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Abstract The performance of managed artificial recharge

(MAR) facilities by means of surface ponds (SP) is con-

trolled by the temporal evolution of the global infiltration

capacity Ic of topsoils. Cost-effective maintenance opera-

tions that aim to maintain controlled infiltration values

during the activity of the SP require the full knowledge of

the spatio-temporal variability of Ic. This task is deemed

uncertain. The natural reduction in time of Ic depends on

complex physical, biological and chemical reactions that

clog the soil pores and has been observed to decay expo-

nentially to an asymptotic non-zero value. Moreover, the

relative influence of single clogging processes depend on

some initial parameters of the soil, such as the initial

infiltration capacity (Ic,0). This property is also uncertain,

as aquifers are typically heterogeneous and scarcely char-

acterized in practical situations. We suggest a method to

obtain maps of Ic using a geostatistical approach, which is

suitable to be extended to engineering risk assessment

concerning management of SP facilities. We propose to

combine geostatistical inference and a temporally-lumped

physical model to reproduce non-uniform clogging in

topsoils of a SP, using field campaigns of local and large

scale tests and additionally by means of satellite images as

secondary information. We then postulate a power-law

relationship between the parameter of the exponential law,

k, and Ic,0. It is found that calibrating the two parameters of

the power law model it is possible to fit the temporal

evolution of total infiltration rate at the pond scale in a

MAR test facility. The results can be used to design

appropriate measures to selectively limit clogging during

operation, extending the life of the infiltration pond.
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1 Introduction

Managed artificial recharge (MAR) practices include sev-

eral methods that aim to recover and enhance groundwater

quality and productivity of depleted aquifers (Bouwer

2002). Among them, the use of excavated artificial ponds,

or surface ponds (SP) are widely common (e.g. Manage-

ment of aquifer and subsurface (2003), Scanlon et al.

(2006)).

In an artificial SP facility, recharge is induced by

flooding the excavation with water coming from any

available source (e.g. reclaimed water, stormwater, river

water), which percolates towards the subsurface by infil-

tration. In a properly designed facility, evaporation and

other losses are typically negligible (Bouwer 1999) com-

pared with the infiltration rates. The maximum rate at

which water can infiltrate in the subsurface is known as the

infiltration capacity (Ic). It regulates both the total amount

of infiltration towards the aquifer and some characteristic
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times (such as the water residence time within an SP)

which are needed to make appropriate management of the

facilities (Bouwer 2002; Pedretti et al. under review;

Perez-Paricio and Carrera 1999).

Prediction of Ic can be done at two characteristic spatial

scales. At the pond scale, from a purely managerial per-

spective, the spatial average infiltration in the SP, IcðtÞ;
provides quantitative information about the total amount of

actual infiltration in an integrated way (Barahona-Palomo

et al. 2010). Monitoring the SP facility during operation

allows the evaluation of the integrated infiltration capacity

with time. However, this does not provide any information

about the spatio-temporal distribution of the local scale

infiltration capacity ðIcðx; tÞÞ; which is crucial for the

optimal operation, management, and maintenance (O& M)

of the artificial SP facility (Pedretti et al. under review).

Assessing the full spatio-temporal distribution of Icðx; tÞ
during operation is not realistically feasible. During

recharge processes, Ic reduces in time because of a variety

of processes that tend to modify the pore size distribution

(PSD) of the ground, namely reducing the porosity of the

top soil (e.g. Bouwer 2002). The topsoil hydraulic con-

ductivity Ks(x,t) depends on the PSD, which in turn con-

trols Ic(x,t). To complicate matters even further, natural

‘‘pore clogging’’ also depends on some initial properties of

the soil (e.g. Guin 1972). In typical situations, the impos-

sibility of complete characterization of geological hetero-

geneities make these variables random parameters for

modelling purposes (Tartakovsky and Winter 2008). In this

sense, a probabilistic approach is advisable (Krzysztofo-

wicz 2001), since it could then be integrated into a larger

scale probabilistic risk assessment studies (Tartakovsky

2007; Bolster et al. 2009; de Barros and Rubin 2008;

Masetti et al. 2009).

In this work we explicitly exclude accidental extreme

events (with very low frequency/probability) that suddenly

reduce global infiltration (e.g. Bedford and Cook 2001, pp.

103–104). Natural reactions, on the other hand, are more

frequent and are related to a variety of physical, biological

and chemical mechanisms (e.g. Baveye et al. 1998; Van-

devivere et al. 1995; Greskowiak et al. 2005) that together

reduce Ic during artificial recharge. As a consequence, the

rate of natural clogging mechanisms at small scales is

highly uncertain. Several approaches have been suggested

in the past to assess the effect of independent individual

mechanisms. For instance, the soil can be conceptualized

as a natural filter in which suspended particles circulate in

the soil while percolating; they are attracted and collapse

into the pore spaces. At some macroscopic scale, this effect

is called ‘‘physical clogging’’ and has been modeled using

‘‘depth filter’’ theories (see Zamani and Maini 2009; Ped-

retti et al. under review; Guin 1972 for details). A signif-

icant point is that the capacity of the soil to retain the

particles (i.e. the potential of the soil to be clogged)

depends on whether surface forces or volumetric forces

dominate. Bioclogging can also be modeled using a mac-

roscopic approach considering the expansion of microbial

colonies to create a biomass that get trapped because of

similar forces that affect non-organic particles (Baveye

et al. 1998; Vandevivere et al. 1995; Clement et al. 1996).

The big question, however, remains how to evaluate the

effect on pore clogging that encompasses the mutual

dependence of all clogging mechanisms. Although several

published field and laboratory experiments exist that aim to

understand and quantify their mutual interaction depending

on soil type (Perez-Paricio and Carrera 1999; Kim et al.

2010; Hoffmann and Gunkel 2010), predicting the clogging

rates via cumulation of individual mechanisms remains, in

the practice, challenging. The reasons are that : (i) reac-

tions leading to a (macroscale) clogging effect take place at

microscales (e.g. Baveye et al. 1998) that cannot be easily

measured, or that cannot be easily upscaled to the field

pond scale and (ii) the rate at which clogging mechanisms

jointly develop depends on a variety of site-specific con-

ditions and factors, such as textural heterogeneities of the

soil (e.g. pore or grain size distributions—PSD/GSD)

(Zamani and Maini 2009; Tien and Payatakes 1979; Guin

1972), soil density heterogeneities (Clement et al. 1996),

chemical heterogeneity (Greskowiak et al. 2005), and

fluctuations of the water temperature (Civan 2007, 2010).

The quality of most of the information depends on the

quality of geological characterizations, which is almost

always poor in practice since direct investigations are

costly, affected by serious errors and sometimes simply not

feasible. Some models have been proposed in the past to

correlate initial hydraulic conductivity profiles with the

intensity of clogging. Unfortunately, most of them are

based on assumptions of homogeneities that over- or under-

estimate the rate of clogging. For instance, assuming the

soil pore sizes or the grain sizes to be uniformly (e.g.

Kozeny 1927; Carman 1938; Hazen 1882) and non-uni-

formly (e.g. Guin 1972) distributed is essential to correctly

estimate the development of clogging. Indeed, the use of

uniform formulations implicitly include average macro-

characteristic features of PSD and GSD, such as the total

soil porosity / or some characteristic grain size dg, from

which the seepage velocity is calculated. However, bio-

clogging does not grow uniformly but rather starts by

developing local microcolonies within smaller pores, and

grows to occupy the larger pores. On the other hand,

physical mechanisms act differently. According to the filter

theory (see Zamani and Maini 2009; Pedretti et al. under

review; Guin 1972 for details) the clogging rates are

inversely proportional with dg but this relationship depends

strongly on other factors such as the suspended solid size

(ds) and Ic(t = 0). Guin (1972) adopted a macroscopic
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Kozeny-like model where the porous medium is decom-

posed into a bundle of channels with different hydraulic

radii R (ratio between porosity and the specific surface area

of the soil, Sa). In the case of rapid particle deposition, the

clogging rate of individual pores is proportional to the

square of its specific surface area ð�dSa

dt / S2
aÞ. Thus, this

implies that the area of larger pores (i.e. larger initial

infiltration capacities) is decreased preferentially. In the

case of slow particle deposition, �dSa

dt / S1=2
a : Experiments

on bioclogging (Cunningham et al. 1991; Vandevivere and

Baveye 1992) showed that the relative change of perme-

ability (Ks/Ks0) depends, among other parameters, on the

GSD.

It has been observed that all clogging mechanisms do

not go on indefinitely, but rather end up providing an

asymptotic infiltration value, which varies in space (e.g.

Baveye et al. 1998). The reasons that lead to an asymptotic

clogging effect are controversial and depend on local

conditions. For instance, bioclogging mechanisms roughly

follow a Monod behavior (Monod et al. 1965; Matsumoto

1979; Baveye et al. 1998), which reproduce a microbial

growth with a maximum asymptotic value of development.

Physical clogging, on the other hand, varies in time since

the governing forces change from volumetric to surface

and vice-versa depending on flow velocity, available

reactive surface areas, etc. (see Zamani and Maini 2009 for

a complete description of whole physical processes). While

physical clogging could theoretically result in zero infil-

tration, bioclogging may help preventing additional phys-

ical clogging, so that the combination of both processes

may still present a finite non-zero asymptotic value.

While assessment of initial and final permeabilities can

certainly be done with the use of empirical or theoretical

formulations, the question still remains about how to eval-

uate the actual evolution of infiltration with time. This is

required for a proper risk assessment (Pedretti et al. under

review). Lumped solutions such as exponential decay for-

mulations are often adopted at the field scale (Iwasaki 1937;

Perez-Paricio and Carrera 1999; Kim et al. 2010; Hoffmann

and Gunkel 2010). The use of such models is appealing

since only a few parameters are required for estimation

purposes, but so far there is no widely accepted work on the

relationship between the upscaled and the local infiltration

models. While lumped (upscaled) models are routinely used

as a way to assess when maintenance operations should take

place at the full pond (usually drying the pond and clean-

ing), we contend that a detailed clogging model could be

used to derive an ad-hoc remediation operation that targets

only specific portions of the pond (similar to the concept of

precise agriculture).

A major limitation of mapping infiltration variations

locally in space and time is that primary information is

limited and plagued by errors. A viable option to enhance

the mapping of characteristic soil properties is to combine

direct (primary) with secondary data (related to the primary

ones). An example is to combine measurements from sur-

face infiltrometers with satellite-images-based secondary

information (Pedretti et al. 2010). Normally, secondary

information is suitable for spatial assessment as it typically

contains a denser dataset (e.g. Gooverts 1997), but the

robustness of the method relies in the strength of the cor-

relation existing between the two types of information.

In this paper, we develop a geostatistical approach to

map soil clogging parameters integrating a limited dataset

of direct information with secondary information based on

satellite images. A physically-based model is used to

evaluate the spatial-temporal decreasing of the local infil-

tration capacities throughout the SP.

The paper is structured as follows. In Sect. 2 we propose

a local infiltration model with an exponential decay to an

asymptotic value. Initial, asymptotic infiltration, and decay

coefficients are considered to be correlated. In Sect. 3 we

further develop the model by applying it directly to an

artificial infiltration pond where local infiltration data is

available at a few points and can be further obtained from a

full mapping of a secondary variable. An external valida-

tion of the model from the evolution of the spatially

averaged infiltration with time is also included. This is

followed by the main conclusions of the work.

2 Methodology

2.1 Problem statement

Let us consider a given artificial SP recharge site in which

direct measurements of the local infiltration rate, Icðx; tÞ;
are known at sparse locations and at a few discrete times,

i.e., Icðxi; tjÞfi ¼ 1; . . .;mg; fj ¼ 1; . . .; ng: This is often the

case in most practical applications as the operation of an

artificial recharge pond is typically done under flooding

conditions and thereby any exhaustive characterization of

the infiltration capacity is too costly and time-consuming.

The support scale of the measurement is local and given,

for example, by the size of an infiltrometer test.

We assume that an extensively sampled secondary

variable is available at some support scale. An example

would be data coming from the colour intensity of a

satellite image, which can provide valuable information

related to the soil hydraulic properties such as the moisture

content of the soil, the vegetative canopy density on the

ground (Chica-Olmo and Abarca-Hernandez 2000; Granger

2000; Milewskia et al. 2009) or the infiltration capacity at a
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specific time (Pedretti et al. 2010). Evidently, a limitation

of satellite images is that image-based methods are

restricted to non-flooded times, with at most two measuring

times, i.e., before and after flooding.

Under these conditions, we attempt to map the temporal

evolution of the infiltration capacity at the site so that better

management of the artificial recharge pond can be

undertaken.

2.2 Clogging model

We assume that the temporal reduction of the infiltration

capacity at every point x in the domain due to clogging

processes follows a decaying exponential law. The model

assumes that clogging takes place on the order of tens of

days. Temperature can therefore be neglected as it

fluctuates on two temporal scales, seasonally and daily,

that do not affect clogging occurrence. Seasonality

occurs at temporal scales much longer than clogging

time, and night-day fluctuations are too short to affect

clogging development permanently. The clogging model

can be formulated in different ways. One possible for-

mulation is

Icðx; tÞ ¼ RIcðx; t ¼ 0Þ expð�kðx; tÞtÞ
¼ Ic;0ðxÞ expð�kðx; tÞtÞ; ð1Þ

where Icðx; t ¼ 0Þ is the infiltration capacity at some initial

operation stage, k(x, t) is the lumped clogging coefficient

and R is a generic, instantaneous reduction function of

infiltration caused by gas production and other mechanisms

(Olsthoorn 1982; Bouwer 2002), which in general is close

to 1. We can remove the impact of R by using Ic,0(x) = R

Ic(x, t = 0) as the initial infiltration value. It is worth

noting that in (1), k changes over space and time, tending to

zero as time increases. Consequently, Icðx; tÞ values tend to

an (spatially dependent) asymptotic value, Ic,f.

Therefore, an alternative model to (1) that implicitly

includes this asymptotic value Ic,f can be formulated as

Icðx; tÞ ¼ Ic;f ðxÞ þ ðIc;0ðxÞ � Ic;f ðxÞÞ expð�kðxÞtÞ; ð2Þ

where k(x) is now constant in time. This clogging model

constitutes the basis of our approach to map the temporal

evolution of the infiltration capacity. The fundamental

advantage of this model is that parameterizes the temporal

evolution of the infiltration capacity Ic by means of three

constant-in-time variables/parameters: Ic,f(x), Ic,0(x), and

k(x), all three variable in space, and are therefore suscep-

tible to simple geostatistical analysis.

Total infiltration capacity can be obtained by spatial

averaging of either (1) or (2); i.e.

IcðtÞ ¼
1

V

Z

V

Icðx; tÞdx: ð3Þ

In most cases Icðt!1Þ � Ic;f will be too small to be

acceptable; that is, it will be below a pre-specified

threshold value, It. Such small could be unacceptable in

practical situations. Thus, the need for a model that can

provide information about the spatial evolution of infiltra-

tion with time. It turns out that whenever Ic,f(x) and Ic,0(x)

are fully known, the temporal evolution of the local infil-

tration depend exclusively on k (x). We postulate that this

non-time dependent clogging factor is directly correlated

with some initial property of the soil, so that k (x) = f

(Ic,0(x)). This is feasible since clogging develops at dif-

ferent rates according with the local distribution of PSD or

GSD, both highly uncertain.

2.3 Mapping the soil infiltration capacity

If experimental measurements of Ic are limited to a few

locations, secondary information can be incorporated to

estimate the spatial distribution of the primary variable. For

this purpose, several geostatistical techniques can be used,

such as the collocated cokriging model. Yet, in this case, its

direct application is cumbersome as one needs to estimate

the evolution of the variogram matrix with time as clogging

progresses. To overcome this problem, we propose a new

approach.

We start by noting that Pedretti et al. (2010) observed

that Ic,0 = f1(Pv) and Ic,f = f2(Pv), where Pv are the color

pixel values of a satellite image. By extension, and

invoking a phenomenological approach, it is to be expected

that there could exist a relationship between soil parame-

ters and Pv, and thus also between k and Pv.

This relationship should be constructed via theoretical or

empirical methods. The theory suggests that some clogging

mechanisms, such as physical clogging, can be modeled

using a filter approach (e.g. Zamani and Maini 2009;

Pedretti et al. under review); thus, the clogging rate should

be negatively correlated with some grain size representa-

tive diameter, dg. Other mechanisms however do not nec-

essarily rely on this assumption: biological clogging can be

modeled using Monod-based growing models (e.g. Clem-

ent et al. 1996), for which the rate of bioclogging is line-

arly proportional to the soil density q which is positively

correlated with dg (Pedretti et al. under review). Therefore,

in a real site, it is important to assess the relative impor-

tance of the two mechanisms, since this will control the

relationship existing between k and the soil properties. In

the field though, the use of (2) gives lumped clogging

factors, in which the single effects of each mechanism is

somehow hidden. As such, any relationship existing

between Pv and experimentally-based k does not give any

indication of the relationship existing between Pv and all

the parameters characterizing the soil, including dg, but
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also density, fraction of organic matter, etc. Thus, it is not

a priori clear whether k and Pv should be positively or

negatively correlated. In the application example later we

will use both possibilities.

Our approach starts from having a perfect knowledge of

some secondary variable (obtained for example from satellite

images), while there is little to no information on the three

primary variables controlling infiltration: Ic,0, Ic,f, and k.

Thus, it is possible to use some geostatistical approach

involving either cokriging (to get a smooth estimate in a mean

sense) or cosimulation (to be included in a Monte Carlo

approach). Since data from the primary variables are always

expected to be less than exhaustive, we chose a collocated

cokriging approach under the Markov model I. Such a model

limits the secondary variable to the data available at the esti-

mation location, and further estimates the cross-variograms by

employing an underlying regression model. The advantage is

that matrix instabilities caused by densely sampled secondary

data (such as high-resolution satellite rasters of pixel values)

are avoided and reduce the burden of modelling all variograms

and cross-variograms in a cokriging system (Almeida and

Journel 1996; Journel 1999). In this case, the cokriging model

only requires the knowledge of the variogram of the primary

variable, the correlation coefficient, and the variance of the

secondary variable. Thus, the modelling effort is almost the

same as for kriging one variable. For simplicity, the cokriging

of each variable is conducted independently.

Unfortunately, in most practical situations, the vario-

gram of these primary variables cannot be directly esti-

mated as too little information is available at a given SP

site. To circumvent this problem, we suggest to completely

rely on the variogram of the secondary variable (satellite

image) that is always well characterized. For each primary

variable, {Ic,0, Ic,f, k}, the auto-variogram can be estimated

using regression models. Pedretti and others (Pedretti et al.

2010) found that a linear regression satisfactorily correlates

the natural logarithm of infiltration capacities (both Y0 ¼
lnðIc;0Þ and Yf ¼ lnðIc;f Þ) with the color pixel values of an

image (Pv). The model has the form

Y0 ¼ a0ðPvÞ þ b0 þ eY ;0; ð4Þ

Yf ¼ af ðPvÞ þ bf þ eY ;f ; ð5Þ

where a and b are the regression coefficients, and eY

represents regression model errors. To complete the picture

we must specify a model for k. Parsimony leads us to

postulate a similar linear model in terms of Yk = ln k,

Yk ¼ akðPvÞ þ bk þ eY ;k: ð6Þ

From these simple models we can write the variogram

functions as

cYi
ðhÞ ¼ a2

i cPv
ðhÞ þ ceY ;i

ðhÞ; i ¼ 0; f ; k ð7Þ

where h is the lag distance between data values. We can

further assume that the regression model errors are

uncorrelated both with errors at different locations or with

the secondary variable (pure nugget).

Once the spatial distributions of the three variables have

been obtained, it is possible to use (2) to obtain the spatio-

temporal distribution of the local infiltration rate, and

consequently the temporally variable global infiltration.

We now illustrate the method and highlight the limitations

in a real site.

3 Application example

A pilot SP is located in Sant Vicenç dels Horts, close to the

city of Barcelona (Spain). The geological background is a

sequence of deltaic deposits of the river Llobregat. A high

resolution image was captured in November 15, 2007

(Fig. 1), representing the ground conditions at the site

before a flooding experiment was conducted. We will

consider this as the initial state of our system, from which

we wish to obtain a map of Ic,0 values. The resolution of the

image is around 0.5 m2 per pixel. The infiltration area is

approximately 100 m x 46 m. The unconfined and highly

transmissive aquifer below the artificial pond is between 12

and 15 m in thickness, and has suffered from overexploi-

tation and pollution in recent years due to an increasing

population and industrial density in the Barcelona area

(Carrera et al. 2005; Custodio 2002).

3.1 Observations and modelling at the pond scale

(global scale)

A flooding test was performed between March and June

2009 in order to test the performance of the site for MAR

operations. The following variables were recorded on a

continuous basis: headwater at the pond, h(t); discharge

rate towards the aquifer, QINðtÞ (recorded from water mass

balance within the pond, disregarding evaporation); infil-

tration area, A(t) (usually a direct function of h(t) to include

the basin slopes); and distance from the surface to the water

table, L(t). Infiltration at the full pond scale is then obtained

as

IcðtÞ �
QINðtÞLðtÞ

AhðtÞ

� �
ð8Þ

The recorded infiltration values can be matched by a

simple exponential model

IcðtÞ ¼ Ic;f þ ðIc;0 � Ic;f Þ exp ð�ketÞ ð9Þ

Figure 2 shows that a good match between data and the

best-fit approximation of the large-scale infiltration model
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(9) can be obtained. ke is an equivalent clogging parameter

for the entire pond. Note that the asymptotic value is used

to evaluate the minimum infiltration value of the pond,

which is reached when clogging no longer develops. The

solid line represents observations using (8), while the

dotted line is the best fit model solution using (9) with the

following parameters: Ic;0 ¼ 5:35m=d; Ic;f ¼ 1:98 m/d, and

ke = 0.17 day-1.

Note that according to the calibration process using (9),

we have a global model of the reduction of infiltration with

time, that could now be used for management or risk

evaluations. For example, it is found that reduction of

infiltration to 50% of the initial value is reached after just

roughly 7 days, but it will for example take 14 days to

reduce to 40% of the original value. It is possible to obtain

a compromise between allowing the system to work for

larger periods without maintenance by just allowing less

water to infiltrate.

In Fig. 2 the infiltration curve displays some daily

oscillations. This is due to unaccounted causes, such as the

impact of water temperature or atmospheric pressure with

time. A detailed analysis of these causes could lead to a

smoothing of the oscillations, leading to a better fit of the

simple exponential model. However, this is not deemed

essential here and the impact of these additional processes

is not pursued in our work.

3.2 Observations at the local scale

Double-ring infiltrometers (Smith 1972) were used to

measure the local infiltration capacities at sparse locations

in the SP, before and after the flooding test was performed.

A double-ring infiltrometer reproduces the local soil tran-

sition from unsaturated to saturated conditions that would

take place under flooding conditions, and evaluates the

infiltration capacity. In short, two metal rings are buried a

few centimeters deep into the soil and filled with water (at

constant or variable height). After a standard time of two

hours, the infiltration rate approaches a steady state value,

identified as Icðx; tÞ at that location x and time t.

During the flooding experiments it is possible to obtain

infiltration values at the local scale by using other devices.

For consistency we did not use other methods and rely on

two double-ring campaigns, This implies that the only

available measurements are those of Ic,0 and Ic,f. Only a few

points are available for each one of these two variables.

The former was obtained at 6 spatial points and the latter at

those same 6 points plus three additional ones (a total of 9).

It is worthwhile noting that double-ring tests provide a

direct estimate of infiltration capacity at the scale of the

Fig. 1 Satellite image of the

Sant Vicenç dels Horts EAP,

close to Barcelona (property of

Google and ICC, 2007). S-tags

refer to the locations of

infiltrometer tests; C-tags are

excavated pits to observe the

local geological stratigraphy

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

4

4.5

5

Time (days)

M
ea

n 
in

fil
tr

at
io

n 
ca

pa
ci

ty
 (

m
/d

)

Estimated from mass balance (Q*L)/(h*A)

Equivalent solution with λe = 0.17 d−1

Fig. 2 Experimental observations (solid line) of Ic with time from the

flooding test. The dotted curve is the best-fit approximation with Iðt ¼
1Þ ¼ 1:98 m,/d and ke = 0.17 day-1
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device. In this case, they were representative of a small sup-

port scale (&0.12 m2). This may have a significant influence

in the geostatistical analysis, since it is important to use a

method that accounts if necessary for the difference in support

between the different variables involved. In Fig. 1 the ‘‘S’’

letters denote the locations where the double-ring infiltration

tests were performed. The ‘‘C’’ letters refer to excavated pits

where geology was directly observed and described.

Results from the analysis of the infiltration tests (using

the modified Kostyakov method) are compiled in Table 1).

It is clear that all points analyzed show a reduction in

infiltration between the initial and the final stage. This

reduction is larger (both in absolute and in relative terms)

for the points displaying higher Ic,0 values.

3.3 Local scale modelling

The results of the correlation between the red band of the

image presented in Fig. 1 and the logarithm of the infil-

tration values at t = t0 and at t = tf are found to be linear

(Fig. 3) according to Eqs. 4 and 5. A good linear correla-

tion is obtained for both states of the artificial pond, with a

Pearson’s coefficient of r2 = 0.87 for the February cam-

paign (t = t0) and r2 = 0.89 for the June campaign (t = tf).

3.4 Experimental variograms and cross-variograms

Field experiments are usually difficult to conduct and costly.

Thus, one can typically always expect a very low number of

data points, which in most cases (certainly in ours), prevents

the direct estimation of the variogram of the infiltration

capacity. Instead, a well behaving sampled variogram may

be available for some secondary variable, Pv in our case.

Figure 4 shows the resulting two directional variograms

obtained for Pv in the principal directions. The direction of

maximum correlation is oriented along the y axis. The

model variograms show three different structures, whose

combined formulation in terms of principal directions is

cPv
ðhxÞ ¼ 297

�
0:32 � Gauss

hx

7

� �
þ 0:44 � Sph

hx

92

� �

þ 0:24 � Exp
hx

400

� ��
ð10Þ

cPv
ðhyÞ ¼ 297 0:32 � Gauss

hy

7

� �
þ 0:44 � Sph

hy

68

� �� �

ð11Þ

where Gauss(.), Exp(.) and Sph(.) are the standard unitary

variogram models (Deutsch and Journel 1998).

Table 1 Experimental double ring test results performed in February

2009 (associated to Ic,0) and June 2009 (associated to Ic,f)

Location Ic,0 Ic,f Ratio

S1 0.19 0.18 0.94

S2 2.6 2.1 0.80

S3 2.9 2.5 0.86

S4 3.3 1.1 0.33

S5 12.9 1.2 0.09

S6 12.6 6.3 0.5

S7 0.17

S8 3.04

S9 0.75

Mean 5.74 2.07

Variance 30.6 3.98

All values are expressed in m/d

100 120 140 160 180 200
−2

−1

0

1

2

3

P
v
 (−)

Ln
 (

I c) 
[m

d−
1 ]

February

  Linear Fit (February)

June

  Linear Fit (June)

Line equation:
Ln(I

c
) = 0.03906 (P

v
) − 5.578 

Line equation:
    Ln(I

c
) = 0.02536 (P

v
) − 4.145

Fig. 3 Correlation between the pixel values (Pv) from the red band of

the satellite image (Fig. 1) and measured log-infiltration capacities

(Ic) at selected locations at two different campaigns. The lines show

the results from linear fitting to the experimental data. The Pearson’s

coefficient for the dotted line (February dataset) is r2 = 0.87; for the

straight line (June dataset), r2 = 0.89

0 50 100 150 200
0

50

100

150

200

250

300

350

Lag distance (pixels)

V
ar

io
gr

am
 o

f p
ix

el
 in

te
ns

iti
es

X−model
Y−model
X−experimental
Y−experimental

Fig. 4 Directional variograms of the pixel values in the reference

image (exhaustive dataset)

Stoch Environ Res Risk Assess (2011) 25:1065–1075 1071

123



3.5 Mapping the clogging factor

Finally, the clogging factor k should also be estimated. In

our case, no direct field estimates about this parameter

were measured. To overcome this problem, we assumed a

perfect correlation between this parameter and the initial

infiltration capacity Y0,

Yk ¼ aðY0Þ þ b: ð12Þ

The coefficients a and b were estimated from the temporal

evolution of the integrated infiltration capacity observed

during the flooding test. The theory is unclear as to whether

these two parameters should be positively or negatively

correlated. Thus, we explore in our site the potential range

of parameters in the power law formula (12) that can lead

to a fit of the observed global infiltration behavior. In

particular, we analyze the sign of the coefficient a. We will

see how this may have a strong effect in devising potential

remediation strategies.

Starting from given values a and b, the map of the k
values is obtained with (12), and then the local infiltration

in space-time is obtained from (2). Finally, the integrated

infiltration is obtained with (3). The method is repeated by

changing the values of a and b until the curve matches that

of Fig. 2.

Several potential combinations of the two parameters

might lead to reasonable fits. In Fig. 5 we fix two different

b values and explore the sensitivity of the global infiltration

curves to a. It is found that we are able to obtain two sets of

parameters (a, b), (-0.4, -0.3) and (0.3, -3.0) that lead to

a similar fit. It can be observed that the curves are quite

sensitive to the two parameters, providing a way to cali-

brate them. Calibration cannot be fully completed in our

site since no data for intermediate times could be recorded.

As a consequence we believe that there is a need to perform

short flooding tests in real sites in order to obtain real

values of k that could be used to design an optimal man-

agement operation. This can only be obtained by per-

forming test during the flooding period. The problem is that

infiltration measurements are quite sensitive to the method

used, and so it is difficult to be able to combine data

coming from double-ring or seepage meters, for example.

While one can find different sets of (a, b) values, the key

is the sign of the a parameter. Depending on this sign we

will have enhanced clogging in regions of initially high

infiltration capacities, or alternatively, clogging enhanced

in points displaying initially small infiltration capacities.

This can be seen in Fig. 6, which includes the maps cor-

responding to the two sets of (a, b) already presented

before. By construction, the maps are visually highly cor-

related with those of initial or final infiltration, included

also in the same figure.

One of the main factors controlled by a is the actual

shape of the pdf of k. Thus, while the two sets of param-

eters lead to a very similar fit of the global infiltration

curve, t actual values of k are very different (see Fig. 7). A

direct implication is that it is not possible to derive an

equivalent k value from the local ones capable of repro-

ducing the full behavior. This can be observed in Fig. 8,

where the evolution of infiltration with time using the

harmonic, geometric and arithmetic means of the point

values presented in Fig. 7 are computed. It is clear that

upscaling from local values would be an error in general,

and that some conditioning on real values is needed to

produce a proper reproduction of the global behavior.

The evolution of the pdf of infiltration capacity with

time is also dependent on the map of k values. This can be

observed in Fig. 9, where a positive a value implies a

slower reduction in the infiltration values with time than a

negative a value. This is caused by the former leading to

very small k values in Fig. 7. These small values cause

infiltration to be reducing slowly with time. The picture

completely changes for the alternative set of parameters

(-0.4, -0.3) where the local k values are high, and thus

infiltration reduces very fast with time.
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These results will be significant when devising a reme-

diation method. Notice how in Fig. 9 it is observed that for

the set (0.3, -3.0) all values of infiltration decrease more

or less equally in time. Thus, the best alternative for

remediation would be to empty the full pond and restore

the initial capacity if possible. On the other hand, for the

(-0.4, -0.3) we observe how the reduction of infiltration is

mostly produced by the fast reduction in the more perme-

able areas. Thus, we could devise a method that targets the

initially high infiltration areas. If clogging in these points is

prevented, the global infiltration will remain high for a long

period of time.

4 Conclusions

Assessing spatio-temporal variability of soil hydraulic

variables is often needed to make optimal, effective and

efficient decisions in many branches of the groundwater

hydrology. In systems with complex processes and in a

heterogeneous geological context, such as in the case of

artificial recharge practices using surface ponds (SP), the

estimation of such parameters is highly uncertain. This is

mainly due to scarce primary information, due to the high

costs of direct field observation, due to limited accessi-

bility to the sites or even due to partial knowledge of the

physical processes involved. Lumped models are often

preferable to work with due to their simplicity and ver-

satility, and secondary information could provide reliable

supporting data to be used for mapping purposes of pri-

mary variables.

In this paper, we describe a methodology to map the

spatio-temproal distribution of the characteristic lumped

temporal factors of clogging (k) in a SP, with the aid of

satellite images and a few experimental datasets based on

local sparse measurements. This allows us to estimate the

spatio-temporal variability of the infiltration capacities of

the topsoil. This potentially allows managers to find opti-

mal strategies for clean-up operations that can minimize

the effect of clogging without having to operate the full

facility and to make educated decisions that might mitigate

the failure in O&M operations in an SP.

As a case study, we applied this method to a pilot site in

Spain. Although the developed model introduces some

simple hypotheses and simplifications in this illustrative

example, we showed that we were able to map the evolu-

tion of local infiltration with time. To validate the method,

we compared the measured total infiltration capacities at

the SP scale with the ones calculated by integration of

calculated local values using a geostatistical-physically-

mixed approach. Numerical results satisfactorily agree with

the observations, accounting for the multiple necessary

approximations we assumed.

It is found that arguably the most significant parameter

is the sign of the a parameter in the power law model

relating k and the initial infiltration. Depending on this sign

it is possible to see the practical relevance of designing a

remediation method that targets only parts of the domain

(acting on the high infiltrating areas during operation), or

else it is better to use the classical approach of treatment
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after emptying the facility. This alternative might have

significant impact in managing an SP site.
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