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Nomenclature

α Vector of Nu random coefficients (solution of the second stage of the
model reduction problem)

A Finite element assembly operator.

Ψ Matrix formed by the first Nσ left singular vectors of XI
σ.

ΨB Expanded basis matrix

Ψ̂B “Gappy matrix formed by files appropriately selected from ΨB.

Ψ̂ “Gappy matrix formed by selected files of the first Nσ left singular
vectors of XI

σ.

Ψ⊥ Matrix formed by the trailing left singular vectors of XI
σ (a basis for

the nullspace of XI
σ
T
).

Ψη Matrix formed by the first Nσ left singular vectors of XI
σ (perturbed

stress vector).

Ψ̂η “Gappy matrix formed by selected files of Ψη.

∂Ωµ Boundary of the domain of the RVE

B Matrix connecting strain tensor with nodal displacements.

eB e− th elemental matrix connecting strain tensor with nodal displace-
ments.

B
hT Matrix that acts on the “stacked gauss point stress vector ΣI to give

the full-order residual vector.

BI Matrix connecting strain tensor with “reduced nodal displacements.

B̂
IIT Matrix that acts on the “gappy gauss” point stress vector Σ̂II to give

the reduced residual vector.

B
IT Matrix that acts on the “stacked gauss point stress vector ΣI to give

the reduced residual vector.

B̂
IT Matrix defined as P̂BIT .

Ce Elastic constitutive tensor.

SI
σ Covariance matrix (stress vector snapshots).
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C Algorithmic tangent operator consistent with the macroscopic incre-
mental constitutive law.

Cµ Algorithmic tangent operator consistent with the microscopic incre-
mental constitutive law.

D (•)[∆u] Directional derivative in the direction of ∆u.

Ωµ Domain of the RVE

Ωµ Void part of the RVE domain

Ωs
µ Solid part of the RVE domain

eΩs
µ Solid part of the RVE domain corresponding to the e− th element.

ǫ Macroscopic strain tensor

iǫn Macroscopic strain tensor at tn (i-th strain history)

ǫn Macroscopic strain tensor at tn

ǫ
snp
t Macroscopic strain history used for generating the snapshots

e
II,rec
Σ Error in stresses due to reconstruction (second reduction)

eIΣ Error in stresses (first reduction)

eIIΣ Error in stresses (attributed exclusively to the second reduction stage)

e
I,samp
Σ Error in stresses due to deficiencies in the sampling of the parametric

space (first reduction)

e
II,samp
Σ Error in stresses due to deficiencies in the sampling of the para-

metric space (second reduction)

etrunΣ Total truncation error in stresses

e
I,trun
Σ Truncation error in stresses (first reduction)

e
II,trun
Σ Truncation error in stresses (second reduction)

e
I,samp
uµ Error in micro-displacement fluctuations due to deficiencies in the

sampling of the parametric space (first reduction)

e
I,samp
uµ

⊥
Component orthogonal to the span of the basis of the sampling

error (error in micro-displacement fluctuations due to deficiencies in
the sampling of the parametric space (first reduction))

e
I,trun
uµ Truncation error in micro-displacement fluctuations (first reduction)

ǫµ Microscopic strain tensor

η Perturbation factor (solution of the second stage of the model reduc-
tion problem)

fǫ For the elastic case, fǫ ∈ R
N×ds is defined as fǫ =

∫

Ωs
µ

{
BT
}
{Cµ} dΩ.
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Î The “gappy indices set, i.e., the set of indices corresponding to the
gauss points selected the gappy data reconstruction.

∇sA Symmetric gradient of A.

Ĝn Incremental virtual work (or weak form) functional at step n for the
micro-equilibrium problem.

I Identity matrix.

ξµ Microscopic internal variables

A Matrix used for expressing the reduced-order model in the form
AΣ̂II = 0.

tvn Internal traction at time tn.

Kµ Stiffness matrix (micro-structure)

KI
µ Reduced stiffness matrix (micro-structure)

KII
µ Hyper-reduced stiffness matrix (micro-structure)

l Characteristic length of the macroscopic body

lµ Characteristic length of the Ωµ

〈A〉 Mean value of vector A

d Dimension of the problem (d = 2, 3).

N Number of degrees of freedom of the micro-cell.

ne Number of elements of the discretization of the micro-cell.

Ng Total number of gauss points in the finite element mesh at the coarse
level.

Ng Total number of gauss points in the finite element mesh of the micro-
cell.

N̂g Number of selected gauss points in the gappy data reconstruction
method.

Nh Total number of strain histories along which displacements and stresses
are computed for snapshots construction purposes

Nt Number of time intervals into which each strain history is divided

Nσ Number of gauss point vector stress modes (reduced-order model).

Nσ Number of gauss point vector stress modes (reduced-order model;
perturbed snapshot matrix).

Nu Number of displacement modes.

n Number of nodes of the discretization of the micro-cell.
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‖A‖2 2-norm of A (if A is a vector); if A is a matrix, then ‖A‖2 symbolizes
the Frobenius norm. )

‖A‖∞ Infinity norm of A.

Np Number of samples (or snapshots) (displacements).

Ns Number of samples (or snapshots) (stresses).

ds Number of components of the strain vector.

null A Null space or kernel of linear application A

Puµ Tangential operator relating displacement fluctuations and macro-
strains.

Φ Matrix formed by the first Nu left singular vectors of Xh
U .

eΦ e − th elemental matrix formed by the first Nu left singular vectors
of Xh

U .

Φ
Ĵ

J − th column of Φ.

RI
η,n+1 Residual vector at tn+1 in the dimensional reduced basis (perturbed

problem).

Pǫ For the elastic case, Pǫ ∈ R
N×ds is defined as the operator that acts

on ǫ to produce the microscopic fluctuations at interior nodes (for
homogeneous boundary conditions).

Qsol Linear space that contains the set of all solutions to the equation

B
ITΣI = T v,I .

Q⊥
sol Orthogonal complement of Qsol.

range (A) Range of linear application A

rusnp Rank of the fluctuations snapshot matrix

rσsnp Rank of the stress snapshot matrix

rank (A) Rank of matrix A

Rσ Reconstruction matrix (hyper-reduction)

Rσ Reconstruction matrix with the expanded basis(hyper-reduction)

RI Residual for node I

RII
n+1 Residual vector at tn+1 after the second order reduction.

RI
n+1 Residual vector at tn+1 in the dimensional reduced basis.

Rn+1 Residual vector at tn+1

RiI i-th component of the residual at node I
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P̂ Boolean matrix (containing only zeros and ones) used to extract the

files determined by the pertinent greedy algorithm (P̂ ∈ R
Ngds×N̂gds)

.

NI Shape function at node I).

λj j − th singular value computed from the svd of XI
σ).

sµ Speedup factor associated to the computation of the macroscopic
stresses for a given macro-strain history.

smacro Global speedup factor.

σj j − th singular value (svd of Xh
U ).

Σ Matrix of singular values (svd of Xh
U ).

σ Macroscopic stress.

σµ Microscopic stress.

ΣI Column vector containing the microscopic stress vector at each gauss
point (first reduction).

Σh Column vector containing the microscopic stress vector at each gauss
point (full-order model reduction).

Ση
I Column vector containing the “perturbed microscopic stress vector

at each gauss point (first reduction).

Ση
I Column vector containing the perturbation to the microscopic stress

vector at each gauss point (first reduction).

ΣII Column vector containing the microscopic stress vector at each gauss
point .(second reduction)

Σ̂II Column vector containing the microscopic stress vector at the gauss
point selected in the gappy data reconstruction.

ΣII
Ψ⊥ Stress vector normal to the subspace spanned by Ψ.

η Test functions

ηh Test functions (finite element approximation)

η̂h
I Nodal test function (at node I)

T
v,h
n Internal traction vector at time tn (expressed in the final element

basis).

T
v,I
n Reduced-order internal traction vector.

T Operator that maps micro-stress values at gappy points into the
macroscopic stresses

U Matrix of left singular vectors (svd of Xh
U ).

UB Matrix of left singular vectors of BI .
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UQ Orthogonal basis matrix for Q⊥
sol.

uµ Fluctuation of the microscopic displacement field

uh
µ Fluctuation of the microscopic displacement field in the finite element

approximation

ûh
µ,i Nodal fluctuation displacement at node I.

uµ|n Microscopic displacement at time tn

uI
µ Displacement fluctuation field pertaining to the reduced space (first

reduction)

uII
µ Displacement fluctuation field pertaining to the reduced space (sec-

ond reduction)

ûII
µ Vector of Fourier coefficient corresponding to (displacement fluctua-

tion) basis Φ (second reduction).

ûII
µ

∣
∣
Î

Fourier coefficient corresponding to (displacement fluctuation) basis
Φ

Î
(second reduction).

ûI
µ Vector of Fourier coefficient corresponding to (displacement fluctua-

tion) basis Φ (first reduction).

ûI
µ

∣
∣
Î

Fourier coefficient corresponding to (displacement fluctuation) basis
Φ

Î
(first reduction).

Xh
U Displacement fluctuations snapshot matrix (full-order model).

Xh
σ Snapshot matrix of gauss point stress vectors (full-order model).

XI
σ Snapshot matrix of gauss point stress vectors (first reduction).

U(k) Microscopic nodal displacement vector corresponding to macroscopic
strain (ǫ)k.

um
µ Microscopic displacement vector at node m

Vµ Volume of the RVE domain

V s
µ Volume of the solid part of the RVE domain

V Matrix of right singular vectors (svd of Xh
U ).

Kµ Actual set of kinematically admissible microscopic displacements.

K̃µ Actual set of kinematically admissible displacement fluctuations.

K̃∗
µ Minimally constrained vector space of kinematically admissible dis-

placement fluctuations of the RVE.

KI
µ Minimally constrained vector space of kinematically admissible mi-

croscopic displacements.

Vµ Vector space of virtual kinematically admissible displacements of the
RVE, which happens to be equal to K̃µ.
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Vh
µ Finite element sub-space (high fidelity solution).

VI
µ Finite element sub-space (first reduced order solution).

wg Weight for gauss quadrature at gauss point g

x Material point of the macroscopic continuum

y Position vector of a point in the microscopic continuum
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Chapter 1

Introduction

1.1 Motivation

Technological progress and discovery and mastery of increasingly sophisti-
cated structural materials have been inexorably tied together since the dawn
of history. In the present era — the so-called Space Age —-, the prevailing
trend is to design and create new materials, or improved existing ones, by
meticulously altering and controlling structural features that span across all
types of length scales: the ultimate aim is to achieve macroscopic proper-
ties (yield strength, ductility, toughness, fatigue limit . . . ) tailored to given
practical applications. Research efforts in this aspect range in complexity
from the creation of structures at the scale of single atoms and molecules —
the realm of nanotechnology —, to the more mundane, to the average civil
and mechanical engineers, development of structural materials by changing
the composition, distribution, size and topology of their constituents at the
microscopic/mesoscopic level (composite materials and porous metals, for
instance).

1.1.1 Computational multiscale modeling (CMM)

The unwavering quest for new, high-performance materials poses, in turn,
unprecedent challenges to the 21st century’s engineer, who is compelled
to devise and develop new modeling tools able to predict, within reason-
able accuracy, the mechanical behavior of such materials by taking into
account phenomena operating on vastly different scales. Since traditional
phenomenological approaches fall clearly short in describing such scale in-
teractions, a new paradigm in computational mechanics has emerged in re-
cent years to address this issue: computational multiscale modeling (CMM).
Hierarchical methods, sometimes referred to as sequential or information-
passing methods, are arguably (Fish, 2009) the most widely used CMM
techniques. They are based on the bottom-up, one-way coupled, descrip-
tion of the material structure (Vernerey et al., 2007). The microstructure
of the material is modeled by a sequence of small, nested volumes, each
representative of a particular scale (the unit cells or representative volume
elements (RVE)); starting from the finest level in the microstructure, the
response of one scale is computed and infused via cell-averaging techniques
(homogenization) into the next coarser level of detail, and so on until ar-
riving at the scale at which engineering predictions are needed (the macro-
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16 1. Introduction

scopic scale). Multiscale modeling of structural materials using hierarchical
homogenization-based strategies has been the subject of intensive research
in the past two decades, and formidable advances in the analysis and un-
derstanding of scale-bridging mechanism and other multiscale aspects have
been reported. However, most of these developments remains still within
academic circles.

1.1.1.1 Computational barriers

There is wide consensus (Dolbow et al., 2004) that one of the major fac-
tors that hinder exploitation of CMM technology in practical engineering
context is the enormous computational cost associated to multiscale sim-
ulations. In a two-scale, non-linear history dependent problem discretized
using the finite element method (FEM), for example, a microscopic unit
cell model (which may contain several thousand of degrees of freedom) has
to be solved at every increment and every iteration for each macroscopic
(Gauss) point. Furthermore, history data has to be updated at a number of
integration points equal to the number of Gauss points in the macro prob-
lem multiplied by the number of Gauss points in the unit cell (Fish et al.,
1997). Even with the dizzying speed of today’s computers, thus, solution
of large structural systems (bridges, nuclear pressure vessels, airplane fuse-
lages, etc...) with accurate resolution of microstructural fields may prove
impractical; the situation is aggravated when the system has to be solved
many times for various configurations, as occurs in design optimization or
inverse analysis, or when more than two scales are involved.

1.2 Approach

1.2.1 Reduced-order modeling (ROM)

This seemingly unsurmountable roadblock — explosive growth of computa-
tional cost with the dimension of the problem— is not exclusive of multiscale
modeling. Other disciplines dealing with large amounts of multidimensional
data, such as data visualization, data mining, image treatment, pattern
recognition, etc., also suffer from this computational drawback. The route
followed in these disciplines to overcome this barrier is to submit the perti-
nent data to a process commonly referred to as dimensionality reduction1.
Roughly, this process attempts to extract a few dominant — in some sta-
tistical sense — structures or modes from a larger data set. In the specific
field of computational mechanics, the process of dimensionality reduction
is more commonly known as model reduction, and it entails the systematic
generation of cost-efficient representations of large-scale systems that result,
for example, from discretization 2 via the finite element method (Bui-Thanh

1In the related literature, the drawback associated to the explosive growth of com-
plexity with the dimension of the problem is (metaphorically) known as the “curse of
dimensionality” (Lee and Verleysen, 2007). Extending the metaphor, in CMMS, the curse
of dimensionality is induced by the “tyranny of scales” (Oskay and Fish, 2007).

2In the context of mathematical modeling, the terms “discretization” and “reduction”
can be considered as conceptually akin, in the sense that both connote transitions from
higher to lower solution spaces. Discretization denotes a transition from the continuum
description (infinite dimensional space V) to the discrete approximation (subspace VN of

16



1.2. Approach 17

et al., 2007).

The approach followed in this work to attempt to drastically diminish
the computational burden associated with multiscale simulations is precisely
the incorporation of model reduction techniques into CMMs. More specifi-
cally, the essence of the proposed approach is to compute the response of
the fine scales using reduced-order equations; then, following common proce-
dures in hierarchical multiscale modeling, the computed response is infused
into the next coarser level of detail via cell-averaging techniques (computa-
tional direct homogenization). In this work, the focus is on the solution of
the theoretical and algorithmic issues encountered when applying reduced-
order modeling techniques to the RVE3 equilibrium problem; other relevant
aspects of the multiscale modeling framework are only treated superficially.

1.2.1.1 Reduced-order modeling in multiscale computations

The idea of exploiting the synergistic combination of dimensionality reduc-
tion and multiscale modeling is certainly not new. A survey of the related
literature reveals that, over the last decade, researchers from various sci-
entific disciplines dealing with multiscale problems have begun to consider
in earnest model reduction as a potential route4 — complementary to im-
provements in software and hardware infrastructure — to diminish the often
unaffordable cost of multiscale simulations.

In the specific context of homogenization-based multiscale methods, the
application of model reduction techniques has been addressed by several
authors, namely, Ganapathysubramanian and Zabaras (2004); Yvonnet and
He (2007); Boyaval (2007); Monteiro et al. (2008); Nguyen (2008). The
strategy adopted in all these works for constructing a cost-efficient model of
the micro-cell is the standard reduced basis method, whose gist is to project
the governing equations onto a low-order subspace spanned by carefully
chosen5 bases (Amsallem et al., 2009).

1.2.1.2 Limitation of standard reduced-order models

However, reduced basis methods in its standard form suffer from an im-
portant limitation when handling non-linear problems: they reduce notably
the number of degrees of freedom — and thus the pertinent equation solving
effort —, yet the computational cost associated to the evaluation of the inter-

finite dimension N). Model “reduction”, on the other hand, implies that the solution
of the equations that govern the pertinent physical system is sought, instead of in VN

(e.g., the space spanned by the shape functions in the case of discretization via the finite
element method), in a subspace VM , of dimension M , where M << N .

3The acronym RVE stands for the “Representative Volume Element”. The goal is to
model — in a cost-efficient manner — the evolution of the distribution of stresses within
the RVE when subjected to boundary conditions consistent with prescribed macroscopic
deformations.

4The conclusions of a relatively recent multidisciplinary research initiative sponsored
and orchestrated by the USA government attest to this fact: model reduction was pin-
pointed therein as a strategical research line for the improvement of the overall efficiency
of interscale information exchange (Dolbow et al., 2004).

5The basis functions are computed in an offline stage from snapshots of the solution by
means of statistical-based methods such as the Proper-Orthogonal Decomposition (POD).

17



18 1. Introduction

nal forces and jacobians at quadrature points remains the same6. Standard
reduction methods only prove, thus, effective in dealing with micro-cells
whose constituents are assumed to obey simple constitutive laws (linear
elasticity). In a general inelastic case, the calculation of the stresses at each
gauss point is, on its own, a computationally expensive operation and dom-
inates the total cost of the computation; as a consequence, the speed up
provided by standard model reduction methods in non-linear scenarios is
practically negligible, and may not compensate for the cost associated to
the offline construction of the reduced-order bases.

1.2.2 High-performance model reduction procedures

1.2.2.1 Brief state of the art

Although the standard reduced basis method was introduced in computa-
tional mechanics circles in the late 1970s, solutions to overcome the afore-
mentioned limitation were not proposed until relatively recent times. The
origin of the first effective proposal can be traced back to the seminal work
of Barrault et al. (2004), who suggested to approximate the offending non-
linear term in the reduced-order equations by a linear combination of a few,
carefully chosen basis functions. In the spirit of the offline/online decom-
position of the standard reduced basis approach, these spatial bases are
computed offline from full-order snapshots of the non-linear term, whereas
the corresponding parameter-dependent modal coefficients are determined
online by interpolation at a few (as many as basis functions), judiciously
pre-selected spatial points. As in classical reduced bases methods, the effi-
ciency of this second or collateral reduction is predicated on the existence of
a moderate number M << N (N is the original dimension of the problem)
of basis functions whose span accurately approximate the manifold induced
by the parametric dependence of the nonlinear contribution. The interpola-
tion method developed by Barrault et al. (2004) is known as the Empirical
Interpolation Method (EIM); the main ingredients of this method are: a) the
use of a greedy algorithm to generate a set of maximally independent bases
from the collection of snapshots of the nonlinear term, on the one hand; and
b) the recursive selection — also via a greedy algorithm — of spatial loca-
tions where the error between the full-order bases and their reconstructed
counterparts is maximum.

Other alternative approaches found in the literature are, in essence, sim-
ilar to that of Barrault et al. (2004) — replacement of the non-linear term by
a linear combination of pre-computed basis — and only differ in the manner
in which the the basis functions, on the one hand, and the location of the
interpolation points, on the other hand, are computed. In the “Best Point”
interpolation method (BPIM)7, put forward by Nguyen et al. (2008), the
bases are generated either on the condition of maximally independence (as
in the EIM) or by means of the Proper Orthogonal decomposition (POD);
the location of the “best” interpolation points, on the other hand, is deter-

6In other words ,standard POD/Galerkin methods reduce the dimension of the prob-
lem, but not necessarily its complexity (Chaturantabut and Sorensen, 2010).

7We should note that both the EIM and the BPIM were conceived as general-purpose
interpolation schemes for parametrized, multidimensional functions.
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1.2. Approach 19

mined by minimizing the error8 between the full-order snapshots and the
reduced-order snapshots — the snapshots “reconstructed” from the values
at the selected points. As opposed to the EIM, which employs an heuris-
tic, sub-optimal greedy algorithm, in the BPIM, this optimization problem
is attacked using an “exact algorithm” (Levenberg-Marquardt scheme); as
a consequence, the approximation obtained with the BPIM is, in general,
more accurate than the one provided by the EIM9, although, obviously, at
a considerably higher offline cost. The proposal by Astrid 10 and co-workers
(Astrid, 2004; Astrid et al., 2008) for estimating the modal coefficients in
the approximation of the nonlinear term is the so-called Missing Point Es-
timation (MPE) method. This method uses POD bases and, as in the EIM,
a greedy algorithm to determine the optimum location of the sample points.
However, unlike the EIM, the optimization is carried out by minimizing the
condition number of the gram matrix11 of the POD bases evaluated at the
candidate points. Another notable difference with respect to the EIM (and
also the BPIM) is that the MPE can handle situations in which the number
of candidate points is greater than the number of bases in the expansion. In
such cases, the system of linear equations that permits to obtain the modal
coefficients is overdetermined, and recourse to a least-square solution is to be
made to resolve the indeterminacy12. This strategy — least-square regres-
sion combined with POD bases — was originally proposed by Everson and
Sirovich (1995) for purposes of recovering full images from images marred
by gaps in the data, and it is known in the related literature as the gappy
POD method.

In solution methods in which the pertinent governing equations are used
in its variational form (as in FE), reduction in complexity arising from non-
linearities can be alternatively achieved by approximating the integrals in
which the offending nonlinear function appears — rather than the function
itself, as done in the interpolatory and least-square reconstruction tech-
niques discussed above. Based on this observation, An et al. (2009) pro-
pose a quadrature scheme devised for fast-run integration of the subspace

8More precisely, the minimization of the projection of this error onto the space spanned
by the selected bases.

9See Nguyen et al. (2008); Galbally et al. (2010) for thorough comparisons between
both methods.

10Note that Astrid’s first publication on this topic dates back to 2004 (her doctoral
thesis), which is the same year in which Barrault’s seminal work on interpolation applied to
model reduction (Barrault et al., 2004) was issued; furthermore, no references to Barrault’s
work appears inAstrid (2004) (ans vice versa). It seems, thus, that both approaches were
conceived and developed independently.

11Let Ψ the POD basis matrix and Ψ̂ the sub-block matrix of Ψ containing only the
rows associated to the candidate points. The gram matrix or gramian of Ψ̂ is defined as
M̂ = Ψ̂T Ψ̂. Certain choices of candidate points may render this matrix non-invertible,
and hence, an effective route to avoid this is to drive a greedy algorithm that minimizes
cond(M̂) (Willcox, 2006).

12Let Σ(x, ǫ) = Ψ(x)c(ǫ) be the linear expansion of the non-linear, parametrized (in
terms of ǫ) function Σ. In an interpolatory scheme, the Fourier coefficients c are simply
calculated by solving the square system Ψ̂c(ǫ) = Σ̂(ǫ), where Ψ̂ and Σ̂ denotes the basis
matrix and the non-linear function, respectively, evaluated at the selected points. If the
number of points is greater than the number of bases, the system Ψ̂c(ǫ) = Σ̂(ǫ) becomes
overdetermined and only a solution in the least-square sense can be provided: find c(ǫ)
minimizing ‖Ψ̂c(ǫ)− Σ̂(ǫ)‖2 (Quarteroni et al., 2000).
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20 1. Introduction

spanned by a representative set of snapshots of the nonlinear integrand13.
In this scheme, the choice of the quadrature points is guided by a greedy
algorithm that minimizes the integration error over a set of representative
training samples, whereas the corresponding quadrature are calculated using
a nonnegative least squares (NNLS) algorithm.

In what follows, we shall use interchangeably the appellations High-
Performance Reduced Order Modeling (HP-ROM) and Hyper-Reduced14

Order Modeling (HROM) to refer to reduced basis methods combined with
interpolatory or least-square reconstruction schemes.

1.3 Novelty of the approach

In several areas of mathematical modeling and computational mechanics,
recognition of the tremendous gain in computational efficiency afforded
by these enhanced model reduction techniques has instigated an intense
flurry of activity in the advancement and use of such techniques: general
parametrized partial differential equations (Grepl et al., 2007; Nguyen, 2007;
Rozza et al., 2007; Huynh and Patera, 2007; Nguyen and Peraire, 2008); neu-
ronal modeling (Chaturantabut and Sorensen, 2010); nonlinear viscous fin-
gering in miscible fluids (Chaturantabut and Sorensen, 2010); structural dy-
namics optimization procedures (Amsallem et al., 2009); uncertainty quan-
tification in inverse problems (Galbally et al., 2010); nonlinear transient
dynamic analysis (Carlberg et al., 2011), to name a few. However, to the
best of the authors’ knowledge, this research activity has not yet penetrated
into the specific field of computational multiscale modeling. The present
work is thereby intended to take a first step in this direction by explor-
ing and addressing the challenges that may arise in applying these nascent
model reduction techniques to multiscale modeling.

1.3.1 Main original contribution

The theory underlying high-performance model reduction — i.e., model re-
duction using projection methods combined with interpolatory/least-square
reconstruction schemes — is still at its embryonic stage of development, and
many fundamental issues remains to be addressed. Foremost among these
is the question of the well-posedness of the reduced-order problem: does the
expansion of the offending non-linear term leads invariably to a well-posed
problem ? Or is there, on the contrary, any situation in which this desirable
characteristic is not present ? Examination of the scarce literature on the
subject indicates that no researcher has so far been confronted with ill-posed
reduced-order equation; in view of this fact, one may be certainly inclined
to believe that uniqueness of solution can be taken for granted whenever
the full-order model is well-posed. Unfortunately, this is not so, and a clear
example in which this proviso is not met is encountered, in the multiscale

13As noted by An et al. (2009), this is inspired in Gauss-Legrende quadrature schemes,
which are constructed so that functions residing in polynomial spaces can be integrated
exactly if values of the integrand are known at an appropriate number of points — more
precisely, polynomials up to order 2N − 1 are integrated exactly using only values of the
integrand at N strategically selected points.

14This term was coined by D. Ryckelynck (Ryckelynck, 2005), another fertile contributor
to this approach.
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context, when attempting to reduce the complexity of the micro-cell equi-
librium15 equations.

Indeed, the variational equation that governs the equilibrium of the
micro-cell reads as:

∫

Ωs
µ

σµ(uµ(x), ǫ) : ∇sη(x) dΩ = 0, ∀η ∈ Vµ, (1.3.1)

where16 uµ stands for the displacement fluctuation (the state variable), ǫ
denotes the prescribed macro-strain tensor (the parameter) and σµ repre-
sents the stress tensor (the non-linear function). Approximating σµ as a
linear combination of M pre-computed spatial bases:

σµ(uµ(x); ǫ) ≈
M∑

i=1

Ψi(x)ci(ǫ,uµ), (1.3.2)

and inserting this approximation into the equilibrium equation (1.3.1), we
arrive at:

∫

Ωs
µ

M∑

i=1

Ψi(x)ci(ǫ,uµ) : ∇sη(x) dΩ

=
M∑

i=1

(
∫

Ωs
µ

Ψi(x) : ∇sη(x)

)

ci(ǫ,uµ) = 0, ∀η ∈ Vµ.

(1.3.3)

By construction, each basisΨi is a linear combination of stress fields {σµ(x, ǫj)}, (j =
1, 2 . . .) that fulfill the equilibrium equations (the snapshots); thus, the bases
themselves are (self-)equilibrated fields:

∫

Ωs
µ

Ψi(x) : ∇sη(x) = 0, ∀η ∈ Vµ. (1.3.4)

In view of this equation, it becomes apparent that the equilibrium problem
in its reduced-order format (1.3.3) is patently ill-posed, since the equilibrium
condition is satisfied regardless of the value of the modal coefficients ci, and
thus, regardless of the value of the micro-displacement fluctuations uµ. The
main original contribution of the present work to the field of model reduction
is a refined coefficient-approximation strategy that safely avoid this type of
ill-posedness.

1.4 Scope

Multiscale modeling is an exceptionally broad field in science, and attempt-
ing to devise an all-embracing model reduction strategy would be too ambi-
tious a goal. For this reason, attention is confined in this work on the study
of the dimensionality and complexity reduction of models based on one of
the most popular — at least within the field of structural materials — class
of multiscale hierarchical approaches: the direct computational homogeniza-
tion. Nevertheless, our deliberations may be of aid in illuminating the path

15In the absence of internal tractions.
16Vµ is the vector space of kinematically admissible RVE displacement fluctuations.
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22 1. Introduction

towards the development of model reduction methods for other multiscale
approaches; likewise, the methodology proposed here to eliminate the afore-
mentioned type of ill-posedness can be applied to solve similar problems
arising in other modeling contexts.
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Chapter 2

State of the art

The purpose of this work is to exploit the benefits that may accrue from the
merge of two distinct, but complementary, lines of research: computational
multiscale modeling (CMM) and reduced-order modeling (ROM). Accord-
ingly, the state-of-the-art review presented in the sequel will be structured
in three sections. The first part provides an overview of the current state of
the art in multiscale modeling, placing special emphasis on the direct com-
putational approach, as is the one addressed in this work. The second part
describes recent advances in the field of model reduction; and, finally, the
last section outlines the few attempts made to date in the computational
mechanics community to bring the nascent idea of combining CMM and
ROM to fruition.

2.1 State of the art for multiscale modeling

Multiscale modeling approaches can be broadly classified (Fish, 2009) as
either hierarchical or concurrent, according to how information from fine
scale models is incorporated into coarse scale models.

2.1.1 Hierarchical approach

Hierarchical methods, sometimes referred to as sequential or information-
passing methods, are based on the bottom-up, one-way coupled, description
of the material structure (Vernerey et al., 2007). The microstructure of the
material is modeled by a sequence of small, nested volumes, each representa-
tive of a particular scale; starting from the finest level in the microstructure,
the response of one scale is computed and infused via cell-averaging tech-
niques into the next coarser level of detail, and so on until arriving at the
scale of practical interest (the macroscopic scale). Two strands of works on
hierarchical methods occupy at present the limelight in multiscale modeling:
direct computational homogenization approaches, and direct mathematical
homogenization approaches (Yuan and Fish, 2009).

2.1.1.1 Direct computational homogenization

The theoretical foundations of the direct computational homogenization ap-
proach were laid in the work of Germain (1973). The basic building blocks
of such an approach is : 1) the Hill-Mandel Principle of Macro-Homogeneity
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24 2. State of the art

(Hill, 1963), whereby the stress power at a point of the coarser scale must
equal the volume average of the stress power at the finer scale over a repre-
sentative volume element (RVE) of the material associated with that point;
2) the assumption that the strain at a point of the coarser scale are the
volume average of the fine-level strain field at the RVE. Methods based on
this approach have soared in popularity over recent years due to its suit-
ability for implementation in finite element codes (see for instance Michel
et al. (1999); Nemat-Nasser (1999); Miehe et al. (2002); Terada et al. (2003);
Miehe et al. (1999, 2002); Terada et al. (2003); Giusti et al. (2009)). A
general variational formulation for both small and large strain multi-scale
solid constitutive models based on this approach is thoroughly described in
de Souza Neto and Feijóo (2006); the distinguishing feature of this work
is that it provides a clearly articulated axiomatic framework in which the
notion of kinematically admissible RVE displacement fluctuation field — an-
other key ingredient of direct computational homogenization methods — is
formalized.

The Representative Volume Element and the Unit Cell

As pointed out above, at the heart of the direct computational homoge-
nization lies the notion of representative volume element (RVE). The RVE
concept is closely related to the so-called unit cell, employed in other mul-
tiscale approaches (direct mathematical homogenization). According1 to
Tu et al. (2009), “the unit cell contains a certain physical volume of mi-
crostructure, from which continuum quantities (the critical parameters) are
computed. The representative volume element (RVE), on the other hand, is
defined as the smallest possible region representative of the whole heteroge-
neous media, on average. Unlike the RVE, the unit cell may not necessarily
represent the behavior of the entire domain. However, similar to the RVE,
the unit cell is a finite physical domain where a continuum description is
applicable.”

The analysis of the effect of heterogeneities in metals is a paradigmatic
case that calls naturally for multi-scale analysis Efendiev and Hou (2009).
At its simplest, the “heterogeneity” in a macroscopic domain of a given
material is the presence of a single void; the renowned Gurson yield criterion
(Gurson et al., 1977) for porous materials was derived by a semi-analytical
method using an unit cell consisting of a Von Mises matrix with a single
void. It should be stressed that an aspect of paramount importance in the
construction of multi-scale models using the RVE concept is related with the
boundary conditions to be imposed on the RVE; de Souza Neto and Feijóo
(2006) and Giusti et al. (2009) provides a detailed treatment of this key
issue.

.

2.1.1.2 Direct mathematical homogenization

The direct mathematical homogenization approaches are based on the so-
called mathematical homogenization theory, which has its point of departure
in the works by Sánchez-Palencia (Sanchez-Palencia, 1974, 1980). These

1See also Gross and Seelig (2011), page 245.
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2.2. State of the art for model reduction 25

works pioneered a new direction, parallel to the theoretical path paved by
Germain (1973), in the understanding of how a homogenized medium can be
substituted by a non-homogeneous material. In the mathematical homoge-
nization theory, the homogenized equations are the limit equations obtained
as a certain dimensionless parameter — the ratio between the characteristic
length of the fine scale to the characteristic length of the coarse scale —
goes to zero (Michel et al., 1999). Among the several strategies that have
been specifically devised to evaluate this limit, the most widely developed
are the multiscale asymptotic expansion methods, in particular asymptotic
expansion methods for periodic heterogeneous structures. A comprehensive
survey of these methods is contained in Fish (2009) (chapter 7). One of the
most prolific contributors to the field of asymptotic expansion-based homog-
enization is the research group of J. Fish and co-workers (see for instance
Fish and Shek (1999); Fish et al. (2002); Fish and Chen (2004); Chen and
Fish (2006); Fish et al. (2007); Yuan and Fish (2008)). A line of approach
which has been actively pursued by Fish’s group in recent years is concerned
with the mathematical homogenization with eigenstrains based on the Trans-
formation Field Analysis (Fish et al., 1997; Oskay and Fish, 2007; Yuan and
Fish, 2009; Fish, 2009). The Transformation Field Analysis (Dvorak et al.,
1994) allows precomputing certain information in a “preprocessing” phase
and hence affords considerable reduction of the computational cost of the di-
rect homogenization approach. The gist of this approach, thus, is somewhat
the same as the one pursued in this work.

2.1.2 Concurrent approaches

Multiscale methods in which the fine- and coarse-scale models are executed
in concurrent, two-way coupled fashion — as opposed to hierarchical meth-
ods, which are sequential, one way-coupled — are called multiscale concur-
rent methods. In these methods, the coarse-scale model serves primarily
as a boundary model (Xiao and Belytschko, 2004) for the fine-scale prob-
lem; compatibility and momentum balance are enforced across the interface
between the fine and coarse scales, which, in turn, should be properly con-
trived to faithfully model information transfer between domains at minimal
computational expense. Furthermore, to be computationally tractable, the
subdomain where a higher order theory is required (fine-scale model) should
be considerably small compared to the domain of the problem. A compre-
hensive review on multiscale concurrent methods can be consulted in chapter
4 of Fish (2009).

2.2 State of the art for model reduction

The problem of building simpler models, i.e., models comprising fewer and
computationally faster to solve equations, from complex ones is generically
known as model reduction. Using physical insight and intuition, for instance,
an initially complex model can be transformed into a more parsimonious one
by stripping away the “inessentials” and retaining only the relevant — for
practical purposes — physics of the problem; most of the classical Strength
of Materials equations were inferred from Elasticity Theory following this
approach. At the opposite extreme of this physical insight-based approach
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are the so-called black-box methods (Astrid, 2004), in which correlations be-
tween a comprehensive range of input data and the corresponding output in-
formation computed with the complex model are automatically constructed
using non-linear statistical data modeling tools such as artificial neural net-
works (see for instance Lopez et al. (2008); Lopez (2008)). In contrast to
the physical insight-based approach, black-box models can be derived in a
generic and systematic manner, not contingent upon the skill and physical
intuition of the modeler. However, black-box models are derived without
taking into account explicitly the structure of the governing equations (in
fact, they are more suited for cases in which such equations are not avail-
able); thus, pronounced departures from the values of input data used to
“train” the model may adversely affect the predictive capacity of black-box
models.

2.2.1 Standard projection-based methods

A class of model reduction techniques that have gained prominence in recent
years, and that somewhat combine advantageous features of both physical-
insight and black box approaches, is the commonly referred to as projection-
(or reduced basis)- based methods. Projection-based methods employ a pre-
viously computed set of state solutions (snapshots) to generate a relatively
low-dimensional basis whose corresponding subspace intends to approxi-
mate, in a certain sense, the full-order solution space (offline stage); then,
the governing equations are projected onto this reduced-order subspace, re-
sulting in a model with a significantly reduced number of degrees of freedom
— the reduced-order model (ROM) — that is solved in the online stage.

The method that combines the proper orthogonal decomposition (POD)
(also known as the Karhunen-Loeve expansion, method of empirical eigen-
functions or principal component analysis) and the Galerkin projection is,
arguably, the most popular model reduction technique in the computational
mechanics community — see Krysl et al. (2001) for a rigorous and extensive
discussion on this method and its applicability in non-linear finite element
models of solid mechanics. Its popularity can be chiefly attributed to the
optimal properties, in the least-square sense, of the reduced basis obtained
with the POD (Chatterjee, 2000). Variants of the POD/Galerkin model
reduction strategy that have gained also certain status in computational
mechanics are the balanced truncation (Cortelezzi and Speyer, 1998) and
the balanced POD techniques (Rowley, 2005) scheme.

Due to the obvious computational burden associated to the offline stage
(computation of the snapshots and POD), the partitioned offline-online
strategy on which these model reduction methods are based proves advanta-
geous only in one of the two following contexts (Carlberg and Farhat, 2008):
1) applications that require “real-time” predictions (interactive design, con-
trol); 2) in “many-query” situations, i.e., when the system is solved many
times for various configurations. Multiscale modeling, for instance, clearly
falls within this latter category, for it requires the repetitive solution of the
unit cell problem under varying conditions.
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2.2.2 Hyper-reduction methods

Unfortunately, when a general nonlinearity is present, it can be shown (Chat-
urantabut and Sorensen, 2010) that the computational cost of evaluating the
coefficients appearing in the equations of the reduced model still depends on
the dimension of the original system (N). Stated alternatively, the standard
POD/Galerkin method affects the dimensionality or order of the model, but
not its computational complexity, which still depends on N . Several refine-
ments of standard POD/Galerkin model reduction have been proposed in re-
cent years to overcome this deficiency. The starting point in both approaches
is the reduced-order model generated by the POD/Galerkin method, whose
nonlinear terms are subjected to a further reduction in complexity (hence
the appellation hyper-reduction methods, coined by Ryckelynck (2005)). A
review of the literature on hyper-reduction methods was already presented
in section 1.2.2.1.

2.3 Combination of multiscale modeling and model
reduction

The literature review on application of model reduction strategies in di-
rect computational homogenization methods was already sketched in section
1.2.1.1; we saw that all research efforts to date have been limited to exploit
the classical POD/Galerkin model reduction method — with no additional
reduction in complexity — to treat the unit cell problem. A distinct line
of approach — not related with any of the general projection-based model
reductions methods described previously — is the method proposed by J.
Fish and co-workers Oskay and Fish (2007); Yuan and Fish (2009); Fish
(2009). They propose to apply the so-called Transformation Field Analysis
(TFA) to the asymptotic expansion-based homogenization2 methods. The
TFA is a strategy that allows precomputing certain information (localiza-
tion operators, concentration tensors, transformation influence functions) in
a preprocessing phase prior to nonlinear analysis, which consequently, can
be carried out with a small subset of unknowns.

2Fish’s approach, thus, can be only apply to direct mathematical homogenization prob-
lems.
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Chapter 3

Standard reduced-order
modeling (ROM) of the RVE
problem

3.1 Homogenization approach

As pointed out earlier, two lines of approach dominate at present the scenery
of multiscale hierarchical modeling: the direct computational homogeniza-
tion approach, and the direct mathematical homogenization approach. The
model reduction techniques developed in the present work will be applied to
multiscale models derived from the former approach —direct computational
homogenization. In the following, the fundamental assumptions upon which
this approach, in its more conventional form, rests are described, although
without dwelling unduly on formal considerations; for a more in-depth de-
scription of the underlying axiomatic framework, readers are referred to
de Souza Neto and Feijóo (2006).

3.1.1 Basic assumptions

1. Existence of a RVE.

Associated to every point x of the macro-continuum B ⊂ R
d (d = 2, 3),

of characteristic length l, there is a microstructural domain Ωµ ⊂ R
d

of characteristic length lµ << l that is representative of the hetero-
geneous material as a whole —the so-called Representative Volume
Element (RVE). In general, the domain of the RVE is assumed to
consist of a solid part Ωs

µ and a void1 part Ωv
µ (Ωµ = Ωs

µ ∪Ωv
µ).

2. Additive decomposition of the microscopic strain tensor (first-order
homogenization).

The microscopic strain tensor ǫµ at each point y of the RVE is ex-
pressible (presuming infinitesimal deformations) as:

ǫµ(y) = ǫ+∇suµ(y), (3.1.1)

1In this work, we shall further consider only RVEs whose void part does not intersect
the external RVE boundary.

29



30 3. Standard reduced-order modeling (ROM) of the RVE problem

where ǫ stands for the macroscopic strain tensor and uµ denotes the
microscopic displacement fluctuation.

3. Homogenized strain tensor.

The macroscopic strain tensor ǫ is assumed to be the volume average
over the RVE of the microscopic strain field ǫµ = ǫµ(y):

ǫ =
1

Vµ

∫

Ωµ

ǫµ dΩ, (3.1.2)

where Vµ is the volume of the RVE:

Vµ =

∫

Ωµ

dΩ. (3.1.3)

4. Hill-Mandel principle of macro-homogeneity.

Let σµ be a microscopic stress field in equilibrium. The following
identity must hold

σ : δǫ =
1

Vµ

∫

Ωµ

σµ : δǫµ dΩ. (3.1.4)

for any virtual (i.e., kinematically admissible) microscopic strain δǫµ.

3.1.2 Space of kinematically admissible fluctuations

Equation (3.1.2) can be alternatively expressed in terms of boundary dis-
placement fluctuations. Indeed, inserting Eq.(3.1.1) into Eq.(3.1.2), and
using the Gauss theorem, one gets:

∫

∂Ωµ

uµ ⊗s n dΩ = 0. (3.1.5)

Here, ∂Ωµ stands for the boundary of Ωµ and n denotes the outer unit
normal vector to ∂Ωµ. Note that the set of all displacement fluctuation
fields satisfying this condition is a vector space; this peculiarity will greatly
facilitates the application of model reduction techniques to the RVE equi-
librium problem. The different classes of multiscale models discussed in the
related literature arise from choosing a particular subspace —henceforth de-
noted by Vµ— of this larger space of kinematically admissible displacement
fluctuations. The most trivial case —but also the most inaccurate— is the
renowned Taylor’s model (or “Rule of Mixtures”), which assumes that dis-
placement fluctuations are zero for all y ∈ Ωµ (Vµ ≡ {0}). More reliable
(and less kinematically restricted) models only prescribe the displacement
fluctuations on the boundary of the RVE, and, consequently, as opposed
to Taylor’s model, the equilibrium equation of the RVE is to be solved in
such cases to obtain the displacement fluctuations in the interior of the RVE.
The proviso (3.1.5) is satisfied, for instance, with zero boundary fluctuations
(uµ(y, t) = 0, ∀y ∈ ∂Ωµ), and, less trivially, with appropriately prescribed
periodic boundary conditions.
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3.1.3 Homogenized stress

By virtue of assumption (3.1.1), we have that

δǫµ = δǫ+∇sδuµ. (3.1.6)

Substitution of this equation in the variational statement of the Hill-Mandell
principle of macro-homogeneity (Eq.(3.1.4)) leads to

σ : δǫ =
1

Vµ

∫

Ωµ

σµ : δǫ dΩ +
1

Vµ

∫

Ωµ

σµ : ∇sδuµ dΩ. (3.1.7)

The above equation must be obeyed for any kinematically admissible
δuµ. In particular, if δuµ = 0, we get that

σ : δǫ =
1

Vµ

∫

Ωµ

σµ : δǫ dΩ, ∀δǫ. (3.1.8)

Hence,

σ =
1

Vµ

∫

Ωµ

σµ dΩ, (3.1.9)

i.e., the macroscopic stress tensor σ is the volume average of the microscopic
stress field σµ = σµ(y), y ∈ Ωµ over the associated RVE2.

Another condition that emerges from the variational equation (3.1.7) is
that ∫

Ωµ

σµ : ∇sδuµ dΩ, (3.1.10)

for any δuµ ∈ Vµ. It can be shown (de Souza Neto and Feijóo, 2006)
that this condition amounts to requiring that the external surface traction
and body force field in the RVE be purely reactive —i.e., a reaction to
the kinematical constraints imposed upon the RVE. This is why the RVE
equilibrium equation presented in the next section does not contain external
boundary traction nor body force terms.

3.1.4 Incremental variational formulation of the equilibrium
of the RVE

Consider a time discretization of the interval of interest [t0, tf ] =
⋃N

n=1[tn, tn+1].
We shall presume that the current value of the microscopic stress tensor
σµ|n+1 at each y ∈ Ωs

µ is entirely determined by the current value of the
microscopic strain tensor ǫµn+1(y) = ǫn+1 + ∇suµ(y), on the one hand,
and a set of microscopic internal variables ξµ|n+1, on the other hand —that
encapsulates the history of microscopic deformations. The relationship be-
tween these variables is established by (phenomenological) incremental con-
stitutive equations; for multiphase materials, these constitutive equations
may vary from to point to point within the RVE. The (incremental) RVE
equilibrium problem at time tn+1 can be stated as follows. Given the initial

2Thus, the macroscopic stress tensor σ being the volume average of the microscopic
stress field σµ = σµ(y), y ∈ Ωµ over the associated RVE is a colloraly of the Hill-Mandell
principle and the additive decomposition of the microscopic strain, rather than, as often
erroneously claimed, an axiomatic presumption of the employed homogeneized approach.
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32 3. Standard reduced-order modeling (ROM) of the RVE problem

data {uµ|n (y), ǫn, ξµ|n(y)} and the prescribed macroscopic strain tensor
ǫn+1, find a displacement fluctuations field uµ|n+1 (y) ∈ Vµ such that:

Ĝn+1 =

∫

Ωs
µ

σµ(ǫn+1, uµ|n+1) : ∇sη dΩ−
∫

∂Ωv
µ

tvn+1 · η dΓ = 0, (3.1.11)

for all3 η ∈ Vµ. Here, Ĝn+1 stands for the incremental virtual work func-
tional at tn+1, η denotes the test function, and tvn+1 represents the internal
traction exerted upon the solid part of Ωµ across the solid-void interface
∂Ωv

µ —due, for instance, to the presence of pressurized fluid phase within
the voids. In this work, attention is restricted to porous materials in the
presence of only solid phases (empty pores); the contribution of internal
tractions, thus, vanishes, and Eq.(3.1.11) boils down to:

Ĝn+1 =

∫

Ωs
µ

σµ(ǫn+1, uµ|n+1) : ∇
sη dΩ = 0, ∀η ∈ Vµ. (3.1.12)

The superindex “n+1” will be hereafter drop out, and quantities will be
assumed to be evaluated at time tn+1; only when confusion is apt to show
up, the pertinent distinction will be introduced.

3.2 Finite element discretization: the full-order
model (FOM)

Following common finite element procedure, the solution of the above prob-
lem is sought in the finite dimensional space Vh

µ ∈ Vµ spanned by the linearly
independent functions {N1, N2 . . . Nn} (n denotes the number of nodes of the
discretization). Accordingly, problem 3.1.12 is now posed in Vh

µ , and η and

uh
µ are expressed as linear combinations of the basis functions:

uh
µ =

n∑

I=1

ûh
µ,INI(y), (3.2.1)

ηh =
n∑

I=1

η̂h
INI(y). (3.2.2)

Inserting the above approximations in Eq.(3.1.12), and exploiting the arbi-
trariness of the coefficients η̂h

I , we get:

RiI =

∫

Ωs
µ

∂NI

∂xj
(σµ)ji dΩ = 0 (i = 1 . . . d; I = 1 . . . n), (3.2.3)

where RiI stands for the i− th component of the residual at the I− th node.
Introducing the classical “B-matrix” connecting strain tensor with nodal
displacements4:

(∇suh
µ)ij = sym

(
∂NI

∂xj
δki

)

(ûh
µ,I)k = (B)ijIk(û

h
µ,I)k, (3.2.4)

3Notice that we are tacitly assuming that the space of trial and test functions coincide
(zero boundary fluctuations). We should emphasize that this is done solely for simplicity
in the upcoming finite element formulation; the procedure for constructing reduced basis
approximations is the same for both zero and periodic boundary conditions —in fact, for
any model with boundary conditions consistent with proviso Eq.(3.1.5).

4Index notation used follows Belytschko et al. (2001)
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3.2. Finite element discretization: the full-order model (FOM) 33

eq. (3.2.3) can be rewritten as

RiI =

∫

Ωs
µ

(B)rjIi(σµ)jr dΩ = 0 (i = 1 . . . d; I = 1 . . . n), (3.2.5)

or in matrix form (Voigt’s notation)5:

R =

∫

Ωs
µ

BT {σµ} dΩ = 0, (3.2.6)

where the brackets around σµ indicates that the stress tensor is stored in
matrix form.

Needless to say, the dependence of σµ on the nodal displacements is,
in general, non-linear, and the solution of Eq.(3.2.6) requires an iterative
solution. The classical Newton-Raphson iterative scheme is constructed by
applying to Eq.(3.2.6) the Gateaux derivative in the direction of an incre-
mental fluctuation ∆uh

µ (denoted by D (•)[∆uh
µ]):

RiI |(k+1) = 0 = RiI |(k) +
∫

Ωs
µ

(B)rjIiD (σµ)jr[∆uh
µ] dΩ (3.2.7)

where the superindex “(k)” is the iteration counter. The rightmost term in
the above is expressible as:

∫

Ωs
µ

(B)rjIiD (σµ)jr[∆uµ] dΩ =

∫

Ωs
µ

(B)rjIi(Cµ)jrst(∇s∆uh
µ)st dΩ

=

∫

Ωs
µ

(B)rjIi(Cµ)jrst(B)stMu∆ûh
µ,uM dΩ

=

(Kµ)iIMu
︷ ︸︸ ︷∫

Ωs
µ

(B)rjIi(Cµ)jrst(B)stMu dΩ∆ûh
µ,uM

= (Kµ)iIMu∆ûh
µ,uM ,

(3.2.8)

whereCµ is the algorithmic tangent operator consistent with the microscopic
incremental constitutive law, and Kµ denotes the tangent stiffness matrix;
in Voigt’s notation, Kµ can be written as:

{Kµ} =

∫

Ωs
µ

{
BT
}
{Cµ} {B} dΩ. (3.2.9)

In turn, with Eq.(3.2.9) at our disposal, Eq.(3.2.7) can be also rephrased in
Voigt’s notation:

0 = {R}(k) + {Kµ}(k)
({

ûh
µ

}(k+1)
−
{

ûh
µ

}(k)
)

. (3.2.10)

5Voigt’s conversion rules for the pair of indices rj and Ii can be also consulted in
Belytschko et al. (2001).
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34 3. Standard reduced-order modeling (ROM) of the RVE problem

3.2.1 Elastic micro-constitutive law

It proves instructive at this point to particularize the expression derived
above to the elastic case, in which σµ = Cµ : (ǫ + ∇suµ). Upon trivial
manipulation, one arrive at the following equilibrium equation:

fǫ

︷ ︸︸ ︷∫

Ωs
µ

{
BT
}
{Cµ} dΩ {ǫ}+ {Kµ}

{

ûh
µ

}

= 0. (3.2.11)

Note that, in the above equation, the first term —the one in which the
macrostrain tensor ǫ appears— plays the role of “external” force; in the
case we are considering (homogeneous essential boundary conditions), the
absence of this term would imply that the solution to the equilibrium prob-
lem is a vanishing fluctuation field. Note also thatKµ ∈ R

N×N , B ∈ R
ds×N ,

ûh
µ,∈R

N and ǫ ∈ R
ds , being N = n · d the number of degrees of freedom (d

is the dimension of the problem) and ds the number of (independent) com-
ponents of the tensor ǫ.

The solution for Eq.(3.2.11) can be explicitly obtained by, first, parti-
tioning the set of nodes into interior (

{
ûh
µ

}

int
) and boundary (

{
ûh
µ

}

bnd
)

nodes:

{

ûh
µ

}T

=

[{

ûh
µ

}T

int

{

ûh
µ

}T

bnd

]

. (3.2.12)

Substituting Eq.(3.2.12) into Eq.(3.2.11), and solving for
{
ûh
µ

}

int
for the

homogeneous boundary conditions case (
{
ûh
µ

}

bnd
= 0) yields:

{

ûh
µ

}

=

[{
ûh
µ

}

int{
ûh
µ

}

bnd

]

=

[
{−Kµ}−1

int,int
fǫ

0

]

{ǫ} = Pǫ {ǫ} . (3.2.13)

The above result concurs with one’s intuitive expectations: in the elastic
range, nodal micro-displacements bear a linear relationship with the macro-
strain vector ǫ, being Pǫ the corresponding projection operator.

3.3 Construction of the reduced-order model (ROM)

3.3.1 Sampling of the parametric space

The basic input variable in the problem under consideration is the macro-
strain tensor ǫ; the solution space6 is, thus, the set of all nodal displacement
fluctuations satisfying Eq.(3.2.6) for different values of ǫ. The first step in
constructing a reduced order model is to find an orthonormal set of basis
functions for the displacement solution space. This task is carried out by
applying the singular value decomposition (see section A) to the so-called
snapshot matrix.

3.3.1.1 Elastic case

Let us consider first the most simple case: an elastic micro-constitutive
law (discussed in section 3.2.1). To obtain orthonormal bases, we evaluate

6In fact, in such a parametric space, each vector is a vector-valued function of the time.
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3.3. Construction of the reduced-order model (ROM) 35

Eq.(3.2.13) at Np different values of the macro-strain tensor, and collect the
outcome of such calculations in a single N × Np matrix — the snapshot
matrix:

Xh
U =

[
ûh
µ(ǫ1) ûh

µ(ǫ2) · · · ûh
µ(ǫNp)

]
, (3.3.1)

Then, the singular value decomposition is applied to Xh
U :

Xh
U = UΣV T , (3.3.2)

where U ∈ R
N×rusnp — rusnp is the rank of Xh

U — satisfies UTU = I;

V ∈ R
rusnp×N fulfills V TV = I; and Σ = diag

(

σ1, σ2 · · · σrusnp

)

, with σ1 ≥
σ2 ≥ · · · ≥ σrusnp

> 0. The columns of U are called left singular vectors

of Xh
U , and constitute a set of orthonormal bases for the range of Xh

U ; the
columns of V , on the other hand, are the right singular vectors, and can be
regarded as orthonormal bases for the nullspace of Xh

U ; finally, the scalars
σi are the singular values of Xh

U . By virtue of Eq.(3.2.13), Eq.(3.3.1) can
be written, in the elastic case, as:

Xh
U = Pǫ

[
ǫ1 ǫ2 · · · ǫNp

]
= Pǫ[ǫ]snap, (3.3.3)

where [ǫsnap] ∈ R
ds×Np and Pǫ ∈ R

N×ds . It follows — from the property
that rank (AB) ≤ min (rank (A) , rank (B)) — that, in the elastic case, the
rank of Xh

U cannot be greater than ds. Thus, for purposes of constructing
orthogonal bases for the input parametric space, it suffices to calculate nodal
micro-displacement fluctuations at ds linearly independent macro-strain vec-
tors. This means also that the number of non-zero entries on the diagonal
of Σ will be less or equal than ds.

3.3.1.2 Inelastic case

As may be surmised, when the constitutive relation between (micro) stress
and strains is not linear, the situation is not so clear-cut; as opposed to
the elastic case, it is virtually impossible to ascertain a priori how many
simulations are needed to obtain a set of basis vectors able to cover satisfac-
torily the input parametric space. Nevertheless, the conclusions reached in
the elastic case suggests somehow that the number of necessary basis vec-
tors will depend only weakly on the number of degrees of freedom N of the
microcell.

Sampling the parametric space efficiently appears, therefore, as a signif-
icant challenge7. One route to accomplish this task may be to consider as
basic input variable strain histories rather than total strains; i.e., simulations
are conducted with various strain histories, combinations of compression, ex-
tension, shearing, relaxation, etc. The results stored in the snapshot matrix

7“ . . . if the dimension of the parameter space is large, uniform sampling will quickly
become too computationally expensive due to the combinatorial explosion of samples
needed to cover the parameter space ”(Bui-Thanh et al., 2007; Bui-Thanh, 2007). For
further information on sparse, efficient, sampling strategies, the reader is referred to Bui-
Thanh et al. (2008); they address the challenge of sampling a high-dimensional parameter
space by exploiting the greedy sampling method. The key premise of greedy sampling is
to adaptively choose samples by finding the location at which the estimate of the error
in the reduced model is maximum, over a predetermined discrete set of parameters. The
sampling issue is also addressed in Carlberg and Farhat (2008)
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36 3. Standard reduced-order modeling (ROM) of the RVE problem

are not the “final” — at the end of the strain trajectory — nodal displace-
ments, but rather the evolution of such variables (sampled at discrete time
intervals) for the various strain histories.

3.3.2 Galerkin projection onto the reduced subspace

Suppose now that, by means of the SVD of the displacement snapshot matrix
Xh

U , we know that the leading Nu singular values in Σ are significantly
greater than the others; or, put it alternatively, that the magnitude of the
trailing rusnp −Nu singular values are comparatively negligible. The matrix
formed by the first Nu columns of U will be henceforth denoted as Φ ∈
R
N×Nu .
We now seek to pose the boundary-valued problem represented by Eq.(3.1.12)

in the reduced8 configuration subspace VI
µ ⊆ Vh

µ spanned9 by the basis func-
tions defined as10:

Φ
Ĵ
(y) =

n∑

I=1

ΦI

Ĵ
NI(y), Ĵ = 1, 2, . . . Nu, (3.3.4)

where the nodal parameters ΦI

Ĵ
, arranged in column form, are precisely the

Ĵ − th column11 of Φ. To this end, we define a new set of displacement
fluctuations and test functions: uI

µ ∈ VI
µ and ηI ∈ VI

µ, defined as

uI
µ(y) =

Nu∑

Î=1

ûI
µ

∣
∣
Î
Φ

Î
(y) =

Nu∑

Î=1

n∑

J=1

ûI
µ

∣
∣
Î
ΦJ

Î
NJ , (3.3.5)

ηI =

Nu∑

Î=1

η̂I
Î
Φ

Î
=

Nu∑

Î=1

n∑

J=1

η̂I
Î
ΦJ

Î
NJ , (3.3.6)

Inserting the above approximations in Eq.(3.1.12), exploiting the arbitrari-
ness of η̂I

Î
, and after some algebra, the following expression (in Voigt’s no-

tation) for the residual is obtained:

RI = ΦT

∫

Ωs
µ

BT
{
σµ(ǫ, û

I
µ)
}
dΩ = 0. (3.3.7)

Note that Φ ∈ R
N×Nu , and, thus, RI ∈ R

Nu . The counterpart of Eq.(3.2.10)
is constructed in a similar fashion:

0 =
{
RI
}(k)

+
{
KI

µ

}(k)
({

ûI
µ

}(k+1) −
{
ûI
µ

}(k)
)

. (3.3.8)

where
{
KI

µ

}
∈ R

Nu×Nu stands for the reduced stiffness matrix, defined as:

{
KI

µ

}
= ΦT {Kµ}Φ = ΦT

(
∫

Ωs
µ

{
BT
}
{Cµ} {B} dΩ

)

Φ. (3.3.9)

8A semantic remark is in order here. Whereas the term “discretization” is used for
referring to the transition from the infinite dimensional space Vµ to the finite (element)
space Vh

µ , the term “reduction” connotes a transition from the finite element space Vh
µ to

the sensibly smaller subspace VI
µ.

9Note that in the elastic case, the two spaces may coincide
10Strictly, this equality only holds for homogeneous boundary conditions
11Note that the basis functions ΦĴ(y) fall within the category of Ritz functions — they

are globally supported functions, as distinct from standard FE basis functions, which have
compact-support (Krysl et al., 2001).
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3.3. Construction of the reduced-order model (ROM) 37

Nevertheless, computing
{
KI

µ

}
by reducing — via the operator ΦT (•)Φ

— the full assembled tangent stiffness matrix {Kµ} is not computation-
ally efficient; it proves more advantageous to assemble the reduced element
matrices, denoted by eΦ:

{
KI

µ

}
= ΦT

(
∫

Ωs
µ

{
BT
}
{Cµ} {B} dΩ

)

Φ

=
ne

A
e=1

eΦT

(
∫

eΩs
µ

{
eBT

}
{Cµ} {eB} dΩ

)

eΦ

=
ne

A
e=1

eΦT {eKµ} eΦ.

(3.3.10)

At first encounter, the fact that the dimensions of the tangent stiffness op-
erator on the reduced basis are Nu × Nu, i.e., they only depend on the
cardinality of the reduced basis, may lead to think that the complexity of
the problem is only Nu-dependent. Unfortunately, this is not so: the cost
to evaluate both the internal forces, which, in turn, involve the update of
the stress tensor σµ (sometimes the most computationally costly operation),
and the element-wise calculation of the stiffness matrix of the FE model re-
mains dependent upon the size (N) of the original model (they scale with
N). In fact, the only advantage that accrues in reducing the dimensional-
ity of the model is the solution of the linear system of equations at each
Newton-Raphson iteration; the other operations are even more computa-
tionally laborious.

3.3.3 Analysis of approximation errors

3.3.3.1 Sampling and truncation errors

Discrepancies between full-order and reduced-order responses arise from two
distinct sources, namely: truncation and sampling. The truncation error is
the error introduced as a result of using a small number of modes; accord-
ingly, this error vanishes as the number of selected modes approaches the
rank of the snapshot matrix. On the other hand, the sampling error is the
manifestation of the fact that the snapshots are but realizations of the state
field — the micro-displacement fluctuations — for a (presumably) represen-
tative sample of points in the parametric space — the set of all physically
conceivable strain histories. If the strain histories chosen for generating the
snapshots fail notably to represent such a parametric space, the magnitude
of the sampling error will be significant. Likewise, the sampling error should
vanish identically when the prescribed strain history pertains to the set of
strain trajectories employed to calculate the snapshots.

The sampling error can be evaluated for an arbitrary strain trajectory
ǫt as the difference between the FOM and ROM solutions in the limit of no
truncation (Nu = rusnp). In terms of displacements, thus, this error can be
defined formally as follows:

eI,samp
uµ

:= uh
µ − uI

µ(r
u
snp). (3.3.11)
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38 3. Standard reduced-order modeling (ROM) of the RVE problem

On the other hand, the error attributed to truncation of the basis to the
Nu-th mode can be calculated by subtracting the above defined sampling
error to the total error:

eI,trunuµ
(Nu) := (uh

µ − uI
µ(Nu))− eI,samp

uµ
= uI

µ(r
u
snp)− uI

µ(Nu). (3.3.12)

The truncation error, thus, measures the discrepancies between two ROM
solutions, and hence does not depend actually upon the FOM solution. Fur-

thermore, it follows easy from its definition that12 eI,trunuµ ∈ span {Φi}
rusnp

i=Nu+1.

Similar definitions can be established for the micro-stress field (the actual
output of interest in the multiscale problem). In analogy with Eq.(3.3.11),
the sampling error in the approximation of the micro-stress field is defined
as

e
I,samp
Σ := Σh −ΣI(rusnp), (3.3.13)

where Σh ∈ R
Ng ds denotes the FOM stresses and ΣI ∈ R

Ng ds stands for
the ROM solution in the limit of no truncation (Nu = rusnp). Likewise, the
stress error incurred by truncation of the basis after the Nu + 1 vector is
given by

e
I,trun
Σ (Nu) := eIΣ − e

I,samp
Σ = ΣI(rusnp)−ΣI(Nu). (3.3.14)

3.3.3.2 Consistency

According to Carlberg et al. (2011), the construction of a reduced-order
model should be accomplished so that the requirements of consistency and
optimality are fulfilled. An approximation is said to be consistent if, when
implemented without data compression (no truncation of the basis), it intro-
duces no additional error in the solution of the same problem for which data
was acquired. By definition, the truncation error e

I,trun
uµ (see Eq.(3.3.12))

vanishes in the limiting case of untruncated basis; thus, consistency is met
if the sampling error defined in Eq.(3.3.11) becomes zero when the strain
history used for comparison purposes is the same as the one employed for
generating the snapshots (ǫt = ǫ

snp
t ). It is not difficult to show that, under

the hypothesis of uniqueness of the finite element solution, the projection-
based reduced-order model is consistent. Indeed, when ǫt = ǫ

snp
t , both

FOM and ROM pertains to span {Φ}r
u
snp

i=1 . Lack of consistency would imply
that uh

µ 6= uI
µ, which is not possible since it would violate the uniqueness13

assumption.

12It is worthy to note that e
I,samp
uµ

and e
I,trun
uµ

are not necessarily orthogonal; eI,samp
uµ

can be further resolved into two mutually orthogonal components: one that lies in

span {Φi}
rusnp

i=1 , and another that resides in the orthogonal complement of span {Φi}
rusnp

i=1 .
It would be interesting in future research to see how the sampling error is apportioned be-
tween these two complementary spaces. Intuitively, one would expect that the component
in the orthogonal complement of the space spanned by the snapshots dominates. This

component is defined as eI,samp
uµ

⊥

= (I −ΦΦT )uh
µ. It transpires somehow that the other

component — the one that span {Φi}
rusnp

i=1 — is due to the macro-strain path-dependent
nature of the problem.

13Consistency may, thus, not be observed in cases in which the stress-deformation rela-
tion is not uniquely invertible (strain softening).
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3.3. Construction of the reduced-order model (ROM) 39

3.3.3.3 Optimality

In regard to the optimality requirement, according to Carlberg et al. (2011),
“an approximation is said to be optimal if it leads to approximated quan-
tities that minimize some error measure”. Carlberg et al. (2011) argue
that optimality should be reflected in a monotonic decay of some norm the
truncation error as the subspace spanned by the basis expands. By con-
struction, the POD basis leads naturally to optimal approximations 14 in
the state variable15 (micro-displacement field). Unfortunately, optimality
cannot be guaranteed for other relevant variables in the problem, in par-
ticular, the micro-stress field (the actual output of interest). To optimize
the selected displacement modes with respect to a particular output func-
tional, recourse is to be made to more sophisticated strategies such as the
goal-oriented approach proposed by 16 Bui-Thanh et al. (2007).

14The central idea of POD is, as pointed out by Rowley et al. (2004), “to compute a
nested family of subspaces, of increasing dimension, that optimally spans the [snapshot]
data, in the sense that the error in the projection onto each subspace is minimized”

15An additional proviso is that the pertinent projection technique should furnish optimal
approximations. The Galerkin projection (see Carlberg et al. (2011)) is not optimal when
the jacobians are not semi-definite positive; in such a situation, recourse is to be made to
Petrov-Galerkin projections.

16A key aspect in the construction of a goal-oriented approach is the appropriate choice
of the inner product used for defining the minimization problem that leads to the POD
basis. Although in this work it has been tacitly assumed that this inner product is the
standard euclidean inner product, the reader is to be aware that other choices are possible.
Rowley et al. (2004) introduce an interesting distinction between energy-based and non-
enery-based inner products. According to Rowley et al. (2004), an energy-based inner
product is one in which the energy defined by the induced norm is a meaningful physical
quantity. Clearly, the euclidean inner product for the problem at hand (displacement field
as the state variable) does not fall into this category. Should the state variable be the
velocity, and the inner product the L2-norm, the energy induced would be connected with
the kinetic energy.
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Chapter 4

Hyperreduced-order
modeling (HROM) of the
RVE

4.1 Matrix formulation

To address the issue of the efficient evaluation of the nonlinear terms in the
governing equations, it proves convenient first to rephrase equation (3.3.7)
for the residual. By defining the “reduced B-matrix” BI ∈ R

ds×Nu as:

BI = BΦ, (4.1.1)

Eq.(3.3.7) can be rewritten as:

RI =

∫

Ωs
µ

BIT {σµ} dΩ = 0. (4.1.2)

Now the integral above is approximated by gauss quadrature:

RI =

Ng∑

g=1

wgB
I
g
T {σµ}g = 0, (4.1.3)

where1 Ng is the total number of gauss points in the mesh, wg denotes the
weight2 at the g− th quadrature point, and BI

g and {σµ}g are the reduced
B-matrix and the stress vector evaluated at such gauss point. For later
purposes, it is conceptually — and symbolically — advantageous to define a
column vector ΣI ∈ R

Ng·ds containing the stress vectors at each gauss point:

ΣI =
[

{σµ}T1 {σµ}T2 · · · {σµ}Tg · · · {σµ}TNg

]T

, (4.1.4)

With the above definition at hand, Eq.(4.1.3) can be legitimately rewritten
in the following matrix format:

RI = B
ITΣI = 0, (4.1.5)

1Note that in the reduced order model, the the assembly operator degenerates into a
simple summation.

2This weight includes both the quadrature weight and the corresponding jacobian de-
terminant.
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42 4. Hyperreduced-order modeling (HROM) of the RVE

where BIT ∈ R
Nu×Ngds —the generalized strain-displacement B-matrix— is

given by:

B
IT =

[

w1B
I
1
T

w2B
I
2
T · · · wgB

I
g
T · · · wNgB

I
Ng

T
]

. (4.1.6)

Note that B
IT can be computed a priori — i.e., in the offline stage; the

bottleneck that precludes the efficient on-line computations is the calculation
of the gauss point stress vector ΣI . In the ensuing discussion, we shall
attempt to elucidate how to reduce the computational cost associated with
the calculation of ΣI .

4.2 Approximation of the gauss point stress vector

The strategy followed here to reduce the online computational cost of calcu-
lating ΣI at each step is based on the replacement of the non-linear function
ΣI = ΣI(ǫ+∇suI

µ) by a coefficient-function approximation — in the termi-
nology of Nguyen and Peraire (2008) — consisting in a linear combination
of pre-computed basis and coefficients depending on ǫ. The basis will be
constructed by the method of snapshots: we collect, in a snapshot matrix
Xh

σ , Ns observations of the vector ΣI for several, representative3 ǫ:

Xh
σ =

[
Σh(ǫ1) Σh(ǫ2) · · · Σh(ǫNs)

]
, (4.2.1)

The basis vectors {Ψi}i=1... are obtained as the first Nσ — the leading
(dominant) modes — left singular vectors arising4 from the SVD of XI

σ.
Next step is to approximate ΣI in Eq.(4.1.5) by a linear combination of

the above calculated basis:

ΣI(ǫ,uµ) ≈ ΣII(ǫ,uµ) =

Nσ∑

i=1

Ψici(ǫ,uµ), (4.2.2)

or in matrix form:

ΣII(ǫ,uµ) = Ψc(ǫ,uµ), (4.2.3)

where Ψ ∈ R
Ngds×Nσ is the basis matrix and c (∈ R

Nσ) a certain vector of
coefficients. One approach to calculate such a coefficient vector is through
the gappy data reconstruction method (Everson and Sirovich, 1995); accord-
ing to such a method, c is given by

c =
(

Ψ̂T Ψ̂
)−1

Ψ̂T Σ̂II . (4.2.4)

In the above, Ψ̂ ∈ R
N̂gds×Nσ is a sub-block matrix of Ψ constructed by

collecting the rows corresponding to N̂g ≥ Nσ strategically5 selected gauss

3The choice of appropriate parameters ǫ should be subjected to in-depth study; the
quality of the approximation depends crucially on it.

4A detailed discussion on the the POD basis construction can be found in appendix A
5The choice must ensure the existence of the inverse of M̂ = Ψ̂T Ψ̂ (admissible sample

points); see appendix C for a discussion of the various selection (or sampling) algorithms
ensuring this desirable feature. By elementary algebra, we know that a necessary condition
for this to happen is that the number of selected rows nrow must be equal or greater than
the number columns of the matrix Ψ (nrow ≥ Nσ). However, since stress components are
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4.3. Ill-posedness of the reduced order problem 43

points — the gappy data; and Σ̂II ∈ R
N̂gds denotes the vector that contains

the stresses at such gauss points.
The approximated problem can be thus posed as follows: for any ǫ, find

ûII
µ ∈ R

Nu such that:

RII = B
ITΨc(ǫ, ûII

µ ) = 0. (4.2.5)

4.3 Ill-posedness of the reduced order problem

Unfortunately, the problem defined by Eq.(4.2.5) is ill-posed. Indeed, if

matrix B
IT is regarded as a linear application from R

Ngds to R
Nu, then, by

virtue of Eq.(4.1.5), any self-equilibrated stress vector ΣI pertains to the

nullspace of BIT , denoted hereafter by null BIT . Since the columns of the

snapshot matrix are elements of null BIT , it follows that Ψi ∈ null BIT ;
hence:

RII = B
ITΨc(ǫ, ûII

µ ) =

=

Nσ∑

i

=0
︷ ︸︸ ︷(

B
ITΨi

)

ci = 0, for any ci ∈ R;

(4.3.1)

i.e., the equation is fulfilled regardless of the value of the displacement fluc-
tuations ûII

µ .

Remark 4.3.1 The fact that any self-equilibrated stress vector ΣI pertains

to null BIT has far-reaching implications. Indeed, suppose that the singular

value decomposition is carried out now on matrix B
IT :

B
IT = UBtSBtV

T
Bt. (4.3.2)

The columns of VBt whose same-numbered elements (SBt)j are zero are an
orthonormal basis for the nullspace (see appendix A.2). Since

dim(RNgds) = Ngds = dim(null BIT ) + dim(range(BIT )) (4.3.3)

(see (Šoĺın, 2006, p. 332)), the cardinality of such an orthogonal basis is

equal6 to Ngds − rank(BIT ).

We can go further in this digression connected with the nullspace of BIT .
The set of all solutions of the problem defined by Eq.(4.2.5) is:

null BIT
⋂

span {Ψi}Si . (4.3.4)

Obviously, since span {Ψi}Si is a subspace of null BIT , then any ΣI ∈
span {Ψi}Si is an self-equilibrated stress.

calculated in tandem from the corresponding constitutive equations —it makes no sense
to calculate stress components individually—, for each row determined by the sampling
algorithm, the remaining ds − 1 rows associated to the spatial point will be also included
in the sub-block matrix Ψ̂; this will surely improve the accuracy of the approximation at
negligible extra-cost. This is why we have replaced the necessary condition nrow ≥ Nσ by
the less restrictive requirement N̂g ≥ Nσ (in the sense that nrow = dsN̂g).

6The rank of BIT must be necessary equal to the number of displacement modes Nu;
otherwise the stiffnes matrix of the reduced order problem would have been singular, which
is not possible since we are presupossing the reduced-order equations have already been
solved without convergence flaws.
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4.4 Proposed solutions

4.4.1 First “tentative” reformulation of the reduced-order
model

It transpires from the foregoing discussion that the root cause of the ill-
posedness is that the subspace spanned by the POD basis vectors Ψ is a

subspace of null BIT , and hence B
ITΨi = 0, i = 1 . . . Nσ. This somehow

suggests a tentative solution to this problem: the non-linear term subjected
to the coefficient-function approximation must not reside in the nullspace

of the operator B
IT . How to ensure this condition? Let us first try to add

some vector f ∈ R
Nu to the left and right sides of (4.1.5):

B
ITΣI + f = f . (4.4.1)

Defining f as:

f = B
ITΣI

0, = B
ITΣI

0(ǫ), (4.4.2)

Eq.(4.1.5) can rewritten as:

B
IT

Ση
I

︷ ︸︸ ︷
(
ΣI +ΣI

0,

)
= B

ITΣη
I = f(ǫ).

(4.4.3)

The approximation is now carried out over the “perturbed” gauss point
stress vector Ση

I . Denoting by Ψη the corresponding basis matrix, the
statement of the problem can be redefined as follows: for any ǫ, find ûII

µ ∈
R
Nu such that:

B
ITΨηc(ǫ, û

II
µ ) = f(ǫ). (4.4.4)

Note that, unlike Eq.(4.2.5), the solution to this equation is — apparently

— not trivial, since B
ITΨηi

6= 0 provided that Ψηi
/∈ null BIT

4.4.1.1 Choice of the perturbing function

It is easy to see that the only condition that the perturbing stress ΣI
0 has to

meet is that ΣI
0 /∈ span {Ψi}Si , or equivalently, ΣI

0 /∈ range(XI
σ) — other-

wise it may be expressed as a linear combination of the basis Ψi. Any vector
pertaining to the orthogonal complement of range(XI

σ) naturally fulfills this
condition7; thus, we have to find a vector ΣI

0 such that:

XI
σ

T
ΣI

0 = 0, (4.4.5)

i.e., ΣI
0 must be in the nullspace of XI

σ
T
. By virtue8 of what was stated in

remark 4.3.1, the left singular vectors arising from the SVD of XI
σ whose

same-numbered singular values are identically zero constitute an orthonor-

mal basis for the nullspace of XI
σ
T
; i.e.:

XI
σ

T
=
[

V
′

Σ V
′′

Σ

]
[
ΣΣ 0
0 0

]
[
U ′ Ψ⊥

]T
(4.4.6)

7See (Reddy, 1998, p. 124)
8Take into account that the left singular vectors of XI

σ are the right singular values of

X
I
σ

T
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where Ψ⊥ ∈ R
Ngds×Ngds−rσsnp (rσsnp denotes the rank of XI

σ ). Accordingly,
we have a total number of Ngds − rσsnp candidates.

However, even if we arrange things to ensure that ΣI
0 ∈ null XI

σ
T
, the

problem remains ill-posed: it is not hard to show that any basis vector (Ψη)i
can be written as (Ψη)i = (Ψ)jdji+βiΣ

I
0. Inserting this into Eq.(4.4.4), we

arrive at:
=0

︷ ︸︸ ︷

B
IT ((Ψ)j dji + βiΣ

I
0)(c)i = B

ITΣI
0. (4.4.7)

Therefore:
ΣI

0βi(c)i = B
ITΣI

0. (4.4.8)

The above poses a trivial solution independent of the empirical information
contained in the snapshot matrix; hence the unfeasibility of this approach.

4.4.2 Second tentative reformulation

In view of the apparently, ill-founded nature of the previous tentative solu-
tion, several proposals were generated during intensive brainstorming ses-
sions. One solution that showed to advantage in terms of robustness and
accuracy is described in the following.

4.4.2.1 Residual-based perturbation

Suppose that, in solving the first-reduction order problem outlined in section
3.3; i.e., for9 each jǫn+1 (j = 1, 2 . . . Nh; n = 0, 1, 2 . . . Nt − 1), find
ûI
µ

∣
∣
n+1

∈ R
Nu such that:

RI
n+1 = B

ITΣI(jǫn+1, û
I
µ

∣
∣
n+1

) = 0, (4.4.9)

we arrange things such that the residual at the very first iteration of the
Newton-Rapshon algorithm — the algorithm leading to the pertinent equi-
librating displacement field at each time step — is conveniently stored
in memory. The solution proposed to alleviate the abovementioned ill-
posedness is to construct the perturbed basis Ψη from the stresses Ση

I

emerging from the following alternative problem: for each jǫn+1, find ûI
µ

∣
∣
n+1

∈
R
Nu such that:

RI
η,n+1 = B

ITΣη
I(jǫn+1, û

I
µ

∣
∣
n+1

) = ηRI
n+1,j

(0)
, (4.4.10)

where

RI
n+1,j

(0)
= RI(jǫn+1, û

I
µ

∣
∣
n+1

(0)
) = B

IT

ΣI
0,n+1

︷ ︸︸ ︷

ΣI(jǫn+1, û
I
µ

∣
∣
n+1

(0)
) . (4.4.11)

and η denotes a certain “perturbing” factor.
Thus, Eq.(4.4.9) is equivalent to solve:

9It proves conceptually convenient to refine our notational scheme at this point. j
ǫn+1

denotes the macro-strain tensor at time tn+1 (n = 1, 2 . . . Nt) for the j − th strain history
(it is assumed, for simplicity, that each strain history is divided into the same number Nt

of time-intervals); thus, the micro-cell problem is studied under a total number of Nt ·Nh

macro-strain instances (Nh stands for the number of strain histories).
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46 4. Hyperreduced-order modeling (HROM) of the RVE

B
IT
(

Ση
I
n+1 − ηΣI

0,n+1

)

= 0. (4.4.12)

The above explained proposal proved quite robust and accurate for cer-
tain values10 of the perturbing factor η; however, the reason behind why this
approach provides such desirable properties is not apparent at first counter.
Let us try to throw some light on the possible causes for the “goodness” of
the residual-based perturbation.

First, note that by virtue of Eq.(4.4.12):

Ση
I − ηΣI

0, ∈ null BIT . (4.4.13)

thus ΣI = Ση
I − ηΣI

0, is the self-equilibrated stress vector we wish to effi-

ciently compute. Furthermore, since ΣI
0, is the stress vector corresponding

to the first iteration, then B
ITΣI

0, 6= 0; hence

ΣI
0, /∈ null BIT . (4.4.14)

It follows, thus, that the columns of the snapshot matrix from which the
“perturbed” basis Ψη are computed — via the SVD — are constructed as a

linear combination of vectors that do pertain to the nullspace of BIT — the

difference Ση
I −ηΣI

0, — and vectors that are not in the nullspace of BIT —

the perturbing vector ΣI
0, —, and hence, can be resolved into a component

that resides in null BIT and another contained in the orthogonal comple-

ment of null BIT , which is actually the range 11 of BI . It transpires, thus,
that the spirit of this approach is somehow the same as the one proposed
in section 4.4.1.1: to perturb with elements that belongs to the subspace

orthogonal to null BIT . The key difference is that, in the proposal put for-
ward in section 4.4.1.1, all the columns of snapshot matrix were affected by
an unique orthogonal vector; by contrast, in the residual-based approach
each column of the snapshot matrix is affected by a different perturbing

vector ΣI
0, = ΣI(jǫ, ûI

µ

∣
∣(0)). As a consequence, the rank of BITΨη might

result greater than one — even it may be (hopefully) equal12 to Nu, a nec-
essary condition for the Newton-Raphson algorithm corresponding to the
hyper-reduced model to converge.

4.4.3 B-matrix orthonormal-based solution; indirect version

The obvious question that emerges at this point is the following: if the key
ingredient is the perturbation with elements of the orthogonal complement of

B
IT (the range of BIT ); why not to directly perturb using vectors that belong

10The main disadvantage of this proposal is the lack of consistency in changing the
values of η: the value of the residual is quite problem- and strain history-dependent.

11Demo: Let be X ∈ null BIT and X ′ ∈ range
(

B
I
)

. Since X ∈ null BIT , then XT
B

I =

0; likewise, since X ′ ∈ range
(

B
I
)

, ∃Y ∈ R
Nu× | B

IY = X ′. Hence XT
B

IY = XTX ′ = 0,
c.q.d.

12It bears mentioning that rank
(

B
IT

)

= Nu, otherwise the reduced order model (first

stage) could not have been solved. It is not hard to see that rank
(

B
ITΨη

)

= Nu is

also a necessary condition for the Newton-Raphson algorithm corresponding to the hyper-
reduced model to converge.
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to range
(

B
IT
)

, instead of the certainly circuitous — and more costly —

manner of using the residual at the first iteration ? To this end, we perform
a SVD over the matrix13 B

I :

B
I = UBSBV

T
B . (4.4.15)

where, by construction, the matrix of left singular vectors UB ∈ R
Ngds×Nu

forms an orthonormal basis for the range of BI . Therefore, the i − th col-
umn of the snapshot matrix from which the basis Ψη are obtained can be
computed off-line as:

Ση
I
i
= ΣI

i + η‖ΣI
i ‖UBαi (4.4.16)

where αi ∈ R
Nu is a vector of random coefficients (αij ∈ ]0, 1[); the norm

of ΣI
i is introduced to work with a dimensionless perturbing factor.

4.4.3.1 Influence of the perturbing factor

In principle, it seems that the value of the perturbing factor η should af-
fect both the accuracy of the approximation — recall that our ultimate aim
is to approximate the stress field from the information contained in a few,
strategically selected gauss points — and the robustness of the iterative al-
gorithm. If η is close to zero, the influence of the orthogonal vectors in the
snapshot matrix would be negligible and, consequently, the leading (dom-
inant) left singular values — the basis Ψη — would be formed by vectors

with a negligible component in range
(
B
I
)
, rendering rank

(

B
ITΨη

)

< Nu

(necessary condition for convergence). On the other hand, if η is sufficiently

large, problems associated with deficient rank of BITΨη would disappear,
but it seems in all likelihood that large η would have a significant impact
on the approximation error. We should, therefore, examine carefully the
influence of the perturbing factor in the quality of the approximation. As
usual, inspection of the results of a one-dimensional example (in Matlab)
will help us to expedite the otherwise laborious task of understanding and
unraveling the extent of such an influence.

Suppose that, after performing the SV D of the unperturbed snapshot
matrix, and by virtue of any truncation criterion, the number of dominant
modes is set to Nσ; on the other hand, let us denote by N̆σ the number
of modes of the perturbed snapshot matrix (N̆σ ≥ Nσ). First, we study,
for several values of N̆σ, and for fixed η, the approximation error made in
projecting each column vector of the unperturbed snapshot matrix onto the
space spanned by the perturbed basis Ψη(η); i.e.:

ei(N̆σ) =
‖
(
ΨηΨη

T − I
)
ΣI

i ‖
‖ΣI

i ‖
. (4.4.17)

In the results showed in figures 4.1 and 4.2, η = 1 and η = 100, respectively,
and Nσ = 3; the additional modes of the perturbed matrix varies from 0 to
the number of columns of UB , which happens to be equal to 5.

13We should note that the SVD is only used for purposed of obtaining an orthonormal
basis for the range of the snapshot matrix.

47



48 4. Hyperreduced-order modeling (HROM) of the RVE

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80
Approximation error (because of truncation of basis)

Snapshot

R
el

at
iv

e 
er

ro
r 

(%
)

 

 

Original nσ=3

Perturb. METH = BORTHO; η = 1; nσ =3+0

Perturb. METH = BORTHO; η = 1; nσ =3+3

Perturb. METH = BORTHO; η = 1; nσ =3+4

Perturb. METH = BORTHO; η = 1; nσ =3+5

Figure 4.1 Relative error (%) in approximating each column of the snapshot
matrix as a linear combination of the perturbed bases; the study is carried for
η = 1 and N̆σ = Nσ + i, where i ∈ {0, 3, 4, 5}.
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Figure 4.2 Relative error (%) in approximating each column of the snapshot
matrix as a linear combination of the perturbed bases. Varying N̆σ and η = 100).

Observation 4.4.1 It can be gleaned from the results displayed in Figs.
4.1 and 4.2 that the approximation error becomes negligible only when N̆σ =
Nσ +Nu.

To reinforce this tentative conclusion, we show in figure 4.3 the approxima-
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tion error for several values of η in the case in which N̆σ is set toNσ+Nu = 8.
It is clear that the approximation error is not significantly affected by the
value of η.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Snapshot

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

Original n
σ
=3

Perturb. METH = BORTHO;η = 0.1; n
σ

=3+5

Perturb. METH = BORTHO;η = 1; n
σ

=3+5

Perturb. METH = BORTHO;η = 5; n
σ

=3+5

Perturb. METH = BORTHO;η = 10; n
σ

=3+5

Perturb. METH = BORTHO;η = 100; n
σ

=3+5

Figure 4.3 Relative error (%) in approximating each column of the snapshot
matrix as a linear combination of the perturbed bases. Varying η and N̆σ = Nσ +
Nu = 8.

It can be easily appreciated in figure 4.2 that when N̆σ = Nσ = 0, the
approximating error is approximately 100% for all snapshots. According
to Eq.(4.4.17), this means that ΨηΨη

TΣI
i ≈ 0; that is, ΣI

i and Ψη are

orthogonal, or equivalently, Ψη ∈ range
(

B
IT
)

= span {UB}. This fact can

be easily explained from the relatively large value of η: the dominant modes
in this case are but the first Nσ singular left values of the perturbing matrix
η‖ΣI

i ‖UBαi.

Observation 4.4.2 It follows from the above discussion that if η is suffi-
ciently large, the first Nu will be the first singular left values of the perturbing
matrix — by construction, the rank of such a matrix is Nu — and the sub-
sequent Nσ modes will be those corresponding to the unperturbed snapshot
matrix.

4.4.3.2 Alternative formulation

The foregoing discussion suggests somehow that, in taking N̆σ = Nσ +Nu,
we ensure that the perturbed basis Ψη spans a space that contains both

the subspace span {Ψ} and range
(

B
IT
)

= span {UB} — which, recall, are

mutually orthogonal 14 . Therefore, any basis vector Ψηi
can be written as

a linear combination of these two set of bases:

14The validity of such an assertion, however, should be submitted to debate. Strictly,

orthogonality is observed if B
ITΨi = 0. However, note that Ψ is the basis matrix of

the sub-space spanned by stress snapshots that do not meet exactly the above condition;

rather, each snapshot fulfills ‖BITΣ‖ ≤ tol, where tol is the tolerance specified to de-
termine the termination of the Newton-Raphson solving algorithm. Thus, the higher the
convergence tolerance, the more pronounced will be departures from orthogonality. We
have examined the observance of orthogonality in a practical case (rσsnp = 638). Figure

4.4 contains the graph of the logarithm of the residual BITΨi (i = 1 · · · rσsnp). The curve
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Figure 4.4 Logarithm of the 2-Norm of the residual BITΨi (i = 1 · · · rσsnp) (Ψi

stands for the i-th singular vector arising from the SVD of the matrix corresponding
to the training trajectories shown in figure 5.7). The convergence tolerance was set
to 10−6.

Ψη i
= Ψdσ

i +UBd
u
i = [Ψ UB]

[
dσ
i

du
i

]

(4.4.18)

for the entire matrix Ψη, we have:

Ψη = [Ψ UB]

[
dσ

du

]

= ΨBd. (4.4.19)

In the above d = [dσ du]T ∈ R
N̆σ×N̆σ stands for the pertinent coefficient

matrix, and ΨB ∈ R
Ngd×N̆σ is defined as ΨB = [Ψ UB]. With the above

decomposition at our disposal, the equilibrium equation can be alternatively
expressed as:

B
ITΣII(ǫ, ûII

µ ) = B
ITΨηc(ǫ, û

II
µ ) = B

ITUBd
uc = 0. (4.4.20)

wherein we have exploited the fact that BITΨ = 0. Since UB has complete
rank, it follows that the above condition is equivalent to require that15

duc(ǫ, ûII
µ ) = 0. (4.4.21)

Recall that the vector of coefficients c can be approximated via the gappy
data reconstruction method, according to which (see Eq.(4.2.4))

c(ǫ, ûII
µ ) = Ψη

TΣII(ǫ, ûII
µ ) ≈

(

Ψ̂
T

η Ψ̂η

)−1
Ψ̂

T

η Σ̂
II . (4.4.22)

exhibits an increasing tendency altered only by moderate oscillations; this means that

the “dominant” singular basis vectors are “more orthogonal” to range
(

B
IT

)

than the

“trailing ones”. A far-reaching (and also interesting) conclusion can be made from this
observation: the dominant modes fulfill the equilibrium equation in a more accurate man-
ner than the trailing ones. The fact that the basis vectors with very low singular values
can even deteriorate the quality of the solution (they introduce noise).

15Since d
u = U

T
BΨη , this condition is similar to the original one (just replace UB y

B
IT )
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In the above, Ψ̂η ∈ R
ˆ̆
Ngds×N̆σ is a sub-block matrix of Ψη constructed

by collecting the rows corresponding to
ˆ̆
Ng strategically 16 selected gauss

points (whose indices will be denoted by Î = i1, i2 . . . iN̂g
); and Σ̂II ∈

R
N̂gds symbolizes the vector that contains the stresses at such gauss points17.

Defining the boolean matrix P̂ ∈ R
ˆ̆
Ngds×Ngds as the operator that extracts

the rows of Ψ corresponding to the selected gauss points, we can write:

Ψ̂η = P̂Ψη = [P̂Ψ P̂UB ]

[
dσ

du

]

= [Ψ̂ ÛB ]

[
dσ

du

]

(4.4.23)

and
Σ̂II = P̂ΣII . (4.4.24)

4.4.4 Definitive solution: expansion of the basis matrix

The major criticism that can be leveled at the foregoing “indirect version”
is the use of a random perturbing matrix. Can we get rid of this admittedly
unorthodox manner of expanding the space in which the solution is sought ?
In particular: Is there any conceptual or mathematical impediment in simply
constructing the perturbed bases as Ψη = ΨB = [Ψ UB ] ? In doing so, the
second reduction stage would boil down to solving the following problem:
for any ǫ, find ûII

µ ∈ R
Nu such that:

cU (ǫ, û
II
µ ) = 0. (4.4.25)

where cU ∈ R
Nu denotes the last Nu entries of the coefficient vector c,

defined in Eq.(4.4.22). Indeed, any stress vector ΣI = ΣI(ǫ, ûII
µ ) can be

resolved into two components: one that pertains to span {Ψ} and another
that resides18 in span {UB}:

ΣI(ǫ, ûII
µ ) = Ψcσ +UBcU . (4.4.26)

A necessary and sufficient condition for ûII
µ to be a solution of the equilib-

rium problem is that ΣI(ǫ, ûII
µ ) ∈ span {Ψ}. Consequently, the coefficients

that multiply the bases UB must vanish.
Let us now explore more in-depth condition (4.4.25). The coefficient

vector c was given in formula (4.4.22). It was argued there that the approx-
imation contained in Eq.(4.4.25) relies crucially on the invertibility of the
following matrix:

M̂ = Ψ̂
T

BΨ̂B =

[
M̂σσ M̂σU

M̂T
σU M̂σσ

]

=

[
Ψ̂T Ψ̂ Ψ̂T ÛB

ÛT
BΨ̂ ÛT

B ÛB

]

. (4.4.27)

Only an appropriate choice of the selection operator19 P̂ can guarantee the
invertibility of the matrix M̂ .

16The choice must ensure the existence of the inverse of M̂ = Ψ̂T Ψ̂.
17It can be easily shown that when

ˆ̆
Ng = Ng , the approximation in Eq.(4.4.22) becomes

exact.
18The validity of this assertion rests on the assumption that the solution of the incre-

mental problem is unique. If ΣI does not represent an self-equilibrated stress field, the
component outside the subspace span {Ψ} must be necessarily contained in span {UB}.

19Also called the “mask operator“‘
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To extricate the sub-vector cU from expression (4.4.22), the inverse of
the matrix M̂ is first cast in terms of its block matrices; the final result
reads:

cU = N̂−1
(

−M̂T
σUM̂

−1
σσ Ψ

T + ÛT
B

)

Σ̂II

= N̂−1ÛT
B

(

−Ψ̂(Ψ̂T Ψ̂)−1Ψ̂T + I
)

Σ̂II .
(4.4.28)

where the matrix N̂ is defined as:

N̂ = M̂σσ − M̂T
σUM̂

−1
σσ M̂σU = ÛT

B






I −

Ĥ
︷ ︸︸ ︷

Ψ̂(Ψ̂T Ψ̂)−1Ψ̂T







ÛB. (4.4.29)

Inserting the above equation into Eq.(4.4.28), and after trivial manipulation,
we finally get

cU =
(

ÛT
B (I − Ĥ)ÛB

)−1
ÛT

B (I − Ĥ)Σ̂II , (4.4.30)

where Ĥ is a matrix that depends exclusively on the basis Ψ:

Ĥ = Ψ̂(Ψ̂T Ψ̂)−1Ψ̂T . (4.4.31)

20

In order to put the problem in an “appealing” format — reminiscent of
that presented in Eq.(4.1.5) for the first reduction stage — , we define the

hyper-reduced B-matrix B̂
II ∈ R

N̂g×Nσ+Nu as:

B̂
IIT =

(

ÛT
B (I − Ĥ)ÛB

)−1
ÛT

B (I − Ĥ), (4.4.32)

so that the hyper-reduced order problem can be posed as: for any ǫ, find
ûII
µ ∈ R

Nu such that:

B̂
IIT Σ̂II(ǫ, ûII

µ ) = 0. (4.4.33)

Observation 4.4.3 The choice of the basis for the range of BI as the left
singular vectors arising from the SVD is in principle not relevant; in fact,
one can use any basis, in particular, the columns of B

I itself. In such a
case, the expression B̂

IIT adopts the following format:

B̂
IIT =

(

B̂
IT (I − Ĥ)B̂I

)−1
B̂
IT (I − Ĥ), (4.4.34)

where B̂
I = P̂B

I .

Observation 4.4.4 With the choice UB = B
I , it is straightforward to

demonstrate that when N̂g = Ng, the matrix B̂
IIT degenerates in B

IT (just

note that B̂IT Ĥ = 0 in this case).

20Should we write B̂
II ∈ R

N̂g×Nσ+Nu or B̂II ∈ R
N̂gd×Nσ+Nu ?
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Observation 4.4.5 The matrix Ĥ, defined in Eq.(4.4.31), is related with
the gappy data reconstruction operator, denoted by Rσ, through the gauss
point selection operator:

Ĥ = P̂Rσ = R̂σ =

=Ψ̂
︷︸︸︷

P̂Ψ
(

Ψ̂T Ψ̂
)−1

Ψ̂T . (4.4.35)

The operator Rσ acts on the (self-equilibrated) gapyy stress vector Σ̂II to
give the full-gauss point vector ΣII :

ΣII = RσΣ̂
II . (4.4.36)

Using the identity Ĥ = R̂σ, we can rephrase Eq.(4.4.34) as:

B̂
IIT =

(

B̂
IT (I − R̂σ)B̂

I
)−1

B̂
IT (I − R̂σ). (4.4.37)

4.5 Analysis of approximation errors

4.5.1 Sampling and reconstruction errors

Discrepancies between stress responses computed by the full-order and hyper-
reduced-order models can be decomposed in the following manner:

Σh −ΣII =

eI
Σ

︷ ︸︸ ︷

Σh −ΣI +

eII
Σ

︷ ︸︸ ︷

ΣI −ΣII

= eIΣ + eIIΣ .

(4.5.1)

Here, the term eIΣ represents21 the error incurred in the projection stage
— discussed previously in section 3.3.3.1 —, and eIIΣ encompasses the er-
rors due exclusively to the reconstruction of the stress field from the values
computed at a few, strategically selected gauss points. The component eIIΣ
can be further split into sampling (eII,samp

Σ ) and reconstruction (eII,recΣ )
components:

eIIΣ = e
II,rec
Σ + e

II,samp
Σ . (4.5.2)

The sampling error gives an indication of the richness of information con-
tained in the stress snapshot matrix; it is defined formally as

e
II,samp
Σ := ΣI −ΣII(rσsnp, Ng), (4.5.3)

where ΣII(rσsnp, Ng) denotes the stress solution provided by the HROM in
the limit of no truncation, that is, when Nσ = rσsnp (rσsnp is the rank of
the snapshot matrix), and when the entire set of gauss points is used for
reconstruction purposes (N̂g = Ng). The remaining error is the part due to
reconstruction:

e
II,rec
Σ := ΣII(rσsnp, Ng)−ΣII , (4.5.4)

and it depends on the truncation level (Nσ), on the one hand, and on the
number (N̂g) and location22 of the selected points.

21We should note that eI
Σ and e

II
Σ are in general not orthogonal; thus, it is possible that

either ‖Σh −ΣII‖ ≤ ‖eII
Σ ‖ or ‖Σh −ΣII‖ ≤ ‖eI

Σ‖
22Thus, the reconstruction error depends also on the quality of the procedure used for

select such locations. A (cursory) review of existing selection algorithms was given in
section 1.2.2.1
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54 4. Hyperreduced-order modeling (HROM) of the RVE

4.5.2 Consistency

To discuss the issue of consistency, it proves conceptually convenient to
summarize first the micro-cell equilibrium equations corresponding to each
level of reduction; this is done in the box below.

B
hTΣ(uh

µ, ǫt) = 0, with B
hT : RNg ds → R

n d; (4.5.5)

B
ITΣ(uI

µ, ǫt) = 0, with B
IT : RNg ds → R

Nu ; (4.5.6)

B̂
IIT Σ̂(ûII

µ , ǫt) = 0, with B̂
IIT : RN̂g ds → R

Nu . (4.5.7)

where

B
IT = ΦT

B
hT , (4.5.8)

B̂
IIT = B

IT
RB , (4.5.9)

RB = ΨB

(

Ψ̂
T

BΨ̂B

)−1
Ψ̂

T

B (4.5.10)

ΨB = [Ψ UB ], Ψ̂B = P̂ΨB, (4.5.11)

N̂g ≥ Nu +Nσ. (4.5.12)

Φ ∈ R
nd×Nu → Micro-disp. fluct. POD basis matrix

Ψ ∈ R
Ng ds×Nσ → Micro-stress. POD basis matrix

UB ∈ R
Ng ds×Nu → Orthogonal basis matrix for range

(
B
I
)

P̂ ∈ R
N̂g ds×Ng ds → (Boolean) mask operator .

.

Box 4.5.1 Micro-cell equilibrium equations (in condensed, matrix format) corre-
sponding to the full-order model (Eq.(4.5.5)), the reduced-order model (Eq.(4.5.6))
and the hyperreduced-order model (Eq.(4.5.7)). The process of reduction in dimen-
sion and complexity is reflected in the progressive “compression” of the B-matrix

operator: BhT ⇒ BIT ⇒ B̂IIT

(recall that the whole reduction process is predicated
on the assumption that Nu << n and N̂g, Nσ << Ng).

As discussed earlier (section 3.3.3.2), consistency demands that when
the prescribed strain history pertains to the set of training trajectories (ǫt ∈
ǫ
snp
t ), and in the limit of no data compression (Nu = rusnp, Nσ = rσsnp
and N̂g = Ng), both the solution of the full-order problem represented by
Eq.(4.5.5) and the solution of the hyper-reduced order problem stated in
Eq.(4.5.7) coincide (ûII

µ = uh
µ). Consistency between the FOM and ROM

solutions was already proven in section 3.3.3.2; thus, it only remains to
demonstrate that ûII

µ = uI
µ in the limiting case of no truncation of the

stress basis and when the entire set of gauss points is used.

To prove this, first note that, in the limiting case of no data compres-
sion, the mask operator becomes the identity and, as a consequence, the
reconstruction operator RB defined in Eq.(4.5.10) degenerates into the or-
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thogonal projector onto span {ΨB}, that is:

RB = ΨB

(
ΨT

BΨB

)−1
ΨT

B = ΨBΨT
B. (4.5.13)

Accordingly, the HROM equilibrium equation (4.5.7) can be rephrased as:

B
ITΨBΨT

BΣ(ûII
µ , ǫt) = 0. (4.5.14)

On the other hand, since ǫt ∈ ǫ
snp
t , we know that Σ(uI

µ, ǫt) ∈ span {Ψ};
therefore, we can say that

Σ(uI
µ, ǫt) = ΨΨTΣ(uI

µ, ǫt). (4.5.15)

Furthermore, sinceUB is a basis of the range of BI , it follows thatUT
BΣ(uI

µ, ǫt) =
0. In view of this observation, and by virtue of Eq.(4.5.15), it can be thus
asserted that

Σ(uI
µ, ǫt) = ΨBΨT

BΣ(uI
µ, ǫt). (4.5.16)

Inserting the above equation into the ROM equilibrium equation (4.5.6), we
finally arrive at

B
ITΣ(uI

µ, ǫt) = B
ITΨBΨT

BΣ(uI
µ, ǫt) = 0. (4.5.17)

Comparison of the above expression with Eq.(4.5.14) permits to conclude
that23 the solutions provided by the hyper-reduced order model and the
reduced-order model are identical in the limit of no data compression.

4.6 Computation of macroscopic stresses

The ultimate aim of solving the equilibrium problem associated to the fine
scale is not the determination of the microscopic fluctuation field per se, but
rather the computation of the macroscopic stress tensor via homogenization
— i.e., volume averaging of the microscopic stress distribution:

σ(ǫ) =
1

Vµ

∫

Ωs
µ

σµ dΩ, (4.6.1)

where Vµ stands for the total volume of the RVE. Approximating the integral
by gauss quadrature, we get:

σ(ǫ) =
1

Vµ

Ng∑

g=1

wgσµg
(ǫ). (4.6.2)

By virtue of Eq.(4.4.36), the micro-stress field σµ can be, in turn, approxi-
mated as:

Σ(ǫ) ≈ RσΣ̂(ǫ) →








σµ1
σµ2
...

σµNg







≈








Rσ1

Rσ2
...

RσNg







Σ̂, (4.6.3)

23Needless to say, this holds strictly only if the full-order model is well-posed (uniqueness
of solution).
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56 4. Hyperreduced-order modeling (HROM) of the RVE

that is,
σµg(ǫ) ≈ RσgΣ̂(ǫ) g = 1, 2 · · ·Ng, (4.6.4)

where Rσg stands for the sub-block matrix formed by the rows of the re-
construction operator (see Eq.(4.4.36)) corresponding to the g − th gauss
point. Replacement of σµ in Eq.(4.6.2) by the above coefficient-function
approximation finally yields:

σ(ǫ) = T Σ̂(ǫ), (4.6.5)

where the operator T ∈ R
ds×N̂gds is defined as follows:

T :=
1

Vµ

Ng∑

g=1

wgRσg (4.6.6)

Note that T can be entirely computed offline, since it does not depend on
the value of the macrostrain ǫ. Further insight is gained by rephrasing
expression (4.6.5) as

σ(ǫ) = [T 1 T 2 · · ·T N̂g
]








σµ(yp1
, ǫ)

σµ(yp2
, ǫ)

...
σµ(yp

N̂g
, ǫ)







=

N̂g∑

g=1

T gσµ(ypg , ǫ), (4.6.7)

where σµpg
(ǫ) = σµ(ypg , ǫ) denotes the value of the micro-stress vector at

the g− th sample point ypg . According to this expression, the computation
of the macroscopic stress involves only determination of the micro-stresses
at the selected quadrature points — by solving the hyperreduced-order equi-
librium equation (4.5.7) — and multiplication of such stresses by their corre-
sponding (pre-computed) weighting matrices T g ∈ R

ds×ds (g = 1, 2 · · · N̂g).
It is interesting to note that, in fact, there is no need to reconstruct the
micro-stress field through direct application of the reconstruction operator
Rσ and, as a consequence, the operation count of the online stage depends
exclusively on the dimension (N̂g) of the hyperreduced-order model.

Observation 4.6.1 Equation (4.6.7) represents the approximation of the
integral appearing in Eq.(4.6.1) using the POD basis computed from the
stress snapshot matrices; accordingly, the operators T g ∈ R

ds×ds (g =
1, 2 · · · N̂g) can be interpreted, in this approximation, as the weights as-
sociated to the values of the integrand at locations yp1

,yp2 , · · · ypN̂g
. The

peculiarity here is that such weights are not scalars, as in classical quadra-
ture schemes, but matrices — hence the appellation weighting matrices.

.

4.6.1 Homogeneized algorithmic tangent moduli

The proposed hyperreduced-order strategy affords computational savings
not only in the update of the macroscopic stress updates, but also in the
computation of the macroscopic algorithmic tangent moduli, a task which
proves rather costly in homogenization procedures. In the following, we
present — without dwelling unduly on theoretical considerations — the
derivation of this tensor in both the full and hyperreduced-order models; for
a more detailed and formal account of the former, the reader is referred to
de Souza Neto and Feijóo (2006).
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4.6.1.1 Full-order model

The algorithmic tangent moduli, denoted by C, is obtained by applying
the directional derivative relative to a macroscopic strain increment ∆ǫ to
expression24 (4.6.1):

Dσ[∆ǫ] = C∆ǫ =
1

Vµ

∫

Ωs
µ

Dσµ(

ǫµ
︷ ︸︸ ︷

ǫ+∇suµ)[∆ǫ] dΩ

=
1

Vµ

∫

Ωs
µ

Cµ
︷︸︸︷

∂σµ

∂ǫµ
D ǫµ[∆ǫ] dΩ

=

Ctaylor

︷ ︸︸ ︷

1

Vµ

∫

Ωs
µ

Cµ dΩ∆ǫ+
1

Vµ

∫

Ωs
µ

CµD∇suµ[∆ǫ] dΩ

= Ctaylor∆ǫ+
1

Vµ

∫

Ωs
µ

Cµ∇sDuµ[∆ǫ] dΩ.

(4.6.8)

Expressing uµ as a linear combination of the finite element basis functions
(see Eq.(3.2.1)), we get:

Dσ[∆ǫ] = Ctaylor∆ǫ+
1

Vµ

∫

Ωs
µ

CµB dΩ

=Puµ∆ǫ
︷ ︸︸ ︷

D ûµ[∆ǫ]

=







Ctaylor +

Cfluc

︷ ︸︸ ︷

1

Vµ

∫

Ωs
µ

CµB dΩPuµ








∆ǫ.

(4.6.9)

The homogenized algorithmic tangent tensor C, thus, consists in the sum
of two linear operators. One of them, denoted in the foregoing equation
as25 Ctaylor , is simply the volume average of the algorithmic tangent tensor
consistent with the microscopic constitutive law. The other contribution,
symbolized by Cfluc, reflects the fact that the displacement fluctuations
themselves depend on the history of macro-strains. The tangential operator

24To keep the notation uncluttered, we have dropped the superindex “h” (finite element
solution) — it should read, for instance, Dσ

h[∆ǫ]. Moreover, tensors have been expressed
directly in Voigt’s notation.

25This term corresponds to the homogenized tangent moduli of a micro-cell in which
the fluctuations are assumed to be zero, and, thus, ǫµ = ǫ. Under this kinematical
assumption, known by the name of Taylor’s assumption —hence the superscript — or
rule of mixtures, the homogenization problem admits a trivial solution; however, it should
be noted that such a solution indiscriminately ignores possible interactions between the
distinct solid micro-constituents and the effects induced by micro-porosity (presence of
voids). For instance, the macro-stress predicted by Taylor’s model in the case of a porous

cell with a single solid phase reads σ =
V s
µ

Vµ

σµ (V s
µ is the volume of the solid phase,

excluding the voids). This solution, thus, does not account for the influence of the void
distribution on the macro-scale properties; if the micro-constituent obeys an isotropic
constitutive equation, the homogenization process will preserve this isotropy regardless of
how voids are distributed. Needless to say, this is patently false — just imagine a cell
containing a single, asymmetrically placed void.
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58 4. Hyperreduced-order modeling (HROM) of the RVE

Puµ , that relates nodal fluctuations and macro-strains, is obtained by ap-
plying the directional derivative D (•)[∆ǫ] to the RVE equilibrium equation
(3.2.6):

∫

Ωs
µ

BTDσµ[∆ǫ] dΩ =

=

∫

Ωs
µ

BTCµ dΩ∆ǫ+

∫

Ωs
µ

BTCµ∇sDuµ[∆ǫ] dΩ

=

∫

Ωs
µ

BTCµ dΩ∆ǫ+

Kµ
︷ ︸︸ ︷∫

Ωs
µ

BTCµB dΩ D ûµ[∆ǫ] = 0.

(4.6.10)

The desired tangential operator Puµ emerges from the above by simply
solving for D ûµ[∆ǫ] — in the manner outlined in section (3.2.1).

4.6.1.2 Hyperreduced-order model

The derivation of the homogenized tangent operator consistent with the
hyperreduced-order model follows the same line as above. Application of
the directional derivative D (•)[∆ǫ] to expression (4.6.7) yields:

Dσ[∆ǫ] =

N̂g∑

g=1

T gDσµpg
[∆ǫ]

=

Ĉtaylor

︷ ︸︸ ︷

N̂g∑

g=1

T gCµpg
∆ǫ+

N̂g∑

g=1

T gCµpg
D∇suµ[∆ǫ].

(4.6.11)

Expressing uµ as a linear combination of the reduced-order basis functions,
we get:

Dσ[∆ǫ] = Ĉtaylor∆ǫ+





N̂g∑

g=1

T gCµpg
BI

pg





=Puµ∆ǫ
︷ ︸︸ ︷

D ûII
µ [∆ǫ]

= (Ĉtaylor +

Ĉfluc

︷ ︸︸ ︷




N̂g∑

g=1

T gCµpg
BI

pg



Puµ)∆ǫ.

(4.6.12)

To obtain a closed-form expression for the operator Puµ , the directional
derivative D (•)[∆ǫ] is applied to the hyperreduced-order version of the equi-
librium equation (Eq.(4.5.7)):
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B̂
IIT Σ̂ =

N̂g∑

g=1

B̂
IIT

g σµpg
= 0

D (•)[∆ǫ]−→

N̂g∑

g=1

B̂
IIT

g Cµpg
∆ǫ+

N̂g∑

g=1

B̂
IIT

g Cµpg
BI

pgD ûII
µ [∆ǫ] = 0.

(4.6.13)

Solving for D ûII
µ [∆ǫ], we finally arrive at the desired expression:

Puµ = −





N̂g∑

g=1

B̂
IIT

g Cµpg
BI

pg





−1
N̂g∑

g=1

B̂
IIT

g Cµpg
(4.6.14)
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Chapter 5

Assessment of approximation
errors: a case study

5.1 Introduction

The aim of this chapter is twofold. First, to analyze the errors incurred in
approximating the finite element or full-order solution (FOM) by the succes-
sive reduced-order approximations (ROM and HROM) for particular train-
ing and testing macro-strain trajectories; and second, to evaluate the actual
efficiency of the proposed model reduction strategy (in terms of speedup). To
this end, we shall study the behavior, under plane strain conditions, of a RVE
containing a single centered circular hole (see figure 5.1), and governed by a
damage model endowed with linear hardening (σy = 1000 MPa, H = 0.1)

Figure 5.1 Geometry of the micro-cell (1024 linear triangle elements; 574 nodes).
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62 5. Assessment of approximation errors: a case study

5.2 First reduction stage (ROM)

In the following, the notions of truncation and sampling errors discussed in
section 3.3.3.1 are enlivened by two examples. The three macroscopic strain
histories used for generating the snapshots in the first of these examples are
represented in figure 5.2. Observe that, in each of this strain histories, one of
the strain components follows a piecewise linear, ascending-descending path
— with a maximum of ǫC = 2 ·10−3, (C = x, y, xy) —, while the magnitude
of the other two components is set to zero. Besides, the time domain for
each strain history is discretized into 220 equally spaced steps. In figure 5.3,
on the other hand, we show the macroscopic strain trajectory employed for
testing the quality of the approximation.

Observation 5.2.1 The choice of the three strain histories shown in figure
5.2 is not based in any rigorous, statistically sound sampling procedure, but
rather is dictated by physical intuition. The task of “training”1 the micro-
cell is somehow akin to the experimental process whereby material param-
eters of standard phenomenological models are calibrated in a laboratory.
In this analogy, the micro-cell plays the role of the corresponding experi-
mental specimen, and the macro-strain training trajectories represents the
loading paths of the pertinent calibration tests. Specifically, the strain paths
displayed in figure 5.2 correspond to: a “tensile test” in the direction of
the x-axis (snapshots 1-220); a “tensile test” in the direction of the y-axis
(snapshots 221-440); and a “shear test” (snapshots 441-660). As opposed to
the situation encountered in laboratory experiments, however, in the train-
ing process of the micro-cell one has privileged information regarding the
underlying micro-structure, and this may aid to restrict the number of tests
necessary to characterize the response. For instance, the behavior of the
micro-cell under study is governed by a rate-independent, symmetric, dam-
age model; thus, we know beforehand that including compression tests would
prove redundant (because of the symmetry of the constitutive relationship);
likewise, due to the rate-independence character of the problem, it is not
necessary to study the response under varying rates of deformation.

Figure 5.4 contains the graph of the error estimate defined as:

emax
σ (Nu) =

max
n=1,2...

‖Σh(tn)−ΣI(tn, Nu)‖2
√

Ngds σy
100, (5.2.1)

i.e., the maximum of the 2-norm of the difference between the FOM and
ROM stress solutions corresponding to the trajectories shown in figure 5.3,
and for varying levels of truncation (ranging from Nu = 9 to Nu = rusnp =
290). The error falls abruptly at approximately Nu = 10, remaining there-
after practically flat. In the limit of no truncation (Nu = rusnp = 292), the
discrepancy between FOM and ROM solutions is below 2% of the ultimate
strength σy — this is an estimation of the sampling error for the testing
trajectory under consideration. Observe also that the curve decays in a
monotonic manner; this indicates that, although the basis are constructed
in an optimal fashion only for the micro-displacement fluctuations (the state

1The term training, which, incidentally, is borrowed from the neural network literature,
is used throughout the text to refer to the offline generation of snapshots.
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Figure 5.2 Macro-strain history used for generating the displacement snapshots.
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Figure 5.3 Macro-strain history used for testing the quality of the reduced-order
approximation.

variable), the optimality requirement alluded to in section 3.3.3.2 is also ob-
served in terms of stresses.

5.2.0.3 Analysis with different testing trajectories

Next, we examine the error incurred in approximating the evolution of
stresses using, for testing purposes, a different strain history, which is dis-
played in figure 5.5. The paths that follow each component of the macro-
scopic strain tensor lie entirely in the negative half-plane —unlike the train-
ing trajectories (figure 5.2), that take only positive values. Furthermore,
the strain paths in figure 5.5 reach a maximum absolute value that is one
order of magnitude greater than the peak value attained by the training
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Figure 5.4 Error estimation defined in Eq.(5.2.1) (emax
σ (Nu)) versus the level of

truncation Nu. Error measures have been divided by the ultimate strength of the
material (σy = 1000MPa) to get dimensionless values.

data. This strain history, thus, poses a more severe test of the ability of the
reduced-order model to approximate the full-order response.
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Figure 5.5 Macro-strain history used for examining the quality of the approxi-
mation (“demanding” situation).

Figure 5.6 contains the plot of the error measure versus the level of
truncation for the trajectories shown in figures 5.3 and 5.5 (labeled as ST1
and ST2 in figure 5.6). As expected, the degree of discrepancy at low level
of truncations for the ST2 case is substantially larger than for the trajectory
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labeled as ST1 (60% against 8% at Nu = 5). However, note that the drift
between these curve decreases notably with increasing number of modes.
At Nu = 20 the error estimate is below 10%, a value that can be deemed
satisfactory from an engineering point of view; in the limit of no truncation
(sampling error), the level of discrepancy is only of 6%.

The above analysis seems to suggest that even in situations in which
parts of the testing macro-strain trajectory lie far out of the range of the
training macro-strain functions, the reduced-order model is able to provide
reasonably accurate estimations using only a few modes ( Nu = 20)— it
proves its ability to make accurate extrapolations, in other words2.
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Figure 5.6 Maximum of the 2-norm error versus level of truncation for the test-
ing trajectories shown in 5.3 (strain history 1) and 5.5 (strain history 2). Error
measures have been divided by the ultimate strength (σy = 1000MPa) to get
dimensionless values.

5.2.0.4 Analysis with different training trajectories

In this section, we are concerned with the assessment of the error incurred
in approximating the stress evolution induced by a given testing trajectory
when different set of training data are used. The testing strain path cho-
sen for the analysis is the one shown previously in figure 5.5. Two sets
of training data, on the other hand, have been used for comparison pur-
poses: the three strain trajectories shown previously (figure 5.2), and the
strain histories displayed in figure 5.7. Observe that the latter set includes
also combined tensile-shear loading/unloading paths, and, besides, the peak
loads are greater (by an order of magnitude) than those in figure 5.2; hence
the training data contained in figure 5.7 constitutes a more comprehensive
sample of the parametric space than the pure shear and pure tensile paths
shown in figure 5.2. Another perceptible difference is that the the descend-
ing (unloading) branches of the paths depicted in figure 5.7 do not reach
the zero level . This has been done in anticipation of the fact that, being

2We should mention in this respect that one of the acclaimed advantages of POD/-
Galerkin reduced-order models is precisely their ability to make “physically-based extrap-
olations” (as opposed to “black-box“ approaches, e.g., artificial neural networks, which
are somehow “agnostic“ to the underlying physics.)
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the unloading process elastic, the span of the matrix formed by the snap-
shots corresponding to this range cannot be greater than one, and therefore,
collecting too many snapshots is not necessary3.
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Figure 5.7 Macro-strain histories used for generating displacement fluctuations
snapshots. These data represent a more comprehensive sample of the parametric
space than the strain paths depicted in figure 5.2.

Figure 5.8 contains the graphs of the 2-norm error stress versus the level
of truncation for these two distinct sets of training strain histories. Results
clearly concurs with expectations: the solution provided by the reduced-
order model that uses the training data shown in figure 5.7 represents a
significantly more accurate approximation than the one that uses the train-
ing trajectories contained in figure 5.2; with only 3 modes of the former
we get the same accuracy that with 20 modes of the latter. This compar-
ison conveys the relevance of properly selecting the macro-strain training
histories if a parsimonious representation of the micro-cell is to be obtained.

To shed more light into the — admittedly — diffuse topic of “sampling”
of the parametric space, we plot in figure 5.9 the 2-norm of the sampling
error incurred at each time step accompanied by the graph of the global
Newton-Raphson iterations required at each time step to achieve equilibrium
in the micro-cell. Inspection of this figure indicates that the error peak is
located for both cases in the time interval between the 10 and 15 steps.
Interestingly, yet not surprisingly, this corresponds to the time interval at

3In principle, just two snapshots would suffice to characterize the displacement response
in this elastic range, and, thus, one might be naively tempted to include only two snapshots
in the snapshot ensemble for purposes of POD basis construction. However, recall that
the POD is nothing but a multidimensional data fitting intended to obtain a sequence of
orthogonal vectors whose spans best approximate the range of the snapshot matrix. If the
elastic response is poorly represented in the snapshot ensemble, the POD would regard
as unimportant the contribution of these snapshots, and, as a consequence, the dominant
modes would hardly contain any information of this range; one would be forced to take
a large number of modes to accurately replicate the apparently trivial elastic behavior.
This observation highlights the importance of assuring a balanced presence in the snapshot
ensemble of solutions corresponding to relevant, phenomenological distinct behaviors. As
suggested in appendix A.4, a circuitous way of achieving this is to affect the snapshots
by certain, aptly chosen weighting coefficients — in the spirit of the snapshot-weighting
scheme developed by (Carlberg and Farhat, 2008).
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Figure 5.8 Maximum of the 2-norm error versus level of truncation for the testing
trajectory contained in 5.5 when using two distinct sets of training strain histories:
the one displayed in figure 5.2 (labeled as “TRD 1”) and the one shown in figure 5.7
(labeled as “TRD 2”). Error measures have been divided by the ultimate strength
(σy = 1000MPa) to get dimensionless values.
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Figure 5.9 (a) 2-Norm of the sampling stress error at each time step for the
testing trajectory shown in 5.5. Error measures have been divided by the ultimate
strength (σy = 1000MPa) to get dimensionless values. (b) Number of iterations
performed until reaching convergence at each step (full-order model)

which more iterations are required to achieve equilibrium. Further insight is
gained by analyzing the propagation of damage through the cell. In figure
5.10, we plot the portion of finite elements (in %) affected by damage as a
function of time. Observe that the interval at issue corresponds to the period
during which damage spreads out through the cell; i.e., when both elements
behaving inelastically and elements that remains in the elastic range coexist.
It is apparent than, to reduce the sampling error, the time stepping in this
interval should be refined and more solution snapshots corresponding to this
range included in the snapshot matrix.

5.3 Second reduction stage (HROM)

5.3.1 Optimal choice of truncation levels and number of sam-
ple points

As explained in section 4.5, the quality of the hyper-reduced-order approxi-
mation is controlled by three integer variables: the level of truncation of the
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Figure 5.10 (a) Portion of elements affected by damage at each time step for
the testing trajectory shown in 5.5. (b) Number of iterations required to achieve
equilibrium.

micro-displacement basis (Nu), the level of truncation of the micro-stresses
basis (Nσ), and the number of gauss points (N̂g) at which to evaluate —
through the corresponding micro-constitutive equations — the micro-stress
response. The only constraint in the choice of this triplet is the (necessary)
condition for the existence of the reconstruction operator RB , that reads

N̂g ≥ Nσ +Nu. (5.3.1)

Since the computational cost of increasing the level of truncations is not
significant — the actual burden is the evaluation of the stress response at the
N̂g selected points —, and considering that the quality of the approximation
is, obviously, invariably improved with the expansion of the reduced-order
spaces, it follows that, for a given number of points N̂g, the level of trunca-
tion should be as large as possible4; accordingly, the most favorable situation
is encountered when:

N̂g = Nσ +Nu. (5.3.2)

Incidentally, note that this limiting case represents the closest situation to
a genuine interpolatory problem.

It only remains, thus, to ascertain which combination of Nσ and Nu, for
a given N̂g, is most advantageous in terms of accuracy. In order to assist in
the answering of such a question, we have performed — using the training
and testing trajectories shown in figures 5.7 and 5.3, respectively — two
battery of tests; in these tests, N̂g is kept constant and equal to 20 and 30,
while Nσ and Nu vary so that N̂g = Nσ + Nu. Figure 5.11 contains the
graph, for each of these tests, of the error estimate defined as:

emax
σ (Nu) =

max
n=1,2...

‖Σh(tn)−ΣII(tn, Nu, Nσ, N̂g)‖2
√

Ngds σy
100, (5.3.3)

4This argument is also supported by the one-dimensional analysis carried out in ap-
pendix C.
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versus the ratio between the number of stress modes and the number of
sample points. Observe that the minimum is located for both curves at
around Nσ/N̂g = 0.5; thus, according to this numerical experiment, the
optimum relation between levels of truncations is Nσ = Nu (equal levels of
truncation for both displacements and stresses).
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Figure 5.11 Error measure defined in Eq.(5.3.3) versus the quotient between the
number of stress modes Nσ and the number of sample points N̂g = Nσ + Nu for

two different values of N̂g.

A plausible, somehow intuitive explanation for this finding goes as fol-
lows. The quality of the stress solution depends largely, through the perti-
nent constitutive relationships, on the quality of the displacement solution,
and vice versa. Therefore, it seems pointless to increase the level of trun-
cation of the stress basis without accompanying such an increase with a
pertinent enlargement of the displacement solution space. On the other
hand, the plot of the a priori5 truncation error estimator defined as:

etrunb =
R−M

R

√
√
√
√
√
√
√
√
√
√

R∑

i=M+1

λ2
i

R∑

i=1

λ2
i

. (5.3.4)

versus6 the level of truncation M (M = Nσ for stresses and M = Nu

for displacements), see figure 5.12, indicates that stress and displacement
truncation errors are in the same order of magnitude and decrease at similar
rates7. In view of these facts, it is apparent that there is no reason to take
Nu appreciably larger than Nσ, or vice-versa; the optimum relation, thus,

5The “a priori” qualifier refers to the fact that this estimation can be obtained in the
offline stage, as it only depends of the outcome of the SVD of the snapshot matrices; see
appendix C.2.2 for further details.

6here, λi and R denote the i−th singular value and rank of the corresponding snapshot
matrix.

7Observe also that both curves exhibit similar patterns, having inflection points at
the exact same locations. It may be interesting to investigate this peculiarity in future
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should be close to Nu = Nσ, as the numerical experiment carried out above
suggested.
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Figure 5.12 Bound for the displacement and stress truncation error defined in
Eq.(5.3.4) versus the level of truncation.

5.3.2 Influence of the greedy sampling strategy

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Number of displacement basis (N
u
)

E
rr

o
r 

(%
)

Chaturantabut

Willcox

Figure 5.13 Comparison between greedy algorithms (Willcox (2006) and Chatu-
rantabut and Sorensen (2010)). Frobenius norm of the HROM stress errors versus
the number of displacement modes Nu (with respect to σy), with Nσ = Nu and

N̂g = 2Nu.

The approximation error depends not only on the number of gappy points
used for reconstructing the stress field, but also on the location of such points
within the micro-cell domain and, therefore, on the particular algorithm em-
ployed for determining such locations. In order to preserve the continuity
of the presentation, the in-depth discussion of the various selection methods
proposed in the literature and the influence on the error response of the pre-
cise placement of the gappy points have been deferred to appendix C. Here

developments and see if the resemblance between truncation error curves is also observed
with other, more complex micro-models constitutive laws.
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we limit ourselves to compare the error responses associated to the greedy
sampling procedures proposed by Willcox (2006), on the one hand, which is
based on the minimization of the condition number of the restricted basis
matrix, and the one pioneered by Barrault et al. (2004) and later extended to
discrete settings by Chaturantabut and Sorensen (2010), on the other hand
— the so-called Discrete Empirical Interpolation Method (DEIM). Figure
5.13 displays the plot of the error estimator defined in Eq.(5.3.3) versus the
number of displacement modes Nu for these two sampling procedures. In-
spection of this figure permits to conclude that differences in performance
between these algorithms are not significant. Although for moderate levels
of truncation the plot associated with the method advocated by Chatu-
rantabut and Sorensen (2010) provides slightly more accurate results and
exhibit a less erratic behavior than the other one, these apparent advan-
tages becomes imperceptible as Nu increases. We should point out that this
conclusion is in total agreement with the remarks made in appendix C in
the context of approximation of (discontinuous) one-dimensional functions
using POD basis.

5.3.3 Gains in computational efficiency

We come now to the main concern of the present work — its raison d’être
— which is the issue of computational efficiency. The upcoming analysis
is devoted to roughly8 evaluate the performance gains that, for a given
error level, can be achieved by using the hyperreduced-order model in the
computation of the response of the fine scale.

5.3.3.1 Local speedup

Let us begin by defining the local speedup factor associated to the compu-
tation of the response of a single micro-cell:

sµ :=
tFOM(Ng)

tHROM (N̂g)
, (5.3.5)

where tFOM and tHROM denote the times required to compute, respectively,
the full- and hyperreduced-order macro-stress responses induced by a given
macro-strain history. Figure 5.14.(a) contains the plot of this local speedup
factor versus the number of sample points N̂g for the macro-strain history
employed in section 5.2 (see figure 5.3). For purposes of discussing the trade-
off between speedup and quality of the low-rank approximation, this plot is
accompanied by the graph of the dimensionless error measure defined as

emax
macro(N̂g) =

max
n=1,2...

‖σh(tn)− σII(tn, N̂g)‖∞
σy

100, (5.3.6)

8A rigorous and unbiased — i.e., not contingent upon computer architecture, program-
ming language and/or coding style features — assessment of the benefits that accrue from
using the proposed low-rank approximation should be carried out by measuring the num-
ber of computer operations (flops) involved in each relevant step of the algorithm; the
work by DeVore et al. (2001) provides thorough guidelines to accomplish this task. In
the present work, however, we do not pursue such a degree of rigor, but rather limit our-
selves to simply determine and compare, using an in-house Matlab program, cpu elapsed
times for the computation of the full-order and hyperreduced-order fine scale macro-stress
responses induced by a representative strain history.
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Figure 5.14 (a) Local speedup factor versus the number of sample points for the
computation of the response corresponding to the macro-strain history employed in
section figure 5.3. (b) Maximum difference between full- and hyperreduced-order
macro-stress responses — divided by the ultimate strength of the material, see
Eq.(5.3.6) — versus the number of sample points.

i.e., the maximum difference between computed full- and hyperreduced-order
macroscopic stress9 responses. Note that the speedup at N̂g = 2 is slightly
below 500, and at N̂g = 22 is around 50; dividing the total number of points
Ng = 1024 by these figures we get 1024/500 ≈ 500 and 1024/22 ≈ 50.
It follows, then, that the speedup decreases with the ratio Ng/N̂g at an
approximately linear rate10. The error curve displayed in the accompanying
figure, on the other hand, exhibits a notable drop (∆e ≈ 25%) from N̂g = 2
to N̂g = 10, remaining thereafter practically flat11 — the decay of error
from N̂g = 10 to N̂g = 30 is only of 3%, while the speedup decreases
tenfold. Therefore, it becomes apparent than a satisfactory compromise
between accuracy and computational cost can be achieved by taking N̂g =
10; we have in this case only 4% of error with a speedup of two order of
magnitudes over the full-order model. For completeness, we show in figure
5.15 the evolution for this case of the components of the macroscopic stresses
calculated with both FOM and HROM. On the other hand, the location of
the N̂g = 10 sample points used in the computations — selected by the
algorithm proposed12 Chaturantabut and Sorensen (2010) — is displayed in

9Recall that the ultimate aim of computing the fine scale is the calculation of the
macroscopic stress tensor σ via homogenization; thus, the error estimate Eq.(5.3.6) pro-
vides a more meaningful — from a practical point of view — indication of the quality of
the approximation than the error measure defined previously in Eq.(5.3.3). The latter is
more suited for examining convergence properties of the hyperreduced approximation —
the minimization problem that underlies the SVD is posed in terms of the 2-norm,.

10This is a manifestation of the fact that the calculation of the stresses dominates the
total cost of the computation of the fine scale response.

11Notice that the decreasing pattern of this curve mimic that of the plot of the a priori
error bound displayed in figure 5.12.

12Recall that the expanded basis matrix is formed by the first Nσ stress modes and a
set of orthogonal basis vectors for the range of BI ([Ψ UB ]). Since greedy algorithms, by
definition, are hierarchical, the exact location of the first Nσ = 5 selected points depends
exclusively on the stress basis Ψ. Incidentally, it can be appreciated in figure 5.16.(a)
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figure 5.16.
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Figure 5.16 Location of the N̂g = 10 sample points selected by the greedy al-
gorithm proposed by Chaturantabut and Sorensen (2010) (DEIM). (a) Points as-
sociated to the first Nσ = 5 stress modes. (b) Points associated to the orthogonal
basis for the range of BI (of rank Nu = 5).

Observation 5.3.1 The foregoing discussion considers only the trade-off
between speedup and error levels for varying N̂g and fixed Ng. But what about
the behavior when Ng varies and N̂g is kept constant? How would affect an
increase of Ng to the total error? For instance, if the mesh shown above is
uniformly refined by, say, a factor of 3, and the number of sample points
is kept to N̂g = 10, will the error level be the same (4%) ? Or should one

that four of the such points are distributed along the perimeter of the void, where stress
concentrations are likely to take place. This is somehow consistent with the observations
made at the end of appendix C when discussing the connection between the shape of the
spatial modes and the location of optimal sample points.
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increase also the number of sample points by a factor of 3 so as to preserve
accuracy ? These questions are thoroughly addressed in appendix B. It is
theoretically and numerically proven therein that the truncation error —
the major contributor to the total error — is relatively insensitive to mesh
refinement and, as a consequence, the speedups provided by the hyperreduced-
order model will invariably grow — at a rate roughly proportional to the
factor of refinement — as the spatial discretization of the RVE becomes
finer.

5.3.3.2 Global speedup

A fair discussion of the gains in efficiency provided by the hyperreduced-
order model should take into account, aside from the local speedup, the
additional cost associated to the offline stage. Let us denote by Nmacro

g

and Tmacro the number of quadrature points of the finite element mesh at
the coarse level, and the number of time steps used for the solution of the
problem, respectively. The overall efficiency afforded by the proposed model
reduction strategy can be loosely estimated by the following global speedup
factor :

smacro :=
tFOM

toff + tHROM
=

t0 +Nmacro
g Tmacro ∆tFOM

µ

toff + t0 +Nmacro
g Tmacro∆tFOM

µ

. (5.3.7)

Here toff represents the cost of the offline stage; ∆tFOM
µ and ∆tHROM

µ

stand for the time required to update the macro-stresses using the RVE
full- and hyperreduced-order models, respectively; and t0 denotes the com-
putational overhead associated to other relevant operations (inversion of
global stiffness matrix, for instance). The total offline cost toff is mainly
due to the generation of the snapshots — the construction of global basis
and selection of sample points are comparatively negligible — and, there-
fore, we can write toff ≈ T train∆tFOM

µ , with T train being the number of
snapshots computed in the training process. Likewise, the ratio between
∆tFOM

µ and ∆tHROM
µ is approximately equal to the speedup factor defined

earlier (∆tFOM
µ /∆tHROM

µ ≈ sµ). These considerations enable Eq.(5.3.7) to
be rephrased as

smacro =
t0 +Nmacro

g Tmacro sµ∆tHROM
µ

sµ T train∆tHROM
µ + t0 +Nmacro

g Tmacro∆tHROM
µ

. (5.3.8)

According to the above expression, model reduction achieves superior run-
time performance (smacro > 1) only if

Nmacro
g Tmacro >

sµ
sµ − 1

T train. (5.3.9)

If the total cost is dominated by the update of macrostresses — a fairly
reasonable assumption —, the term t0 can be ignored in expression 5.3.8,
and it reduces to

smacro = r
sµ

sµ + r
. (5.3.10)
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The constant r in the above is defined as

r =
Nmacro

g Tmacro

T train
. (5.3.11)

The plot of this admittedly crude estimation of the global speedup factor
versus r is shown in figure 5.17 for the local speedup obtained in the previous
section (sµ = 150). It can be gleaned from this plot that global speedups of
above two order of magnitudes are achieved in this case at r > 500. If, for
instance, T train = 3500 (as in the training trajectories depicted in section
5.2.0.4, figure 5.7), the simulation of a problem with, say, Tmacro = 1000
time steps and Nmacro

g = 2000 quadrature points at the macroscale level
will generously repaid back the offline investment. Obviously, the benefits
of model reduction becomes more evident when the same training output is
reused in several problems.
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Figure 5.17 Global speedup (Eq.(5.3.10)) as a function of r =
Nmacro

g Tmacro/T train

It almost goes without saying that the proposed model reduction strategy
affords dramatic savings not only in terms of CPU time, but also in terms of
memory requirement. Indeed, in full-order simulations, history data has to
be updated at a number of integration points equal to the number of Gauss
points in the macro problem multiplied by the number of Gauss points in
the unit cell (Nmacro

g Ng); thus, memory savings will be roughly of the order

of the ratio N̂g/Ng — in the analyzed case 10/1024 100 ≈ 1%.
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Appendix A

The Singular Value
Decomposition (SVD)

A.1 Introduction

Scientific literature abounds with references to the Singular value decompo-
sition (SVD) and the Proper Orthogonal decomposition (POD); it is applied
to many problems, not only within engineering circles, but also to other
disparately distinct disciplines. For instance, the SVD is exploited to design
learning machines with the ability of acquiring human-like knowledge from
the same sources as humans (see Landauer et al. (1998)). The history of the
SVD method is reviewed in Stewart (1993) and Kerschen et al. (2005); in the
latter, the authors emphasize the sheer number of distinct denominations
that receives this technique: “... it is emphasized that the method appears
in various guises in the literature and is known by other names depending on
the area of application, namely PCA in the statistical literature, empirical
orthogonal function in oceanography and meteorology, and factor analysis
in psychology and economics.”. Likewise, Kerschen et al. (2005) discuss the
dubious physical interpretation of the POD modes. Limitations of SVD are
discussed in a literarily exquisite manner in Smith (2002); the connection of
SVD with principal component analysis (PCA) are also disclosed therein.

A.2 Formulation

An illuminating account on the singular value decomposition (SVD) tech-
nique is given in Press et al. (1993): “SVD methods are based on the follow-
ing theorem of linear algebra [. . . ]: Any M by N matrix A whose number of
rows1 M is greater than or equal to its number of columns N , can be writ-
ten as the product of an M by N column-orthogonal matrix U , an N by
N diagonal matrix W with positive or zero elements (the singular values),
and the transpose of an N by N orthogonal matrix V :

A = U ·W ·V T . (A.2.1)

It is instructive to note that (page 53) “ SVD explicitly constructs
orthonormal bases for the nullspace and range of a matrix. Specifically,

1The SVD decomposition can also be carried out when M ¡ N (see page 52 of Press
et al. (1993))
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78 A. The Singular Value Decomposition (SVD)

the columns of U whose same-numbered elements wj are nonzero are an
orthonormal set of basis vectors that span the range; the columns of V
whose same-numbered elements wj are zero are an orthonormal basis for
the nullspace. [...] When the vector b (A ·x = b) on the right-hand side
is not zero, the important question is whether it lies in the range of A or
not. If it does, then the singular set of equations does have a solution x; in
fact it has more than one solution, since any vector in the nullspace (any
column of V with a corresponding zero wj) can be added to x in any linear
combination.” (Press et al., 1993).

There is a close connection between singular value decomposition and
the linear least-squares problem; this is didactically shown in page 54 of
Press et al. (1993). The connection between SVD and classical eigenvalue
problems is also clearly explained in Press et al. (1993), as well as the role
of the SVD in the approximation of matrices (page 58).

A.3 Correlation between snapshots: the covari-

ance matrix

When the snapshot matrix is normalized (XI
σi = ΣI/‖ΣI‖), the “covari-

ance” matrix2 defined (in components) as

SI
σij = XI

σ

T

i X
I
σi, −1 ≥ SI

σij ≤ 1, (A.3.1)

furnishes information about the degree of linear correlation between snap-
shots. If |SI

σij| ≈ 1, it can be stated that the i-th and j-th snapshots are

highly correlated, whereas if |SI
σij | ≈ 0, it is said that the i-th and j-th

snapshots are virtually uncorrelated (linearly independent vectors).

It might prove interesting to investigate the magnitude of the entries of the
covariance matrix for the case under study (see figure 5.2). Since it is nearly
impossible to numerically display such a huge matrix (660x660), we prefer
to represent it in a more colorful fashion (see figure A.1). Red entries means
that |SI

σij| ≈ 1 (highly correlated) whereas blue connotes that the snapshots

are virtually uncorrelated |SI
σij| ≈ 0. It can be seen from figure A.1 that

the snapshot corresponding to tensile strain histories are barely correlated
with the snapshots associated with shear strain histories (see figure A.1(a));
on the other hand, the degree of correlation within the same strain history
snapshots is markedly high (see figure A.1(b)).

A.4 Some properties of the SVD

The following self-evident3 properties might prove of invaluable help in de-
vising strategies for aptly sampling the parametric space — selection of
solution snapshots — and in discussing issues related to the sensitivity of
truncation error to mesh refinements.

2As pointed out in Vaseghi (2007), the SVD is essentially an eigenanalysis of the matrix

X
I
σ

T
X

I
σ, which, incidentally, can be interpreted as a covariance matrix. The SVD simply

extracts dominant features by disposing of those orthogonal dimensions or features that
have insignificant variance

3By virtue of the uniqueness of the singular value decomposition.
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Figure A.1 Colormap representation of the normalized covariance matrix.

Theorem A.4.1. Let Σ1,Σ2 be two mutually orthogonal vectors in R
N .

The SVD of the matrix defined as

X = [

M1 times
︷ ︸︸ ︷

Σ1 Σ1 Σ1 · · ·
M2 times

︷ ︸︸ ︷

Σ2 Σ2 Σ2 · · ·], with M1 > M2, (A.4.1)

is given by

X = [Σ1 Σ2]

[√
M1 0
0

√
M2

]







αT
1√
M1

0

0
αT

2√
M2






. (A.4.2)

where αi ∈ R
Mi ,αi = [1 1 · · · ]T (i = 1, 2).

Theorem A.4.2. Let X = USV T be the SVD of a matrix X ∈ R
N×S.

The SVD of the matrix X̄ ∈ R
N M×S defined as:

X̄T = [

M times
︷ ︸︸ ︷

XT XT XT · · ·], (A.4.3)
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is given by X̄ = Ū S̄V̄ T , where

ŪT =
1√
M

[

M times
︷ ︸︸ ︷

UT UT UT · · ·], (A.4.4)

V̄ T = V T , (A.4.5)

and
S̄ =

√
MS. (A.4.6)
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Appendix B

Influence of mesh refinement
on the truncation error

B.1 Introduction

It was pointed out in section 5.3.3 that the speedup at the fine scale level sµ
afforded by the hyperreduced-order model depends essentially on the ratio
between the number of quadrature points of the finite element mesh Ng and
the number of sample points N̂g:

sµ ∼ Ng

N̂g

. (B.1.1)

The discretization error efem— i.e., the error between the continuum and the
finite element solutions — is controlled by Ng, whereas N̂g governs the trun-
cation error etrun between this finite element solution and the hyperreduced-
order response. Since the online cost is entirely independent of N̂g, one may
be tempted, in the quest for higher accuracy and realism of the overall rep-
resentation, to increase Ng — that is, to refine the finite element mesh of
the micro-cell. The obvious, yet not trivial, question that emerges in doing
so is: should this increase of Ng be accompanied also by an increase of the
number of sample points N̂g ? E.g., if we double the number of quadrature
points of the full-order model, should we also double the number of sample
points in order to maintain the same truncation error ?

Let X = USV T and X̄ = Ū S̄V̄ T be the SVD of the stress snapshot
matrix associated with two different meshes containing, respectively, Ng and
αNg (α > 1) quadrature points. As discussed in section 5.3.1 the truncation
error is bounded above by a quantity that depends only on the magnitude
of the singular values:

etrunb =
R−M

R

√
√
√
√
√
√
√
√
√
√

R∑

i=M+1

λ2
i

R∑

i=1

λ2
i

. (B.1.2)

whereM and R stands for the level of truncation and the rank of the matrix,
respectively (recall that M = N̂g/2). It follows from this expression that the
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82 B. Influence of mesh refinement on the truncation error

influence of refinement of the discretization on the truncation error can be
assessed by merely analyzing and comparing the singular values λi = Sii and
λ̄i = S̄ii of bothX and X̄ , respectively. However, in a general situation, this
comparison between the singular values before and after mesh refinement
can be only performed numerically. As usual in error assessment in finite
element contexts, theoretical results can be only established in the limiting
case of the mesh size tending to zero.

B.2 Asymptotic analysis

In the limiting case of Ng → ∞, for each point of the refined mesh there is
at least one (neighboring) point in the old mesh with essentially the same
properties. As a consequence, the snapshot matrix associated to the finer
grid can be legitimately written as

X̄ = AX, (B.2.1)

with A ∈ R
Ngα×Ng being the corresponding boolean matrix1. In the special

case of uniform mesh refinement2 and α ∈ N, the snapshot matrix corre-
sponding to the refined mesh is directly expressible as:

X̄T = [

α times
︷ ︸︸ ︷

XT XT XT · · ·]. (B.2.2)

By virtue of the result derived in Eq.(A.4.6), we know that the matrix of
singular values of at snapshot matrix X̄ formed by α stacked copies of X is
given by:

S̄ =
√
αS. (B.2.3)

It becomes apparent from the preceding expression that, when Ng → ∞,
the truncation error remains unaltered upon (uniform) mesh refinements.

B.3 Numerical assessment

The foregoing asymptotic analysis suggests somehow that, in general, the
dependence of the truncation error on the dimension of the finite element
space is very weak3. To corroborate this tentative generalization, in what
follows, we numerically examine the sensitivity of the truncation error to
mesh refinement. The employed reference grid, featuring Ng0 = 1024 points,
together with the refined meshes, that contains Ng1 = 3146 and Ng2 = 6712
points (α1 ≈ 3 and α2 = 6.12, respectively) are displayed in figure B.1.
Using the training trajectories shown in figure 5.2, stress snapshots for each

1Note that that ‖X̄‖2 = ‖S̄‖2 ≤ ‖A‖2‖X‖2 =
√

αNg‖S‖2.
2In performing an uniform refinement with α ∈ N, the spatial patterns associated to

the left singular vectors remains basically unaltered, allowing a fairer comparison between
S and S̄.

3This is in accordance with an observation made by Krysl et al. (2001): “While it may
not be easy to come up with some general theoretical statements regarding M [number of
sample points], numerical experiments indicate that the dependence of M on N [number of
quadrature points of the finite element model] is very weak indeed”. It bears mentioning
that Krysl et al. (2001) explicitly acknowledges the elusiveness of theoretically proving
this property.
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B.3. Numerical assessment 83

of these configurations were generated. Figure B.2 depicts the graph of
the ratio between the computed singular values corresponding to the finer
meshes with respect to their coarser counterparts, along with the asymptotic
ratios, which, recall (see Eq.(B.2.3)), are given by:

λi(αNg)

λi(Ng)

∣
∣
∣
∣
Ng→∞

=
√
α. (B.3.1)

(a) (b) ( c )

Figure B.1 Spatial discretizations used for studying the sensibility of the trun-
cation error to mesh refinement. (a) Ng0 = 1024 (b) Ng1 = 3146 (c) Ng2 = 6712.

Observe that the two plots corresponding to the numerically calculated
ratios exhibit similar patterns. They are, interestingly, coincident with their
respective asymptotic values at the origin, following thereafter zigzag paths
than run below these asymptotic lines for i < 50, approximately, and above
for i > 50. It should be noted that deviations from the asymptotic val-
ues are not substantial, the maximum being barely 15%; this fact provides
convincing proof that, as initially suggested, the truncation error remains
practically unchanged upon mesh refinement. This can be better appreciated
in the plot of the ratio between the truncation error estimate associated to
the finer meshes with respect to their coarse mesh counterpart, displayed in
figure B.3.

B.3.1 Discussion of results

B.3.1.1 Case λ̄i/λi =
√
α

A feature of the graphs contained is figure B.2 that merits further atten-
tion is the coincidence of the numerical and asymptotic graphs at the origin
(i = 1). To explain this intriguing feature, we shall follow the same rea-
soning used in the asymptotic case. The only difference is that now the
ratio between singular values before and after mesh refinement is not con-
stant and, consequently, the relation between the corresponding snapshot
matrices X and X̄ cannot be established via a single linear operator A.
This conceptual difficulty can be easily overcome by, first, decomposing the
snapshot matrices as a weighted sum of ordered, separable matrices:

X =
∑

i

X(i) =
∑

i

λiU iV
T
i (B.3.2)

X̄ =
∑

i

X̄(i) =
∑

i

λ̄iŪiV̄
T
i . (B.3.3)
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Figure B.2 Ratio between the singular values of the stress snapshot matrices
obtained with the mesh layouts shown in B.1.b (α ≈ 3) and B.1.c (α = 6.12) and
the singular values corresponding to the coarser grid (figure B.1.a). The dashed
lines indicate the (constant) ratio predicted by the asymptotic analysis (

√
α)
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Figure B.3 Ratio between the error bound estimate Eq.(B.1.2) associated to
the meshes shown in B.1.b (α ≈ 3) and B.1.c (α = 6.12) with respect to the one
calculated with the coarser grid (figure B.1.a).

Next, in analogy to the asymptotic case, we introduce a certain matrix A(i)

connecting each pair of modal snapshots {X(i), X̄(i)}:

X̄(i) = A(i)X(i) (B.3.4)

Taking the Frobenius norm of both sides of the above equation, one finally
gets

‖X̄(i)‖2 = λ̄i = ‖A(i)X(i)‖2 ≤ ‖A(i)‖2‖X(i)‖2 = ‖A(i)‖2λi. (B.3.5)

The ratio between the singular values after and before refinement, thus, is
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a function of the norm of the operator A(i):

λ̄i

λi
= f(‖A(i)‖2) ≤ ‖A(i)‖2. (B.3.6)

In particular, for i = 1, we have that

λ̄1

λ1
= f(‖A(1)‖2) =

‖A(1)‖2
√
Ng

=
√
α, (B.3.7)

On intuitive grounds, this can be taken as an indication that the operator
A(i) enjoys the same properties stipulated in the asymptotic case, i.e., the
spatial patterns associated to the first left singular vectors are essentially
the same for the three analyzed grids. An indirect manner of checking
this is by comparing the right singular vectors V 1 associated to each mesh;
according to Eq.(A.4.5) the corresponding right singular vectors V 1 should
be identical in such cases. The plots of the right singular vectors, displayed
in figure B.4, thus, clearly support our expectations, since the three graphs
are undistinguishable.
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Figure B.4 Plot of the components of the first right singular vector of the snap-
shot matrices associated to the three meshes shown in figure B.1.

B.3.1.2 Case λ̄i/λi 6=
√
α

We can carry the above argument further to try to explain, albeit only
vaguely, the overall trend exhibited by the numerical curves shown previ-
ously in figure B.2. For this purpose, we shall consider a more general
scenario, in the sense that it embodies also the above discussed asymptotic
case, in which the values of the variable corresponding to the i− th mode at
each point of the refined mesh can be linearly interpolated from the respec-
tive values at neighboring points of the coarser mesh. Based on elementary
interpolation properties — more specifically, the partition of unity property
—-, it can be shown that, in such cases:

‖X̄(i)‖2 ≤
√
α‖X(i)‖2 ⇒ λ̄i

λi
≤

√
α (B.3.8)
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(note that the equality holds in the limiting case Ng → 0). Thus, this analy-
sis indicates that the modes whose ratios happen to be below the asymptotic
line (the first 50 modes, approximately) corresponds to this type of situa-
tions. Likewise, ratios greater than the asymptotic threshold implies that
the above mentioned interpolatory proviso is not observed, and, therefore,
as opposed to the case λ̄i/λi ≤

√
α, the associated spatial modes before and

after refinement are likely to exhibit significant differences.
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Appendix C

Selection of sample points

This appendix is devoted to study more in depth an issue of paramount
importance in the dimensionality reduction process, namely, the selection of
representative sample points. To keep the exposition as simple as possible,
the discussion is couched in terms of approximation of scalar-valued func-
tions depending on scalar parameter — extension to multidimensional case
is straightforward.

C.1 Introduction

Suppose that we wish to devise a method for the fast-run evaluation of a
function f = f(x, µ), with µ ∈ Ωp = [µ0, µF ] (the parametric space) and
x ∈ Ω = [x0, xF ]. To this end, we first perform a discretization of both Ωp

and Ω into T and N points, respectively. Then the function f is evaluated at
each pair {xi, µj}, (i = 1 · · ·N, j = 1 · · · T ), and the resulting values stored
in a NxT matrix, that will be denoted henceforth by F (Fij = f(xi, µj)) —
this is the so-called snapshot matrix.

Next, the singular value decomposition is applied to F:

F = USVT. (C.1.1)

We saw in appendix A.2 that the column vectors of U — termed the left sin-
gular vectors — whose same-numbered singular values Sjj = λj are greater
than zero constitute a basis for the range of F. It was also explained that if
the first M singular values happens to be significantly larger than the last
R−M ones (R denotes the rank of F), then the range of F can be accurately
approximated by the span of the first M left singular vectors — the domi-
nant modes. The matrix formed by these vectors (the leading or dominant
modes) will be henceforth denoted by Φ ∈ R

N×M, whereas Ψ ∈ R
N×R−M

will symbolize the remaining (or trailing) left singular vectors.

Suppose now that we know the values of the function f at K ≥ M
points {x̂1, x̂2 · · · x̂K} ∈ Ω (denoted collectively as x̂), and we are confronted
with the task1 of estimating, using the basis Φ provided by the SVD of

1For the particular case of K = M (number of points equal to the cardinality of the
basis), this constitutes an interpolation problem; for K > M , strictly, the approximation
can be no longer termed interpolation since the approximated function does not pass
through the known values — reconstruction would be a more appropriate term.
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88 C. Selection of sample points

F, the values of the function at the remaining points in the domain. By
approximating f as a linear combination of the basis vectors Φi(i = 1 · · ·M):

f(x, µ) ≈ fapr(x, µ) = Φ(x)c(µ), (C.1.2)

this task boils down to evaluate the coefficient vector c(µ) ∈ R
M appearing

in the above equation. For this purpose, we have at our disposal the following
system of K equations with M unknowns:

f̂ = Φ̂c (C.1.3)

where f̂ = f(x̂, µ) stands for the vector containing the “known” values of
f at the sample points, and Φ̂ = Φ(x̂) designates the sub-block matrix
constructed by collecting the rows of Φ associated to such sample points.
The system of equations represented by Eq.(C.1.3) is overdetermined; thus,
only a solution in the “least-square sense” can be obtained: find c ∈ R

M

such that ‖f̂ − Φ̂c‖2 is minimum. This solution is given (see DeVore et al.
(2001), p. 156) by the following vector of coefficients2:

c =

M−1

︷ ︸︸ ︷
(

Φ̂T Φ̂
)−1

Φ̂T f̂ . (C.1.4)

It follows from the above equation that the coefficient vector c can be only
obtained if the inverse of M = Φ̂TΦ̂ exists; this condition, in turn, is satis-
fied whenever the columns of Φ̂ are linearly independent (full column rank).

C.2 Selection strategies

Consider now that we are given the freedom to choose the location of the
abscissas {x̂1, x̂2 · · · x̂K} ∈ Ω at which the values of the function are known.
This situation is encountered, for instance, when one wishes to evaluate the
integral of f over the domain Ω, for any value of µ, in an online cost-efficient
manner:

I(µ) =

∫ xF

x0

f(x, µ)dx ≈
∫ xF

x0

Φ(x)c(µ)dx

=

K∑

k=0

ωk
︷ ︸︸ ︷∫ xF

x0

Φ(x)dx
(

Φ̂TΦ̂
)−1

Φ̂T
k f̂k

=
K∑

k=0

ωkf(x̂k).

(C.2.1)

The weighting coefficients ωk does not depend on µ and can be, thereby,
precomputed offline. Thus, as in classical Gaussian quadratures schemes,
computation of the integral I(µ) only requires to evaluate the function at
K distinct points. The question that arises naturally at this stage is which
location of the sample points leads to minimum approximation errors. We
discuss this crucial issue in in the sequel.

2The matrix
(

Φ̂T Φ̂
)−1

Φ̂T is known as the pseudo-inverse of Φ̂; notice that it coincides

with Φ̂−1 for K = M .
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C.2.1 Statement of the optimization problem

In the limiting case of K = N , that is, when the entire set of points is used,
Eq.(C.1.3) degenerates into the expression of the orthogonal projection of f
onto the space spanned by Φ:

f best(x, µ) = ΦΦTf . (C.2.2)

The superscript “best” in f best has been appended to indicate that this is
the best approximation that can be achieved with the first M basis vectors
provided by the SVD. To omit from the discussion discrepancies induced by
deficient sampling of the parametric space, we shall examine in the follow-
ing the error — with respect to the best approximation — committed in
approximating each column of the snapshot matrix:

erec = Fbest − Fapr, (C.2.3)

where:
Fbest = ΦΦTF, (C.2.4)

and

Fapr = Φ
(

Φ̂TΦ̂
)−1

Φ̂TF̂. (C.2.5)

Here, F̂ designates the block matrix of F formed by the rows corresponding
to the selected points. By virtue of the single of value decomposition, the
snapshot matrix can be decomposed into two mutually orthogonal compo-
nents: one that lies in the span of Φ (the first M dominant left singular
vectors), and another that resides in the span of Ψ (the trailing left singular
vectors):

F = ΦSΦV
T
Φ +ΨSΨVT

Ψ. (C.2.6)

Inserting Eq.(C.2.6), Eq.(C.2.5) and Eq.(C.2.4) into Eq.(C.2.3), and assum-
ing that the inverse of M−1 exists, we arrive, upon trivial manipulation,
at:

erec = Φ
(

Φ̂TΦ̂
)−1

Φ̂TΨ̂SΨVT
Ψ. (C.2.7)

The optimization problem associated to the determination of the sample
points can be, thus, posed as follows: find x̂ ∈ R

K as the minimizer of the
(Frobenius) norm of the error defined3 in Eq.(C.2.7):

x̂ = arg min
ẑ

‖
(

Φ̂T (ẑ)Φ̂(ẑ)
)−1

Φ̂T (ẑ)Ψ̂(ẑ)SΨVT
Ψ‖2, (C.2.8)

subject to the constraints:

ẑ1 ∈ Ω, ẑ2 ∈ Ω, · · · ẑK ∈ Ω. (C.2.9)

This is the continuous version of the optimization problem — each x̂k is
allowed to vary within the interval 4 Ω. However, note that, in a general
context, the values of the function may be only available at N points of

3Notice that, because of the orthonormality of Φ, the minimizer of ‖Φc(ẑ)‖2 is equal
to the minimizer of ‖c(ẑ)‖2

4The “best-point” interpolation points method proposed by Nguyen et al. (2008) is
based on the solution of this non-linear, least square minimization problem ( they use a
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the domain; thus, the problem posed in C.2.9 should be more appropriately
viewed as a discrete (combinatorial) optimization problem: find the indices
{p1, p2 · · · pK} as the minimizer of the following optimization problem:

min
{r1,r2···rK}

‖
(

Φ̂T Φ̂
)−1

Φ̂T Ψ̂SΨVT
Ψ‖2, (C.2.10)

where Φ̂T and Ψ̂ denotes the restricted or gappy matrices containing the
{r1, r2 · · · rK} rows of the basis matrix Φ and the matrix of trailing left
singular vectors Ψ, respectively.

C.2.2 Error bound

The matrix VT
Ψ appearing in Eq.(C.2.10) are formed by R−M orthonormal

column vectors; thus, we have that

‖VT
Ψ‖2 =

√
R−M. (C.2.11)

Furthermore, SΨ denotes a diagonal matrix containing the neglected singu-
lar values and, therefore, its Frobenius norm is given by:

‖SΨ‖2 =

√
√
√
√

R∑

i=M+1

λ2
i . (C.2.12)

Substitution of these expressions into the objective function in Eq.(C.2.10),
and consideration of the general properties of norms, leads to the following
upper bound for the approximation error:

‖erec‖2 ≤

√
√
√
√M(R −M)

R∑

i=M+1

λ2
i ‖
(

Φ̂TΦ̂
)−1

Φ̂TΨ̂‖2. (C.2.13)

Notice that factor
√

M(R −M)
∑R

i=M+1 λ
2
i depends exclusively on the

level of truncation of the basis and not of the particular choice of sample
points5. The only term affected by the sampling of the points is the right-
most factor in the above inequality, henceforth denoted by kobj :

kobj := ‖
(

Φ̂T Φ̂
)−1

Φ̂T Ψ̂‖2 (C.2.14)

Levenberg-Marquardt algorithm for this purpose). This strategy, however, is computa-
tionally costly and convoluted, since it requires the computation of the Jacobian matrices
of the basis vectors Φ and Ψ, which might not be defined at certain points in the domain.
Furthermore, in multidimensional problems, such as the one addressed in chapter 4, en-
tries Fi,j and Fi+1,j may not correspond to spatially contiguous points in the domain, and
hence, the objective function cannot be expected to vary continuously.

5This factor is intimately connected with the truncation error F − Fbest. Indeed,
according to the decomposition introduced in Eq.(C.2.6), we have that ‖F − Fbest‖2 =

‖ΨSΨVT
Ψ‖2 ≤ (R−M)

√

√

√

√

R
∑

i=M+1

λ
2
i .
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It is interesting to note that this term only entails inner products “in the
gappy sense” between both bases Φ and Ψ. Since ‖Φ̂T Ψ̂‖2 ≤

√
R−M , we

can also assert that:

‖Fapr − Fbest‖2 ≤ (R−M)

√
√
√
√M

R∑

i=M+1

λ2
i ‖
(

Φ̂TΦ̂
)−1

‖2. (C.2.15)

Thus, the only term that can grow unboundedly depending on the choice is

‖
(

Φ̂T Φ̂
)−1

‖2.

C.2.3 Greedy algorithms

Barring the notable exception of Nguyen et al. (2008) and their “best points”
interpolation method (see footnote 4), proposals found in the literature
dealing with the choice of optimal sample points relies on the minimization
of the upper bound error estimate shown in Eq.(C.2.15); this minimization
problem can be formally stated as follows: find indices {p1, p2 · · · pK} such
that

{p1, p2 · · · pK} = arg min
{r1,r2···rK}

‖
(

Φ̂T Φ̂
)−1

‖2. (C.2.16)

Although considerably simpler than the problem stated in (C.2.9), the
solution of Eq.(C.2.10) stills poses a major hurdle due essentially to its com-
binatorial character. An exhaustive search is in general not viable because of
the sheer number of feasible solutions (

(
N
K

)
); for this reason, one has to resort

to heuristic methods able to determine, at least, sub-optimal solutions.
The approaches proposed in the literature are all based on the so-called

greedy paradigm. A greedy method is any algorithm that solves the problem
by making the locally optimal choice at each stage with the hope of finding
the global optimum. Accordingly, applied to the case under consideration,
a greedy algorithm would select the first index as

p1 = arg min
1≤r1≤N

‖ (Φ1,r1Φ1,r1)
−1 ‖2 = arg max

r1
|Φ1,r1 |, (C.2.17)

that is, the index corresponding to the point at which the first basis vector
Φ1 reaches its maximum (in absolute value). Likewise, the k − th index6

would be determined7 by the condition:

pk = arg min
1≤rk≤N

‖
(

D̂T
k−1D̂k−1

)−1
‖2. (C.2.18)

6This greedy strategy is only applicable for the first M indices. When K > M , there
are no available bases to match the indices pM+1, pM+2 · · · pK . One plausible, ad hoc route
to circumvent this deficiency may be to “re-use” as basis vectors for pM+1, pM+2 · · · the
sequence Φ1,Φ2 · · · .

7The qualifier “greedy” refers to the fact that the k − th index is determined tak-
ing into account only the “current” basis vector Φk and the previously fixed indices
{p1, p2 · · · pk−1}; the algorithm, thus, proceeds greedily, i.e., it only considers “local short-
term gains” in each selection, with no regard for the future consequences of such choices.
The reader wishing for further coverage of greedy algorithms is referred to Lovasz et al.
(2003) and Parhami (1999). The former reference provides a compelling illustration of
the performance (often misperformance) of greedy algorithms in a famous task in discrete
optimization: the Traveling Salesman Problem.
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where D̂k−1 denotes the restricted or “gappy” basis matrix formed by rows
{p1, p2 · · · pk−1} of the matrix containing the first k−1 basis vectors (Dk−1 =
[Φ1,Φ2 · · ·Φk−1]).

Based on the observation that all norms are equivalent, Willcox (2006)
and Astrid et al. (2008) advocate to adopt as objective function the condition
number of matrix Φ̂T Φ̂ rather than the Frobenius norm of its inverse. On
the other hand, in the algorithm proposed by Chaturantabut and Sorensen
(2010) — called the Discrete Empirical Interpolation method (DEIM)8— ,
the k− th point is chosen as that at which the difference, in absolute value,
between the basis vector Φk and its approximation from interpolation at
points xp1 , xp2 · · · xpk−1

using basis Dk−1 = [Φ1,Φ2 · · ·Φk−1] is maximum:

pk = arg max
1≤rk≤N

|Φk −
(

D̂T
k−1D̂k−1

)−1

D̂T
k−1Φ̂k|, (C.2.19)

where9 the matrix Φ̂k stands for the vector formed by the p1 − th, p2 −
th . . . pk−1 − th rows of Φk.

C.3 Example

This section is intended to illustrate the performance of the various greedy
strategies described in the foregoing. For this purpose, consider the following
function:
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µ = 0.59596

µ = 1

Figure C.1 Plot of the parametric function defined in Eq.(C.3.1) for several
values of the parameter µ.

f(x, µ) =







3 · 10−2µ3x2 sin(xµ) x ∈ [0, 4[
3 · 10−4µ3x4 x ∈ [4, 9[
sin(3xµ) + cos(2xµ) x ∈ [9, 9.5[
sin(3xµ) + cos(xµ) x ∈ [9.5, 10]

(C.3.1)

8The DEIM is the discrete version of the Empirical Interpolation Method, pioneered
by Barrault et al. (2004) (see section 1.2.2.1).

9Note that for k ≤ M , D̂k−1 is a square matrix and, thereby, the term
(

D̂T
k−1D̂k−1

)−1

D̂T
k−1 reduces to D̂−1

k−1
.
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where10 µ ∈ Ωp = [−1, 1]. Both Ωp and Ω are discretized into T = 100
and N = 500 equally spaced points, respectively. The snapshot matrix re-
sulting from evaluating the function at each pair {xi, µj} ([F]ij = f(xi, µj))
is then subjected to the Single Value Decomposition F = USVT. To dis-
criminate which left singular vectors are “dominant” (in a statistical sense),
we examine the plot of the singular values Sii = λi (i = 1, 2 · · · ), displayed
in figure C.2. The magnitude of the singular values becomes vanishingly
small at around i = 10; this tells us than taking, say, the first M = 10
(Φ = [U1,U2 · · ·U10]) modes suffices to replicate with reasonable accuracy
the original snapshots.
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Figure C.2 Magnitude of the singular values.

Another (more sound) way of determining an appropriate level of trun-
cation is to analyze the graph of the following bound for the truncation error
F− Fbest:

‖F− Fbest‖2 = ‖ΨSΨVT
Ψ‖2 ≤ (R−M)

√
√
√
√

R∑

i=M+1

λ2
i . (C.3.2)

where R = 25 stands for the rank of F. This expression follows easily from
equations (C.2.6) and (C.2.12). Figure C.3 contains the representation of
the above a priori error estimator (divided by ‖F‖2):

etrunb (M) = (R−M)

√
√
√
√

R∑

i=M+1

λ2
i

‖F‖2
. (C.3.3)

Inspection of this plot indicates that, in taking M = 10, the approximation
error will be below 1%.

10In order to assess the accuracy of the approximation in extreme scenarios, the function
has been purposefully crafted to exhibit discontinuities at x = 4, x = 9 and x = 9.5 (see
figure C.1).
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Figure C.3 Logarithm of the error bound defined in Eq.(C.3.2) versus the level
of truncation M .

C.3.1 Comparison between greedy algorithms

Figure C.4 contains the plots of the error estimate ‖F−Fapr(M,K)‖2
‖F‖2

against

the number of modesM for the case in whichK = M (interpolation), and for
four distinct selection procedures. The curves labeled as “DEIM”, “WILL-
COX” and “INV” correspond to greedy algorithms based on the proposal
by Chaturantabut and Sorensen (2010) ( Eq.(C.2.19)), on the minimiza-
tion of the condition number (Willcox (2006)), and on the minimization of
‖M−1‖2 ( Eq.(C.2.12)), respectively. The graph with the “BRUTE” label,
on the other hand, is not connected to any greedy algorithm, but rather
represents the result of a “brute force” search: for each M , 106 random
combinations of indices were generated and their associated error estimates
evaluated; the “BRUTE” graph is the plot, for each M , of the minima of
such estimates. Finally, for completeness, the plot of the truncation error
measure ‖F−Fbest‖2 is also displayed (labeled as “BEST”, since it consti-
tutes a lower bound for the approximation error.)

Three things deserve notice in figure C.4:

• Differences in performance between the greedy algorithms DEIM, WILL-
COX and INV are not substantial. For moderate levels of truncation,
the DEIM seems to yield more accurate results than the other two, but
as M increases, differences becomes imperceptible. This observation
would make the selection procedure proposed by Chaturantabut and
Sorensen (2010) (DEIM) the most attractive strategy, since it is, by
far, the most economic method in terms of computational operations.

• The “brute force” approach yields the most accurate approximation
for M ∈ [4, 6]; the error estimate for M = 5 is 7.9%, only 0.2% above
the truncation error, while discrepancies with greedy methods ranges
between 12% and 13%. This provides convincing proof that the sets of
indices constructed via greedy algorithms are only sub-optimal. Ob-
viously, the brute force approach becomes impractical as N and M
increase.
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Figure C.4 Error measure ‖F−F
apr(M)‖2

‖F‖2

100 versus the level of truncation M , for

the case in which K = M (interpolation) and for four distinct selection procedures
(labeled as DEIM, WILLCOX, INV and BRUTE). The graph denoted as “BEST”

corresponds to the truncation error estimate ‖F−F
best(M)‖2

‖F‖2

100).

• The approximation error curves DEIM, WILLCOX, INV and BRUTE
mimic essentially the pattern of the truncation error graph (BEST).
This can be also inferred from expression (C.2.15). Indeed, it takes
elementary algebra to show from this expression that:

‖F− Fapr‖2 =

C
︷ ︸︸ ︷
√

1 + α
M

R−M
kobj

2 ‖F− Fbest‖2 (C.3.4)

where kobj was defined in Eq.(C.2.14), and α > 0. For completeness,
the value of the factor C in the above expression as a function of M ,
and for each sampling strategy, is displayed in figure C.5. Note that
this factor barely varies with increasing M — it oscillates between 1.5
and 3.5 for all four sampling methods.
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Figure C.5 Factor C defined in Eq.(C.3.4) versus the level of truncation M .
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Observation C.3.1 A far-reaching conclusion can be drawn from the
above consideration. The fact that variable C in Eq.(C.3.4) does not exhibit
a clear decreasing tendency, but rather oscillates between 1.5 and 3.5 for in-
creasing values of M suggests that, if the approximation error ‖F−Fapr‖2
is to be significantly reduced, it proves more effective to reduce the truncation
error by increasing the number of basis vectors11 rather than by struggling
in elaborating sophisticated sampling procedures, which only would affect the
magnitude of such factor.

The locations of the first six points for the algorithms labeled previously
as INV, WILLCOX and DEIM, together with the corresponding basis func-
tions, are depicted in figure C.6. It is instructive to note that the DEIM
greedy algorithm invariably places the k− th point at, or close to, the global
maximum of the k− th basis function12. The points provided by the “INV”
algorithm — the one based in the greedy minimization of ‖M−1‖2 — are
also located in the vicinity of the global maxima (in fact, they are coincident
with DEIM points for k = 1, 2, 4, 6). The placement of the sampling points
furnished by the WILLCOX method, on the other hand, coincides with the
other methods for13 k = 1, 4, but are notably different in the other steps.

The placement of the DEIM points in relation with the critical points of
the basis functions can be better appreciated in the overall representation of
figure C.7. For comparison purposes, we have also plotted in this figure the
points calculated by the “brute” force method — which, according to the
graph shown previously in figure C.4, provides, for this level of truncation
(M = 6), a better approximation than the DEIM. Observe that the locations
calculated with the “brute force” strategy do not lie necessarily around the
the global maxima or other critical points of the basis functions; this is
because, as opposed to the DEIM points, such points depends not only on
the dominant modes Φ = [Φ1Φ2 · · · Φ6], but also on the topology of the
trailing basis functions Ψ.

11Recall that the error ‖F− Fbest‖2 patterns somehow the decreasing tendency of the
singular values graph.

12It may be interesting in future developments to further investigate this peculiarity, and
to ascertain if a topological meaning can be definitely ascribed to the points determined
by the Discrete Empirical Interpolation Method.

13Since for k = 1, matrix M is in fact a scalar, all points in the first greedy step are
equally optimal in terms of condition number. This is why the WILLCOX method is
usually accompanied by a screening criterion (Astrid et al., 2008) that serves to select an
optimal point in such first step. The one implemented here is to take as first best point
that at which |Φ1| is maximum. Incidentally, this explains why the first points furnished
by the three methods (INV, WILLCOX and DEIM) are coincident.
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Figure C.6 Six first SVD basis functions together with the corresponding sam-
pling points selected by the “INV”, “WILLCOX” and “DEIM” algorithms at each
step of the greedy process.
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