )

]
(93)

4. Repeat steps (1)–(3) until convergence is found for the value of α(e)
s while keeping α

(e)
t

constant.

5. Repeat steps (1)–(4) for computing α
(e)
t while keeping α(e)

s constant and equal to the
previously converged value. In the first iteration αt = oα(e) + ε, where ε is a small
value, should be used. The updated value of α

(e)
t is computed as

iα
(e)
t = |v|

vT (∇r̂
(e)
2 −∇r̂

(e)
1 )

[
2

l(e)
(r̂

(e)
2 − r̂

(e)
1 ) − α(e)

s
uT

|u| (∇r̂
(e)
2 − ∇r̂

(e)
1 )

]
(94)

6. Once α
(e)
t has been found steps (1)–(5) can be repeated to obtain yet more improved

values of both α(e)
s and α

(e)
t .

Details of the treatment of elements next to boundary can be found in Oñate et al. 38

Note that for α
(e)
t = 0 above adaptive scheme provides the value of the critical streamline

stabilization parameter α(e)
s corresponding to the SUPG procedure. Accounting for the cross-

wind stabilization parameter αt is essential for obtaining a stable solution in presence of
arbitrary transverse sharp layers.

The number of iterations in the above adaptive process is substantially reduced if the
initial guess for α(e)

s and α
(e)
t are not far from the final converged values. This can be ensured

by using as initial value for α(e)
s the standard expression derived from the straight forward

extension of the simple 1D case, whereas the initial guess oα
(e)
t = 0 provides a good approx-

imation in zones far from sharp layers non orthogonal to the velocity vector.
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5.3 Example: 1D convection-diffusion problem solved with FIC method

Particularizing eqn. (93) for the 1D convection-diffusion problem gives (making α
(e)
t = 0)

α(e) ≥ 2/l(e)
(
r̂

(e)
2 − r̂

(e)
1

)⎡⎣(dr̂2

dx

)(e)

−
(

dr̂1

dx

)(e)
⎤
⎦
−1

(95)

The equality case in eqn (95) yields the critical value of the element stabilization param-
eter ensuring no growth of the numerical error. The accuracy of above expression is shown
next in a simple example.

Let us consider the FE solution of the sourceless 1D convection-diffusion problem

−u
dφ

dx
+ k

d2φ

dx2
= 0, 0 ≤ x ≤ l (96)

with boundary conditions

φ = 0 at x = 0

φ = 1 at x = l (97)

The solution will be attempted with the simplest two node linear element. For a uniform
mesh the residual and the average residual derivative over an element with nodes i and i + 1
can be found as

r̂
(e)
1 = − u

l(e)
(φi+1 − φi) and

(
dr̂1

dx

)(e)

= 0 (98)

The enhanced solution is obtained now by a simple smoothing of the first order con-
vective derivative at the nodes. The elemental residual for the enhanced solution is given
by

r̂
(e)
2 = −u

2
(φ̂′

i + φ̂′
i+1) +

k

l(e)
(φ̂′

i+1 − φ̂′
i) (99)

where φ̂′
i =

(
dφ̂
dx

)
i
. A simple algebra gives

r̂
(e)
2 = − u

4l(e)
(φi+1 − φi−1 + φi+2 − φi) +

k

2(l(e))2
(φi+2 − φi − φi+1 + φi−1) (100)

A similar procedure leads to (neglecting the third order derivative term)

(
dr̂2

dx

)(e)

= −u
d2φ̂

dx2
= − u

2(l(e))2
[φi+2 − φi − φi+1 + φi−1] (101)

Substituting above equations into (95) gives the element critical stabilization parameter

α(e) ≥
[
φi+2 − 3φi+1 + 3φi − φi−1

φi+2 − φi+1 − φi + φi−1
− 1

γ

]
(102)

where γ = ul(e)

2k
is the element Peclet number.
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It can be checked that the value of α(e) given by eqn. (102) coincides in this case with
the analytical expression typically used in practice. For this purpose let us substitute into
eqn. (102) the general numerical solution for this problem given by

φi = A + B

[
1 + γ(α + 1)

1 + γ(α − 1)

]i

(103)

where A and B are constants. After same simple algebra we obtain37

α(e) ≥ 1 − 1

γ
(104)

which coincides with the standard critical value (see eqn. (19)).
Figures 6 and 7 show practical applications of the iterative (adaptive) process for comput-

ing α explained in Section 5.2.3. In the first case the solution of the 1D convection-diffusion
problem is attempted for γ = 5 using a mesh of twenty linear elements. An initial value of
0α(e) = 0.5 is chosen for all elements. Figure 6 (a) shows the convergence of the solution
for α(e). Note that the critical value α(e) = 0.8 is obtained in all elements after a few iter-
ations. Figure 6 (b) also displays the convergence of the numerical solution for φ showing
convergence to the “exact” solution after three iterations.
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Figure 6: One dimensional advection-diffusion problem. Convergence of the
critical value of the element stabilization parameter α(e) (a) and of the
numerical solution φ (b) obtained with 20 two node linear elements.
Peclet number γ = 5

Results for the same problem for γ = 25 are shown in Figure 7. Note that as in previous
example a good solution is obtained with just two iterations. Seven iterations are however
needed to obtain the critical value of α(e) for all elements. Indeed in both cases it suffices to
obtain a good approximation for α(e) in the vicinity of the right hand node and this always
occurs after 2-3 iterations.

22



φ

x

1

2

3

α (e)

Numero Elemento

1

2

4

6

3

(a) (b)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 205 15

0.65

0.75

0.85

0.95

1

5 10 15 20

0.90

0.70

0.60

0.80

Figure 7: One dimensional advection-diffusion problem. Convergence of the critical
value of the element stabilization parameter α(e) (a) and of the numerical
solution φ (b) obtained with 20 two node linear elements. Peclet number
γ = 25

5.4 2D convection problems solved with FIC method

5.4.1 Two dimensional advective-diffusive problem with no source, diagonal velocity
and uniform Dirichlet boundary conditions

The first 2D example chosen is the solution of the standard advection-diffusion equation in
a square domain of unit size with

kx = ky = 1 , u = [1, 1]T , ν = 1 × 1010 , Q = 0 (105)

The following Dirichlet boundary conditions are assumed

φ = 0 along the boundary lines x = 0 and y = 0
φ = 100 along the boundary line x = 1
qn = 0 along the boundary line y = 1

The expected solution in this case is a uniform distribution of φ = 0 over the whole
domain except in the vicinity of the boundary y = 1 where a boundary layer is formed.

The domain has been discretized with a uniform mesh of 400 four node quadrilaterals
as shown in Figure 8. Transverse stabilization effects have been accounted for choosing
v = ∇ φ in eqn.(87). The initial values oα(e)

s = oα
(e)
t = 0 have been taken in all elements.

Figure 9 shows the initial distribution of φ for α(e)
s = α

(e)
t = 0 (standard Galerkin

solution). Note the strong oscillations obtained as expected. The final converged solution
for φ after 7 iterations is displayed in Figure 10 . Note that the boundary layer originated in
the vicinity of the boundary at y = 1 is well reproduced with minimum oscillations. These
oscillations grow considerably higher if the value of the transverse stabilization parameter
α

(e)
t is kept equal to zero during the adaptive process, thus yielding the standard SUPG

solution. A comparison of the distribution of φ along the center line obtained with the full
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Figure 8: Two dimensional advection-diffusion problem with diagonal velocity.
Finite element mesh of 400 linear quadrilaterals

-200
-150
-100
-50
0
50
100

0

0.2

0.4

0.6

0.8

1

X

0
0.25

0.5
0.75

1

Y

φ

Figure 9: Two dimensional advection-diffusion problem with diagonal velocity.
Initial oscillatory distribution of φ for αe

s = αe
t = 0.

stabilized approach (accounting for streamline and transverse stabilization effects) and the
SUPG method is shown in Figure 11.

Figure 12 shows finally the smoothed distribution of the stabilization vector h given
by eqn.(87). Note that in the central part of the domain the h vectors are aligned with the
velocity direction (i.e. ht = 0), whereas in the vicinity of the boundaries the effect of the
transverse stabilization parameter ht leads to a noticeable change of the direction of h.
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Figure 10: Two dimensional advection-diffusion problem with diagonal velocity.
Final distribution of φ after 7 iterations.
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Figure 11: Two dimensional advection-diffusion problem with diagonal veloc-
ity. Distribution of φ along a center line obtained with the full stabi-
lized discontinuity capturing method (DC) and the SUPG formulation
(αt = 0)

5.4.2 Two dimensional advective-diffusive problem with no source and non uniform
Dirichlet boundary conditions

The advection-diffusion equations are now solved with

Ω =] − 1

2
,
1

2
[×] − 1

2
,−1

2
[ , u = [cos θ,− sin θ]T (106)

kx = ky = 10−6, Q(x, y) = 0, φ̄(x, y) =
{

100 if (x, y) ∈ Γφ1

0 if (x, y) ∈ Γφ2

(107)

with Γφ1 = {−1/2} × [1/4, 1/2] ∪ ] − 1/2, 1/2[×{1/2} , Γφ2 = Γφ − Γφ1 and Γq = 0.
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Figure 12: Two dimensional advection-diffusion problem with diagonal velocity.
Final distribution of the stabilization vector h.
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φ=0

φ=0

φ=100

φ=100

Figure 13: Two dimensional advection-diffusion problem with non uniform
Dirichlet condition. Finite element mesh of 576 linear quadrilater-
als

A structured mesh of 576 linear quadrangular has been chosen (Figure 13). The problem
has been chosen for an angle of u given by tan θ = 2. Once again v = ∇ φ and the initial
values oα(e)

s = oα
(e)
t = 0 have been taken.

Figure 14 shows the oscillatory distribution of φ obtained for the first solution, as ex-
pected. The final distribution of φ after 7 iterations is displayed in Figures 15 and 16. Note
that both the boundary layers at the edges and the internal sharp layer are captured with
minor oscillations. These oscillations are more pronounced near the right hand side edge
(Figure 16) when α

(e)
t = 0 is taken through out the adaptive process (SUPG solution).

Figure 17 shows the distribution of the stabilization vector h of eqn.(87). Again note
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Figure 14: Two dimensional advection-diffusion problem with non uniform
Dirichlet condition. Initial oscillatory distribution of φ for α e
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Figure 15: Two dimensional advection-diffusion problem with non uniform
Dirichlet condition. Final distribution of φ after 7 iterations.

that the direction of h in the smooth part of the solution is aligned with that of the velocity
vector, whereas the effect of the transverse stabilization term is very pronounced near the
sharp gradient boundary regions. This leads to a change in the direction of h in these zones.

Other examples of application of the FIC procedure for computation of the stabilization
parameter in 1D and 2D convection-diffusion problems can be found in.36–39
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Figure 16: Two dimensional advection-diffusion problem with non uniform
Dirichlet condition. Distribution of φ along a center line obtained
with the full stabilized discontinuity capturing method (DC) and the
SUPG formulation (αt = 0)

Figure 17: Two dimensional advection-diffusion problem with non uniform
Dirichlet condition. Final distribution of the stabilization vector h.

6 Stabilized space-time finite element formulation

Let us consider the balance of fluxes for the 1D advective-diffusive problem in an arbitrary
finite space-tine slab [x− h, x]× [t− δ, t] where h is the length of the space balance domain
and δ is a time increment defining the size of the balance domain in the time axis (Figure 18).
The global balance law can be written as

∫ t

t−δ

[∫ x

x−h
fdx

]
dt =

∫ x

x−h

[∫ t

t−δ
νdφ

]
dx (108)
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Figure 18: Space-time slab

where f denotes the space fluxes, φ is the transported variable and ν is the advective coeffi-
cient.

Assuming that both h and δ are finite and retaining first order terms in h and δ only
gives37, 40

r − h

2

∂r

∂x
− δ

2

∂r

∂t
= 0 for x ∈]0, L[, t > 0 (109)

with

r = −
(

∂φ

∂t
+ u

∂φ

∂x

)
+

∂

∂x

(
κ

∂φ

∂x

)
+ Q (110)

Eq. (109) can be considered the stabilized form of the balance differential equation for
the transient 1D advective-diffusive problem. Note that for h = δ = 0 the standard infinites-
simal form of the transient advective-diffusive problem r = 0 is recovered. Eqn. (109) is
also the basis for deriving numerical schemes ensuring the stability of the solution both in
space and time domains. Note that in all cases the distance h and the time increment δ in
(109) play the role of stabilization parameters ensuring stability of the numerical solution for
the discrete problem. Indeed the correct evaluation of these parameters is critical and this
issue will be discussed in a next section for the space-time formulation.

6.1 Equivalence of the FIC method with the Lax-Wendrof and Charac-
teristic Galerkin formulation

Let us consider the stabilized transient equations (109) neglecting for simplicity the term
involving the time stabilization parameter δ. A forward Euler integration gives

Δφ = Δt[r̄ − τu
∂r̄

∂x
]n (111)

where as usual the intrinsic time τ = h
2|u| and r̄ is the steady state “residual” defined as

r̄ = −u
∂φ

∂x
+

∂

∂x

(
k
∂φ

∂x

)
+ Q (112)
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The well known Lax-Wendroff approximation is written as52

Δφ = Δt

[
r̄ − Δt

2
u

∂r̄

∂x

]n

(113)

The equivalence between eqns. (111) and (113) is obvious if the time increment Δt
within the brackets in eqn. (113) is taken to coincide with the parameter τ . Recall that
eq. (113) is identical to that found using the Taylor-Galerkin method. 4, 25, 37 The analogy with
the FIC method also applies in this case.

The same analogy can be found between the FIC method and the so called characteristic
formulation for 2D/3D problems.4, 26 The analogous expressions are37

FIC method Characteristic approximation

Δφ = Δt[r̄ − τuT∇ r̄] Δφ = Δt[r̄ − Δt

2
uT∇ r̄] (114)

Applications of the Galerkin FEM technique to above equations leads to analogous sta-
bilized FEM schemes.

6.2 Stabilized space-time FEM formulation

Let us consider next in more detail the so called space-time (discontinuous) FEM formula-
tion.

Let us transform the time “direction” t into an auxiliary “spatial” direction y ∗ by means
of a fictitious “time velocity” v∗ so that

y∗ = v∗t (115)

Using this concept eqn. (109) can be rewritten as

r − 1

2
hT∇r = 0 for x ∈]0, L[, y∗ > 0 (116a)

where

r = −∇T f + ∇TD∇φ + Q (116b)

the advective flux vector is

f = [uφ, v∗φ]T (116c)

∇ =

[
∂

∂x
,

∂

∂y∗

]T

, D =
[
κ 0
0 0

]
(116d)

The characteristic length vector h is given by

h = [h, δv∗]T (117)
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and the “intrinsic time” of the space-time problem can be defined now as

τ =
h̄

2|u| (118)

where the characteristic length h̄ is

h̄ = [h2 + (δv∗)2]1/2 (119a)

and

|u| = [u2 + (v∗)2]1/2 with u =
{

u
v∗

}
(119b)

In the following it will be assumed that the characteristic length vector is aligned with
the velocity vector. This implies

h =
h̄

|u|u = 2τu (120)

Above assumption is the basis of a kind of streamline-upwinding approach for the tran-
sient problem,40 where the so called “artificial” or numerical dissipation is introduced along
the streamlines direction only. Indeed, this assumption is not mandatory and other more
advantageous options are possible as mentioned for the steady-state case.

Substituting eqn. (120) into (116a) gives the alternative form of the stabilized space-time
differential equation in terms of the intrinsic time parameter as

r − τuT∇r = 0 (121)

The equivalent stabilized form (121) has to be solved together with the following bound-
ary conditions

φ − φ̄ = 0 on Γφ (122a)

nTD∇φ + q̄ − τuTnr = 0 on Γq (122b)

φ(x, 0) = φ̄0 for t = t0 (122c)

In above Γφ and Γq are the usual space boundaries, where the variable and the normal
flux are prescribed, respectively, n is the normal vector, q̄ is the prescribed normal flux at the
Neumann boundary Γq, φ̄ is the prescribed value of the unknown at the Dirichlet boundary
Γφ and φ̄0 is the known value of φ at the initial time.

Note that eqn. (122b) is obtained substituting the value of h from eqn. (120) into (78c).

6.2.1 Finite element approximation

Consider the partition 0 = t0 < t1 . . . < tn = T of the time interval I =]0, T [. Denote by
In =]tn, tn+1[ the nth time interval. A space-time slab is defined as

Vn = Ω × In (123)

where Ω(=]0, L[) denotes the space domain (Figure 18). Indeed using eqn. (115) the equiv-
alent partition 0 = y∗

0 < y∗
1 . . . < y∗

n can be defined.
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For the nth space-time slab, let the space domain be subdivided into ne elements, Ωe, e =
1, . . . ne. The space-time element domains are defined as

V e
n = Ωe × In, e = 1, . . . , ne (124)

Within each space-time element containing n nodes the finite element approximation is
written as

φ � φ̂ =
n∑

i=1

Ni(x, y∗)φi (125)

where Ni are the element shape functions and φi are nodal values. The functions Ni are as-
sumed C0 continuous throughout each space-time slab, but are allowed to be discontinuous
across the slab interfaces, namely at times t1, t2, . . . , tN−1 (or the equivalent time “coordi-
nates” y∗

1 , y
∗
2, . . . y

∗
N−1). Substituting eqn. (125) into (121) and (122b) gives

r̂ − τuT∇r̂ = rV on Vn (126a)

−nT uφ̂ + nTD∇φ̂ + q̄ − τuTnr̂ = rq on Γq (126b)

where r̂ = r(φ̂) and rV and rq are the residuals of the approximate solution in the space-time
slab Vn and the Neumann boundary Γq, respectively. As usual in the FEM, the Dirichlet
boundary condition (122a) will be assumed to be satisfied exactly.

The weighted residual form of eqns. (126) is
∫

Vn

w(r̂ − τuT∇r̂)dV +
∫
Γq

w̄[nT D∇φ̂ + q̄ − τuTnr̂]dΓn = 0 (127)

where w and w̄ are arbitrary test functions with the same continuity properties that the shape
functions. As usual w = w̄ = 0 on Γφ will be assumed. Integrating by parts the term
incorporating τ in the first integral of eqn. (127) and choosing w̄ = −w gives

∫
Vn

[
w + ∇T (τuw)

]
r̂dV −

∫
Γq

w(nTD∇φ̂ + q̄)dΓn = 0 (128)

Let us further assume that both the intrinsic time and the velocity are constant within
each element (i.e. ∇T τu = 0). Integrating by parts the diffusive terms in the product wr̂
within the first integral of eq. (128) gives

∫
Vn

[w∇T f + (∇Tw)D∇φ̂ − wQ]dV +
∑

e

∫
V e

n

τuT∇w[ν∇T f −

−∇T (D∇φ̂) − Q]dV +
∫

Γq

wqdΓn = 0 (129)

Let us compute the integral along the Neumann boundaries Γqn in eqn. (129) for the
space-time slab of Figure 19. The total flux is the sum of the advective and diffusive fluxes
across the lateral boundaries ΓL and ΓR and the advective flux across the lower boundary Γ+

n

and the upper boundary Γ−
n+1.
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Figure 19: Space-time slab. Definition of Neumann boundaries where the flux is
prescribed

The normal flux q̄ on the lower and upper boundaries Γ+
n and Γ−

n+1 can be computed
from the advective velocity v∗ as

q̄ = −v∗φ−
n on Γ+

n

q̄ = v∗φ+
n+1 on Γ−

n+1 (130)

Introducing eqns. (130) into the third integral in eqn. (129) gives

∫
Γq

wq̄dΓ =
∫
Γ+

n

wv∗(φ+
n − φ−

n )dx +
∫
Γ−

n+1

wv∗(φ+
n+1 − φ−

n+1) dx +
∫
ΓR+L

wq̄dt (131)

The first integral of the r.h.s. of eqn. (131) gives the so called jump conditions in a discon-
tinuous approximation in time of the unknown φ. The second integral can be set equal to
zero by assuming φ−

n+1 = φ+
n+1 while solving the equations for the time slab. Using this later

assumption and substituting eqn. (131) into (129) gives the final expression for the stabilized
integral form as ∫

Vn

[wν∇T f + (∇Tw)D∇φ̂ − wQ]dV +

+
∑

e

∫
V e

n

τuT∇w[ν∇T f − ∇T (D∇φ̂) − Q]dV +

+
∫

Γ+
n

wv∗(φ+
n − φ−

n )dx +
∫
ΓR+L

wq̄dt = 0 (132)

The first and fourth integrals in eqn. (132) constitute the standard Galerkin formulation.
The second integral introduces the stabilization terms arising naturally from the FIC formu-
lations. Note the equivalence of these terms with an analogous SUPG space-time formula-
tion.27 The third integral is the standard jump condition derived from the lack of continuity
of the unknown variable across the upper and lower slab interfaces. The jump condition im-
poses a weakly enforced continuity across these interfaces and is the mechanism by which
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information is propagated from one space-time slab to another. Eqn. (132) leads to a dis-
cretized system of equations where the unknowns are the nodal values of φ+

n and φ−
n+1 at the

boundaries Γ+
n and Γ−

n+1, respectively (see Figure 19).
The choice of a continuous approximation in time leads to the same stabilized expression

(132), where the third integral imposing slab continuity now vanishes. Naturally in this case
the discretized system involves the nodal unknowns for the whole space-time domain.

6.2.2 Computation of the stabilization parameter in the space-time formulation

The method to compute the stabilization parameter in the space-time FEM formulation is an
extension of the approach proposed for steady state problems in Section 5.2.2. Following the
same arguments of Sections 5.2.2 and 5.2.3 lead to the same expression for the intrinsic time
of a space-time element as

τ (e) ≥ (r
(e)
2 − r

(e)
1 )[(uT ∇r̂2)

(e) − (uT∇r̂1)
(e)]−1 (133)

The following iterative scheme can be now implemented to compute the intrinsic time
parameter in order to obtain a stable numerical solution both in space and time.

1. Solve the stabilized problem defined by eqns. (121) and (122) to find φ+
n and φ−

n+1

with an initial guess of τ (e) = 0τ (e)
n . In the examples shown next 0τ (e)

n = τ
(e)
n−1 (with

τ
(e)
1 = 0) has been chosen. Compute r

(e)
1 and ∇r

(e)
1 .

2. Compute an enhanced solution. In the examples shown the enhanced spatial derivative
field has been obtained both in space and time by simple nodal averaging of element
derivatives over two space-time elements. For this purpose the following value of the
nodal unknown at time tn is used

φn =
1

2
(φ−

n + φ+
n ) (134)

3. Compute r
(e)
2 and ∇r

(e)
2 .

4. Compute a new value for the element intrinsic time 1τ (e)
n using eqn. (133).

5. Compute a new value of τ (e) by τ (e) = (1τ (e)
n − 0τ (e)

n )β + 0τ (e), where β is a relaxation
parameter. In the examples solved β = 0.8 has been taken.

6. Repeat steps 1-5 using the updated intrinsic time values until convergence for τ (e) is
found or else a satisfactory numerical solution is obtained.

Steps 1-6 are repeated for each time step. In the examples solved it has been found useful
to smooth the distribution of the iτ (e) values obtained after Step 5. This has been simply done
again by nodal averaging. It is also noted that above iterative process converges quite fast for
well developed transient solutions (error in quadratic norm for iτ (e) less than 1 % obtained
in 2-3 iterations) as the initial guess for τ (e) is taken as the converged value from previous
time step. The convergence in the first time step can be accelerated by using for 0τ (e) the
critical value from the simple steady state sourceless advective-diffusive case solved with
linear elements, i.e. τ (e) = l(e)

2u

(
1 − 1

γ(e)

)
with the Peclet number γ (e) = ul(e)

2κ
.
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7 Examples of stabilized transient solution using the FIC
method

7.1 Transient convection-diffusion problem with linear initial distribu-
tion

The first example solves the convection-diffusion problem

∂φ

∂t
+ u

∂φ

∂x
− k

∂2φ

∂x2
= 0 (135)

with the initial and boundary conditions

φ(x, t0) = x

φ(0, t) = 0

φ(L, t) = 1 (136)

is presented. The data of the problem are L = 1, u = 1, k = 0.01. The discretization in
the space-time domain has been carried out using twenty four node bilinear square elements
with dimensions in space and time equal to 0.05. Two time steps have been used for the sim-
ulations: Δt = 0.05 and Δt = 0.1. Using eqn. (115) the “time velocities” are respectively
v∗ = 1 and v∗ = 0.5. The resulting element Peclet number is 2.5 and the Courant numbers
(defined as C = |u|Δt

le
) for the two cases considered are respectively C = 1 and C = 2.

The numerical results are presented in Figures 20 to 23. In Figures 20 and 22 the value of
φ is plotted at times from 0 to 4 in steps of 0.5 obtained with (a) the automatic computation
of the stabilization parameter τ using the iterative adaptive scheme described in previous
sections, (b) using the standard non-stabilized Galerkin method and (c) using the expression
for τ given by Shakib53

τ = [(2u/Δx)2 + (4k/Δx2)2]−1/2 (137)

where Δx is the spatial element length.
As expected the Galerkin method lacks stability in both cases, producing spurious os-

cillations at all time steps, including the stationary state. On the other hand the solution
utilizing the stabilization parameter given by eqn. (137) shows a higher diffusivity, failing to
reach the correct solution at steady state. The proposed method stabilizes the solution, and
seems to give the correct distribution of φ at all times.

The time evolution of τ is represented in Figures 20d and 21d (C = 1) and 22d and 23d
and (C = 2). Note that, the distribution is not constant over the spatial domain, specially
at the early stages of the analysis. The optimal steady state value for the SUPG formulation
(τ = 0.015) is reached in both cases.
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Figure 20: Solution of the advection diffusion problem with C = 1, using (a) auto-
matic computation of τ , (b) Galerkin method, (c) τ as defined by eqn. (137),
(d) time evolution of the distribution of τ as obtained with the present
method.
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Figure 21: Solution of the advection diffusion problem with C = 1. Time evo-
lution of the stabilization parameter τ for each element.

7.2 Burger’s equation

In this example the method derived for the advection diffusion equation is applied to the non
linear Burgers equation

∂φ

∂x
+ φ

∂φ

∂x
− k

∂2φ

∂x2
= 0 (138)

36



0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.9

0.60.50.40.3

1.0

0.0 0.1 0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4
0.7

0.0

(d)(c)

(a)

1.00.90.80.7

(b)

φ

φ

φ

τ

x x

x element
0.6

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.50.40.30.2

0.9

1.0

0.0 0.1

1.00.90.8

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.30.20.10.0

0.7

0.8

0.9

1.0

0.4

1412108642 16 18 20

0.020

0.000

0.002

0.018

0.016

0.014

0.012

0.004

0.006

0.008

0.010

1.00.90.80.70.60.5

Figure 22: Solution of the advection diffusion problem with C = 2, using (a)
automatic computation of τ , (b) Galerkin method, (c) τ as defined by
eqn. (137), (d) time evolution of the distribution of τ as obtained with
the present method.
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Figure 23: Solution of the advection diffusion problem with C = 2. Time evo-
lution of the stabilization parameter τ for each element.

with the initial and boundary conditions

φ(x, t0) = sin πx

φ(0, t) = 0

φ(L, t) = 0 (139)
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with k = 1/100 π. The discretization of the space time domain has been carried out using
80 equally spaced four nodal rectangular elements. The dimension in space is Δx = 0.0125
and the dimension in time is Δy = 1. The time step has been taken as Δt = 4.67 × 10−3.
The “space velocity” is therefore v∗ = 214.13.

The numerical solution is shown in Figure 24 at times from 0 to 0.7 for Δt = 0.14 using
the different methods described in Example 7.1. As for the previous examples the solution
develops smoothly during the initial time steps, thus even the standard Galerkin solution
does not show any spurious oscillation. Again unsatisfactory results are evident only when
the maximum value reaches the right boundary (Figure 24(b)).

The results obtained using the parameter τ as defined by eqn. (137) prove again to be
over diffusive, specially when the solution is smooth (Figure 24(c)). The solution obtained
with the automatic parameter computation based on the FIC method are smooth and less
diffusive for all time steps.

The space time distribution of τ depicted in Figure 24(d) and 25 reveals that the stabi-
lization parameter has a significant value only for the elements that show a lack of stability
in the Galerkin solution.

0.10.0

1.0

0.9

0.8

0.7

0.2 0.80.70.60.50.40.3

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0.9

0.002

0.001

0.000

0.003

x

(b)

(d)(c)

(a)

80

x

φ τ

φφ

elementx
70

0.009

0.008

0.007

0.006

0.005

0.004

0.010

6050403020101.0

0.9

0.2

0.1

0.0

0.3

0.9

0.8

0.7

0.6

0.5

0.4

0.50.40.30.20.10.0 0.6 1.00.90.80.7

1.0

0.10.0

1.0

0.9

0.8

0.7

0.2 0.80.70.60.50.40.3

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 24: Solution of the Burgers equation with C = 2, using (a) automatic compu-
tation of τ , (b) Galerkin method, (c) τ as defined by eqn. (137), (d) time
evolution of the distribution of τ as obtained with the present method.
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Figure 25: Solution of the Burgers equation with C = 2. Time evolution of the
stabilization parameter τ for each element.

8 CONCLUDING REMARKS

A review of some of the more popular procedures for deriving stable finite element formu-
lation for solving the convective-diffusion equation has been presented. It has been shown
that most methods can be derived as particular cases of the so called Finite Calculus (FIC)
procedure based on the solution of modified governing equations obtained using higher order
balance laws. The FIC method also provides a methodology for computing the streamline
and cross-wind stabilization parameters. The efficiency of the FIC approach has been shown
in the finite element solution of steady-state and transient convection-diffusion problems.
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