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Executive summary
This report brings together methodological research on stochastic optimisation
and work on benchmark and target applications of the ExaQute project, with a
focus on unsteady problems. A practical, general method for the optimisation of
the conditional value at risk is proposed. Three different optimisation problems
are described: an oscillator problem selected as a suitable trial and illustration
case; the shape optimisation of an airfoil, chosen as a benchmark application in the
project; the shape optimisation of a tall building, which is the challenging target
application set for ExaQUte. For each problem, the current developments and
results are presented, the application of the proposed method is discussed, and the
work to be done until the end of the project is laid out.
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1 Introduction
The ExaQUte project aims at developing efficient methods to design structures
robust with respect to uncertain loading. These methods are primarily intended for
applications in wind and civil engineering, such as the design of tall buildings to
withstand uncertain wind conditions. Among the many scientific aspects involved,
this document reports on the research that has been done in ExaQUte on optim-
isation under uncertainties (OUU). Fur unsteady problems, the major challenges
include the turbulence of wind flows, which exhibit chaotic behaviour; the difficulty
of estimating accurately the sensitivities of the objective function with respect
to the design parameters, in chaotic regimes; and the tremendous computational
time generally required for such optimisation constrained by partial differential
equations (PDEs).

The project has chosen to investigate gradient-based optimisation methods,
and favours adjoint calculus to estimate said gradient whenever possible, due to
the generally high number of design parameters. Another important choice is the
measure of risk associated toe the objective function when robust optimisation
under uncertain conditions is sought. The conditional value at risk (CVaR) has
been selected as been selected as risk measure in this work, for its ability to control
expected failure states. Lastly, the combined complexity of computational fluid
dynamics (CFD) and stochastic optimisation highlights the need for efficient com-
putational methods designed for high-performance computing (HPC); the ExaQUte
project has chosen to focus on multi-level Monte Carlo (MLMC) methods to leverage
distributed computing in uncertainty quantification. Although these will not be
discussed in this report, parallelisation is also used at several other levels – exempli
gratia (e.g.) PDE solver, mesh generation.

This document follows a series of previous research reports on optimisation:
tools for deterministic shape optimisation (deliverable 6.1); the computation of
stochastic sensitivities (deliverable 6.2); and the gradient-based methods for the
optimisation of various risk measures, including the CVaR (deliverable 6.3). This
document reports on the application of the methods and tools previously presented
to several target applications, with a focus on unsteady (id est (i.e.) time-dependent)
problems. Therefore, it features elements of OUU, CFD, and wind engineering; By
the end of the project, these will be fully integrated into a global framework for
robust design. The final results will be presented in deliverable 6.5.

In this document, we first present in § 2 the specific method that has been
identified for the efficient optimisation of the CVaR of a random quantity of interest,
including the details of a practical algorithm suitable for implementation. Then
we illustrate in § 3 the adaptation of this method to a simple oscillator problem,
which has been chosen to be a suitable trial case for the implementation of the
optimisation toolkit. Section 4 presents a problem of engineering interest selected as
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a benchmark with favourable properties for the ExaQUte project: the optimisation
of the shape of an airfoil. We describe the problem and the derivation of its
sensitivities by adjoint calculus, present results of deterministic optimisation, and
discuss the future application of the proposed method for OUU. Section 5 presents
a challenging target application: the optimisation of the shape of a tall building
amidst a turbulent wind flow. After the presentation of the problem, preliminary
results of OUU are presented, where the lack of adjoint solutions is addressed with
an alternative method for the estimation of sensitivities. We also lay out the
next developments to be made on this optimisation problem, in the lights of the
optimisation method proposed in this report. Lastly, with describe a variation
of this problem proposed by our partner str.ucture, to be considered for its
significant industrial interest.
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2 General optimisation of a conditional value at
risk

2.1 Optimisation problem and method
In this section, we recall from deliverable 6.3 the formulation of a robust optimisation
problem involving the CVaR of a given quantity of interest. We detail one particular
optimisation algorithm that we propose to use in the coming months to tackle the
problems of interest to the project, described in the subsequent sections. First we
define the generic optimisation problem; then we describe the idealised, generic
algorithm proposed; finally, we discuss a practical, cost-efficient implementation
together with the approximations it entails.

Definition (Conditional value at risk). Let (Ω, ℱ,P) be a probability space; 𝛽 ∈
]0, 1[; and 𝑋 ∈ L1(Ω,R) an integrable, real-valued, random variable. The value at
risk (VaR) of significance1 𝛽 of 𝑋 is defined as

VaR𝛽(𝑋) ≔ inf{𝑡 ∈ R ∶ P(𝑋 ⩽ 𝑡) ⩾ 𝛽} (2.1)

In this report, we assume that P(𝑋 = VaR𝛽(𝑋)) = 0; see Uryasev et al. 2010 for a
more general context. We define the conditional value at risk (CVaR) of significance
𝛽 of 𝑋 as the following expectation, conditional on the VaR:

CVaR𝛽(𝑋) ≔ E(𝑋 | 𝑋 ⩾ VaR𝛽(𝑋)) = inf{E(𝜙(𝑋, 𝑠)) ∶ 𝑠 ∈ R}. (2.2)

with 𝜙(𝑋, 𝑠) ≔ 𝑠 + (𝑋 − 𝑠)+

1 − 𝛽
. (2.3)

Assuming that the cumulative distribution function (CDF) of 𝑋 is continuous,
the infima in (2.1)– (2.2) are minima and CVaR𝛽(𝑋) = E(𝜙(𝑋,VaR𝛽(𝑋))) (from
Rockafellar and Uryasev 2000, theorem 1). ♦

For multivariate functions such as 𝜙, we will denote respectively by ∇𝑘 and D𝑘
the gradient and differential operators with respect to the 𝑘-th variable. Although
the function (⋅)+ in the expression of 𝜙 is not differentiable at 0, it was shown
in deliverable 6.3 that E ∘𝜙 is still Gâteaux-differentiable at (𝑠, 𝑋) when P(𝑋 =
𝑠) = 0. Moreover, for any 𝜃 ∈ [0, 1], a subgradient ∇𝜃 of 𝑋 ↦ E(𝜙(𝑋, 𝑠)) is given
by

∇𝜃
1𝜙(𝑋, 𝑠) ≔ 1

1 − 𝛽
(1(𝑋 > 𝑠) + 𝜃1(𝑋 = 𝑠)). (2.4)

1Sometimes called ‘value at risk 1 − 𝛽’.
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If P(𝑋 = 𝑠) = 0, then

∇1 E(𝜙(𝑋, 𝑠)) = ∇𝜃
1𝜙(𝑋, 𝑠) almost surely (a.s.).

Thus we extend the definition of the gradient operator ∇ into ∇𝜃 by choosing a
subgradient when the gradient is not defined; the choice of subgradient amounts
to choosing 𝜃 ∈ [0, 1]. This extension with subgradients was introduced in greater
depth in deliverable 6.3, p. 20.

Let 𝑍 denote the space of design variables, whose dimension is assumed finite.
We consider the same context introduced in ibid.: the system to be optimised
satisfies a PDE dependent on the design 𝑧 ∈ 𝑍 and affected by random effects from
the aforementioned probability space. This constraint is written in abstract form
as

𝐹(𝑢, 𝑧, 𝜔) = 0, for almost every (a.e.) 𝜔 ∈ Ω, (2.5)

where 𝑢 is the state of the system for the given design 𝑧 and random event 𝜔. We
consider a real-valued quantity of interest �̃� which depends on 𝑢 and 𝑧 and assume
it to be differentiable. We also assume that for any parameter value 𝑧 ∈ 𝑍 there
is a unique random solution 𝑢 ≔ ℳ(𝑧) to the stochastic PDE (2.5), therefore our
quantity of interest 𝑄(𝑧) ≔ �̃�(ℳ(𝑧), 𝑧) depends only on the design parameter.
Additionally, 𝑄 is assumed to be convex.

We wish to find the optimal design 𝑧⋆ defined as

𝑧⋆ ≔ argmin{CVaR(𝑄(𝑧)) ∶ 𝑧 ∈ 𝑍}. (2.6)

For reasons of practicality, we choose to consider problem 1 instead.

Problem 1 (General CVaR optimisation with PDE constraint). We look for the
optimal solution

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ E(𝜙(𝑄(𝑧), 𝑠)) ∶ (𝑧, 𝑠) ∈ 𝑍 × R}, (2.7)

where the constraint (2.5) is implicit in the definition of 𝑄. According to (Rockafellar
and Uryasev 2000, theorem 2), 𝑧⋆ satisfies also (2.6). ♦

We propose to solve this optimisation problem with a gradient-descent method
based on algorithm 6 from deliverable 6.3. The main challenges in implementing a
gradient-descent method for (2.7) are:

(I) the fact that 𝜙 is not differentiable everywhere;
(II) the computation of the derivative of the solution 𝑢 to equation (2.5) with

respect to the design parameter 𝑧;
(III) the choice of the step size to take in the descent direction.
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We propose to address (I) with subgradients, using (2.4) for ∇1(E ∘𝜙). We
do not compute ∇1(E ∘𝜙) since the descent method will only be applied to the
first variable of 𝐽. As explained below (see p. 11), we will compute directly an
approximation of argmin{𝐽(𝑧, 𝑠) ∶ 𝑠 ∈ R}.

To address (II) we consider either adjoint calculus or finite differences. Using
adjoint calculus, from deliverable 6.3, p. 18,

∇𝜃
1𝐽(𝑧, 𝑠) = E(𝑔(𝑧, 𝑠)) (2.8)

with 𝑔(𝑧, 𝑠) ≔ D2 𝐹 ∗(𝑢, 𝑧, ⋅)(𝑦)
where 𝑦 satisfies

D1 𝐹 ∗(𝑢, 𝑧, ⋅)(𝑦) = D1 �̃�(𝑢, 𝑧)
1 − 𝛽

(1(𝑄(𝑧) > 𝑠) + 𝜃1(𝑄(𝑧) = 𝑠)). (2.9)

Nota bene (NB) although (2.9) is often named ‘adjoint’ or ‘dual’ equation to the
‘primal’ equation (2.5), its definition depends not only on (2.5) but also on the
optimisation problem (e.g. the chosen risk measure).

Another approach to estimate ∇𝜃
1𝐽(𝑧, 𝑠) is by the method of finite differences.

Let us illustrate it with a centred scheme (or ‘stencil’). For the sake of legibility,
we choose 𝑠 ∈ R and note the first partial application of 𝐽: 𝐽1 ≔ 𝑧 ↦ 𝐽(𝑧, 𝑠). If
𝐽1 is convex, we can estimate a subdifferential of it at 𝑧 ∈ 𝑍 in direction 𝑦 ∈ 𝑍 as

Δℎ,𝑦𝐽1(𝑧) ≔ 𝐽1(𝑧 + ℎ𝑦) − 𝐽1(𝑧 − ℎ𝑦)
2ℎ

for a given ℎ ∈ ]0, +∞[. If 𝐽1 is differentiable at 𝑧, then

Δℎ,𝑦𝐽1(𝑧) = D1 𝐽(𝑧, 𝑠)(𝑦) + 𝒪(ℎ2).

Denoting 𝒆 ≔ {𝒆𝑖 ∶ 𝑖 ∈ J1, dim 𝑍K} an orthonormal basis of 𝑍, we can estimate a
subgradient Δℎ𝐽1(𝑧) of 𝐽1 by its coordinates in 𝒆:

∀𝑖 ∈ J1, dim 𝑍K, 𝒆𝑖 ⋅ Δℎ𝐽1(𝑧) = Δℎ,𝑒𝑖
𝐽1(𝑧).

If 𝐽1 is smooth, Δℎ𝐽1 gives a second-order approximation of ∇ 𝐽1, i.e.

‖∇ 𝐽1(𝑧) − Δℎ𝐽1(𝑧)‖ ∈ 𝒪(ℎ2);

higher orders of accuracy can be achieved by a stencil with more points. However,
the number of evaluations of 𝐽1 required to build the approximation Δℎ𝐽1 is
linearly proportional to dim 𝑍. This is a strong argument in favour of adjoint-based
derivation, since dim 𝑍 is often large in shape optimisation. We focus on the adjoint
approach henceforth; finite differences are discussed in more details in § 5.3, p. 46.
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With respect to (III), we seek to choose the step size 𝛾 adaptively so as to
provide the maximal reduction of the value of the objective function. Given a
design parameter 𝑧 ∈ 𝑍 and a descent direction 𝑝 ∈ 𝑍, we define the optimal step
size as

𝛾⋆(𝑧, 𝑝) ≔ argmin{𝐽1(𝑧 + 𝑐𝑝) ∶ 𝑐 ∈ ]0, +∞[}. (2.10)

This minimisation problem will be solved approximately by building an interpolation
of the function 𝑐 ↦ 𝐽1(𝑧 + 𝑐𝑝). This will be detailed in § 2.2.

Finally, we choose to estimate convergence by evaluating the relative size of the
increments in (𝑧, 𝑠), and comparing it to a tolerance 𝜂 ∈ ]0, +∞[ chosen a priori.
I.e. we stop at iteration 𝑘 ∈ N if

𝑆(𝑧𝑘, 𝑧𝑘−1, 𝑠𝑘, 𝑠𝑘−1) ≔ ‖𝑧𝑘 − 𝑧𝑘−1‖𝑍
‖𝑧𝑘‖𝑍

+ |𝑠𝑘 − 𝑠𝑘−1|
|𝑠𝑘|

⩽ 𝜂,

assuming ‖𝑧𝑘‖𝑍 ≠ 0 ≠ |𝑠𝑘|.
The steps described above are summarised as algorithm 1. This algorithm is

called ‘ideal’ in the sense that it assumes that we can solve exactly (2.5), (2.9)
and (2.10). In practice, approximations are necessary.

ALGORITHM 1: Ideal gradient-descent with exact VaR
1 INPUT: 𝑧0, 𝜂, 𝜃
2 INITIALISE: 𝑘 ≔ 1, 𝑠0 ≔ 1
3 WHILE 𝑆(𝑧𝑘, 𝑧𝑘−1, 𝑠𝑘, 𝑠𝑘−1) > 𝜂 DO
4 Compute 𝑄(𝑧𝑘) by solving primal problem (2.5) for 𝑧𝑘
5 Find the VaR: 𝑠𝑘+1 ≔ argmin{E(𝜙(𝑄(𝑧𝑘), 𝑠)) ∶ 𝑠 ∈ R}
6 Compute the subgradient ∇𝜃

1𝐽(𝑧𝑘, 𝑠𝑘+1)
7 Set the descent direction 𝑝 ≔ −∇𝜃

1𝐽(𝑧𝑘, 𝑠𝑘+1)/‖∇𝜃
1𝐽(𝑧𝑘, 𝑠𝑘+1)‖

8 Find the optimal step size 𝛾𝑘 ≔ 𝛾⋆(𝑧𝑘, 𝑝) according to (2.10)
9 Update design 𝑧𝑘+1 ≔ 𝑧𝑘 + 𝛾𝑘𝑝

10 𝑘 ≔ 𝑘 + 1
11 RESULT: 𝑧𝑘, 𝑠𝑘

2.2 Practical optimisation
To estimate the VaR in algorithm 1, line 5, we use the MLMC method described
previously in deliverable 6.3, pp. 22–23 and proposed by Krumscheid and Nobile
2018. We recall only the gist of it below, and direct the reader to the previous
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references for more details. Let 𝐿 ∈ N and 𝑵 ∈ N𝐿+1: for any level 𝑙 ∈ J0, 𝐿K we
consider an approximate quantity of interest 𝑄𝑙 ≈ 𝑄. This approximation typically
comes from a discretisation of the underlying PDE, using 𝑀𝑙 degrees of freedom.
The Monte Carlo (MC) estimation of E(𝑄𝑙) with 𝑚 ∈ N independent samples is
denoted

𝜇𝑚(𝑄𝑙) = 1
𝑚

𝑚
∑
𝑖=1

𝑄(𝑖)
𝑙

Considering now a sequence of discretisations (𝑄𝑙)𝐿
𝑙=0 with increasing numbers of

degrees of freedom (𝑀𝑙)𝐿
𝑙=0 ∈ N𝐿+1, we can then define a MLMC estimator of E:

E(𝑄) ≈ 𝜇𝒎(𝑄) ≔ 𝜇𝑚0
(𝑄0) +

𝐿
∑
𝑙=1

𝜇𝑚𝑙
(𝑄𝑙 − 𝑄𝑙−1),

where 𝒎 ≔ (𝑚𝑙)𝐿
𝑙=0 ∈ N𝐿+1 is a decreasing sequence of sample sizes. To approx-

imate the parametric expectation 𝜓 = 𝑠 ↦ E(𝜙(𝑄, 𝑠)):
1. we consider 𝑛 points 𝒓 ≔ (𝑟𝑖)𝑛

𝑖=1 ∈ R𝑛;
2. we compute the MLMC estimations 𝜓(𝑟𝑖) ≈ 𝜇𝒎(𝜙(𝑄, 𝑟𝑖)) for all 𝑖 ∈ J1, 𝑛K;
3. we interpolate the values {(𝑟𝑖, 𝜇𝒎(𝜙(𝑄, 𝑟𝑖))) ∶ 𝑖 ∈ J1, 𝑛K} with a suitable

interpolator (e.g. splines).
We denote Φ𝒎,𝒓(𝑄) such an interpolant approximating 𝜓. We can then estimate

VaR𝛽(𝑄) = argmin 𝜓 ≈ argmin Φ𝒎,𝒓(𝑄)
and CVaR𝛽(𝑄) = min 𝜓 ≈ min Φ𝒎,𝒓(𝑄).

For any 𝜖 ∈ ]0, +∞[, a posteriori error estimators enable us to choose 𝐿, 𝒎 and 𝒓
such that (s.t.)

MSE(argmin Φ𝒎,𝒓(𝑄)) ≔ E(∣VaR𝛽(𝑄) − argmin Φ𝒎,𝒓(𝑄)∣2) ⩽ 𝜖.

NB MC estimation is merely a particular case of this method, for 𝐿 ≔ 0. Therefore,
this and what follows apply as well to single-level estimation.

We use a similar MLMC estimator 𝜇𝒎′ on line 7 to estimate ∇𝜃
1𝐽(𝑧𝑘, 𝑠𝑘+1), with

𝒎′ ∈ N𝐿′+1 and 𝐿′ ∈ N. The computational cost of this algorithm is dominated
by the time necessary for resolutions of the primal equation (2.5) and its dual (2.9).
In order to curb this cost, one can choose to pick at line 6 random events that
had been drawn independently at line 4–5, for which the solutions to the primal
problems are already known. If more samples are required, new events are drawn
independently.

Regarding the problem (2.10) for the optimal step size: an accurate resolution
may require numerous evaluations of 𝐽, and the cost thereof may outweigh the
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benefit of the optimal step size 𝛾⋆. However, even a rough approximation of 𝛾⋆

is useful. Therefore, we propose to approximate 𝑐 ↦ 𝐽(𝑧𝑘 + 𝑐𝑝) with a quadratic
interpolation ℐ and minimise the interpolant instead:

̌𝐽 ≔ 𝑐 ↦ 𝐽(𝑧𝑘 + 𝑐𝑝) ≈ 𝑐 ↦ 𝑎2𝑐2 + 𝑎1𝑐 + 𝑎0 ≕ ℐ( ̌𝐽)

hence we choose

𝛾(𝑧, 𝑝) = − 𝑎1
2𝑎2

= argmin ℐ( ̌𝐽) ≈ 𝛾⋆(𝑧, 𝑝)

From lines 5 and 6, we already know respectively ̌𝐽 (0) = 𝐽(𝑧𝑘, 𝑠𝑘+1) and ∇𝜃 ̌𝐽 (0) =
∇𝜃

1𝐽(𝑧𝑘, 𝑠𝑘+1). We choose an additional point ̃𝑐 ∈ R {0} at which we compute
̌𝐽 ( ̃𝑐), then we solve

⎛⎜
⎝

0 0 1
2 1 0
̃𝑐2 ̃𝑐 1

⎞⎟
⎠

⎛⎜
⎝

𝑎2
𝑎1
𝑎0

⎞⎟
⎠

= ⎛⎜⎜
⎝

̌𝐽(0)
∇𝜃 ̌𝐽 (0)

̌𝐽( ̃𝑐)

⎞⎟⎟
⎠

,

which yields

⎧{{{{
⎨{{{{⎩

𝑎0 = ̌𝐽(0)

𝑎1 = ∇𝜃 ̌𝐽 (0) − 2
̃𝑐 − 2

(
̌𝐽( ̃𝑐) − ̌𝐽(0)

̃𝑐
− ∇𝜃 ̌𝐽 (0))

𝑎2 = 1
̃𝑐 − 2

(
̌𝐽( ̃𝑐) − ̌𝐽(0)

̃𝑐
− ∇𝜃 ̌𝐽 (0)).

We propose heuristically ̃𝑐 ≔ 𝛾𝑘−1.
In practice, we approximate ̌𝐽 ( ̃𝑐) ≈ 𝜇𝒎″(𝜙(𝑄(𝑧𝑘+ ̃𝑐𝑝), 𝑠𝑘+1)) with 𝒎″ ∈ N𝐿″+1

and 𝐿″ ∈ N. Since this happens at line 8 of iteration 𝑘 of algorithm 1, we already
have 𝒎′ samples2 of 𝑄(𝑧𝑘) from which we can build a control variate:

̌𝐽 ( ̃𝑐) ≈ 𝜇𝒎″(𝜙(𝑄(𝑧𝑘 + ̃𝑐𝑝), 𝑠𝑘+1) − 𝛼𝜙(𝑄(𝑧𝑘), 𝑠𝑘+1)) + 𝛼𝜇𝒎′(𝜙(𝑄(𝑧𝑘), 𝑠𝑘+1)).

Thus our estimation of ̌𝐽 can achieve the same accuracy with fewer samples –
i.e. faster – than a single MLMC estimator. The greater the correlation between
𝜙(𝑄(𝑧𝑘 + ̃𝑐𝑝), 𝑠𝑘+1) and 𝜙(𝑄(𝑧𝑘), 𝑠𝑘+1), the greater the gain. This method of
variance reduction has been presented in more details – including the choice of
the value of the control coefficient 𝛼 – in deliverable 5.4, § 5.1. In the interest of
cost efficiency, one may build 𝜇𝒎″ by using a subset3 of the random events used

2I.e. ∀𝑙 ∈ J0, 𝐿′K, we have 𝑚′
𝑙 samples of 𝑄𝑙(𝑧𝑘) − 𝑄𝑙−1(𝑧𝑘) or, more accurately,

max{𝑚′
𝑙, 𝑚𝑙}.

3This practice is often called ‘sub-sampling’.
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in 𝜇𝒎′ , as proposed in deliverable 5.4, p. 23. By doing so, only evaluations of
𝜙(𝑄(𝑧𝑘 + ̃𝑐𝑝), 𝑠𝑘+1) need to be computed4. This requires to store all samples of
the random events, as well as the corresponding values of the quantity of interest.
This is reasonable if each of these is a random vector of small size. However, it
may require extensive storage if some of these quantities are spatial fields or time
processes.

The practical considerations above are summarised into algorithm 2.

ALGORITHM 2: Practical gradient-descent for CVaR optimisation with
MLMC
1 INPUT: 𝑧0, 𝛾0, 𝜂, 𝝐, 𝝐′, 𝜃
2 INITIALISE: 𝑘 ≔ 1, 𝑠0 ≔ 0
3 WHILE 𝑆(𝑧𝑘, 𝑧𝑘−1, 𝑠𝑘, 𝑠𝑘−1) > 𝜂 DO
4 Compute Φ𝒎,𝒓(𝑄(𝑧𝑘)) s.t. MSE(argmin Φ𝒎,𝒓(𝑄(𝑧𝑘))) ⩽ 𝜖𝑘
5 Estimate the VaR as 𝑠𝑘+1 ≔ argmin Φ𝒎,𝒓(𝑄(𝑧𝑘))
6 Compute the subgradient 𝜇𝒎′(𝑔(𝑧𝑘, 𝑠𝑘+1)) s.t.

MSE(𝜇𝒎′(𝑔(𝑧𝑘, 𝑠𝑘+1))) ⩽ 𝜖′
𝑘

7 Set the descent direction 𝑝 ≔ −𝜇𝒎′(𝑔(𝑧𝑘, 𝑠𝑘+1))/‖𝜇𝒎′(𝑔(𝑧𝑘, 𝑠𝑘+1))‖
8 Evaluate ̌𝐽 (𝛾𝑘−1) = 𝐽(𝑧𝑘 + 𝛾𝑘−1𝑝, 𝑠𝑘)
9 Build interpolation ℐ( ̌𝐽)

10 Find the optimal step size 𝛾𝑘 ≔ argmin ℐ( ̌𝐽)
11 Update design 𝑧𝑘+1 ≔ 𝑧𝑘 + 𝛾𝑘𝑝
12 𝑘 ≔ 𝑘 + 1
13 RESULT: 𝑧𝑘, 𝑠𝑘

4This assumes 𝐿″ ⩽ 𝐿′ and ∀𝑙 ∈ J0, 𝐿″K, 𝑚″
𝑙 < 𝑚′

𝑙.
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3 Van der Pol oscillator with random forcing
The Van der Pol oscillator (Van der Pol 1920) is a non-linear oscillator that has
been used as a simple model for vortex shedding (e.g. by Ehsan and Scanlan
1990). With an uncertain forcing term, it provides us with a non-chaotic, unsteady
problem that is simple to implement, computationally easy to solve and with a
suitable asymptotic behaviour in time. Furthermore, the sensitivity of its solution
with respect to some design parameters is amenable to computation by adjoints,
as proposed above. Therefore, it is suitable for presenting an adaptation of the
method described in § 2.

3.1 Optimisation problem
Let us first introduce some notations. Let 𝑓 ∶ R × Ω → R be a random process.
We will denote respectively ̇𝑓 and ̈𝑓 its first and second partial derivatives with
respect to the first variable. The temporal average – or time average – of 𝑓 over
the interval [0, 𝑇], with 𝑇 ∈ [0, +∞[, is the real-valued random variable defined for
a.e. 𝜔 ∈ Ω as

⟨𝑓⟩𝑇(𝜔) ≔ 1
𝑇

∫
𝑇

𝑡=0
𝑓(𝑡, 𝜔)d𝑡.

Problem 2 (Randomly-forced Van der Pol oscillator). Let 𝑧, 𝑇 ∈ ]0, +∞[ and
𝑢0, �̇�0, 𝜏 ∈ R. We denote 𝑊 ∶ [0, 𝑇]×Ω → R a standard Wiener process. We define
the Van der Pol oscillator with stochastic forcing as the function 𝑢 ∶ [0, 𝑇] × Ω → R
which satisfies

�̈� − 𝑧(1 − 𝑢2)�̇� + 𝑢 = 𝜏�̇� over ]0, 𝑇],
𝑢(0, ⋅) = 𝑢0,
�̇�(0, ⋅) = �̇�0,

almost everywhere (a.e.) in Ω. Setting 𝜏 to 0 yields the canonical unforced Van
der Pol oscillator, which is asymptotically periodic with a period and amplitude
independent of the initial conditions (𝑢0, �̇�0). ♦

Problem 3 (Optimisation of the Van der Pol oscillator). For any 𝑧 ∈ R, there is a
unique solution to problem 2 Therefore, denoting 𝑢 that solution, we can define
the mapping

𝑄(𝑧) ≔ ⟨(𝑢 − 𝑎)2⟩𝑇
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Figure 1: Example of trajectory of an unforced Van der Pol oscillator in the phase
space

We wish to solve (2.7) in this particular case, i.e.

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ 𝑠 + E((𝑄(𝑧) − 𝑠)+)
1 − 𝛽

∶ (𝑧, 𝑠) ∈ 𝑍 × R}.

♦

A constraint implicit in the definition of 𝑄 is problem 2, which is a particular
case of (2.5). Indeed, problem 3 is exactly of the form of pb 1. Problem 2 was
previously presented in deliverable 5.4, pp. 11–16; we refer the reader to it for more
details.

3.2 Practical optimisation
We discuss here the adaptation of algorithm 2 to the optimisation problem 3. In
the spirit of MLMC methods, for any level 𝑙 ∈ N, we choose a number of time steps
𝑁𝑙 ∈ N such that 𝑁𝑙 < 𝑁𝑙+1 and lim𝑙→+∞ 𝑁𝑙 = +∞. We introduce a discretisation
T𝑙 of [0, 𝑇] into 𝑁𝑙 ∈ N segments: T𝑙 ≔ {𝑡𝑛 ≔ 𝑛𝑇 /𝑁𝑙 ∶ 𝑛 ∈ J0, 𝑁𝑙K}. We denote
as follows the corresponding trapezoidal approximation of the temporal average:

⟨𝑓⟩T𝑙
≔

𝑁𝑙−1

∑
𝑛=0

𝑓(𝑡𝑛) + 𝑓(𝑡𝑛+1)
2𝑁𝑙

≈ ⟨𝑓⟩𝑇.
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To solve problem 2 over T𝑙, we use the Euler–Maruyama scheme: for any
𝑛 ∈ J1, 𝑁𝑙K,

�̇�(𝑡𝑛−1, ⋅) ≈ 𝑁𝑙
𝑇

(𝑢(𝑡𝑛, ⋅) − 𝑢(𝑡𝑛−1, ⋅))

�̈�(𝑡𝑛−1, ⋅) ≈ 𝑁𝑙
𝑇

(�̇�(𝑡𝑛, ⋅) − �̇�(𝑡𝑛−1, ⋅)),

and �̇� (𝑡𝑛−1, ⋅) ≈ 𝑁𝑙
𝑇

(𝑊(𝑡𝑛, ⋅) − 𝑊(𝑡𝑛−1, ⋅)),

where the Brownian increment is 𝑊(𝑡𝑛, ⋅) − 𝑊(𝑡𝑛−1, ⋅) = 𝜉𝑛√𝑇 /𝑁𝑙 with 𝜉𝑛 ∼
𝒩(0, 1). The approximations 𝑢(𝑡𝑛, ⋅) ≈ 𝑢𝑛 and �̇�(𝑡𝑛, ⋅) ≈ �̇�𝑛 satisfy then

(𝑢𝑛
�̇�𝑛

) = (𝑢𝑛−1
�̇�𝑛−1

) + 𝑇
𝑁𝑙

( �̇�𝑛−1
𝑧(1 − 𝑢2

𝑛−1)�̇�𝑛−1 − 𝑢𝑛−1
) + 𝜏𝜉𝑛−1√ 𝑇

𝑁𝑙
(0

1). (3.1)

We define the approximation of 𝑄 on the discretisation level 𝑙 as

𝑄𝑙(𝑧) ≔ ⟨(𝑢 − 𝑎)2⟩T𝑙
,

with ⟨(𝑢 − 𝑎)2⟩T𝑙
≈

𝑁𝑙

∑
𝑛=1

((𝑢𝑛 − 𝑎)2 + (𝑢𝑛−1 − 𝑎)2

2
) 1

𝑁𝑙

and (𝑢𝑛
�̇�𝑛

) satisfying (3.1).

The performance of MLMC methods depends on the behaviour of the quantity
of interest 𝑄𝑙 with respect to the temporal discretisation T𝑙; we refer the reader
to deliverable 5.4, pp. 15–16 for further details.

Recalling (2.8)– (2.9), we express the sensitivity of the objective function for
problem 3:

∇𝜃
1𝐽(𝑧, 𝑠) = E(𝑔(𝑧, 𝑠))

with 𝑔(𝑧, 𝑠) ≔ ⟨(1 − 𝑢2)�̇�𝜆⟩𝑇.

For the approximated quantity of interest 𝑄𝑙 introduced above, we denote the
corresponding approximation

𝑔(𝑧, 𝑠) ≈ 𝑔𝑙(𝑧, 𝑠) ≔ ⟨(1 − 𝑢2)�̇�𝜆⟩T𝑙

The discrete random process 𝜆 above is the second component of the solution 𝝀 to
the discrete adjoint problem: ∀𝑛 ∈ J1, 𝑁𝑙K,

𝝀𝑛−1 = 𝝀𝑛 + 𝑇
𝑁𝑙

(0 −(2𝑧𝑢𝑛�̇�𝑛 + 1)
1 𝑧(1 − 𝑢2

𝑛) )𝝀𝑛 + ∇𝜃
1𝜙(𝑄𝑙(𝑧), 𝑠)(𝑢𝑛 − 𝑎)

𝑁𝑙
(2

0)

and 𝝀𝑁𝑙
= ∇𝜃

1𝜙(𝑄𝑙(𝑧), 𝑠)(𝑢𝑛 − 𝑎)
𝑁𝑙

(1
0).
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The detailed derivation of the sensitivity of the objective function and the corres-
ponding discrete adjoint problem is available in appendix A. NB the primal problem
is solved forward in time while its adjoint is solved backward, hence their respective
names: ‘forward problem’ and ‘backward problem’.

This concludes the adaptation of algorithm 2 to this particular optimisation
problem. The practical considerations discussed in § 2 apply here as well: the
re-use of samples of 𝑄(𝑧) from line 4 in line 6, and from this latter one in line 8,
together with the use of a control-variate technique with sub-sampling. However,
the normalisation of the descent direction at line 7 is pointless here, since the
dimension of the parameter space is 1.

3.3 Future work
Although the Van der Pol oscillator is not among the target applications of the
ExaQUte project, it shares many of their characteristics while being simpler. It will
be a good trial application for the optimisation routines and their interface with
the XMC library (Ayoul-Guilmard, Ganesh, Nobile, Rossi et al. 2020). Therefore,
the next stage will be to implement algorithm 2. We will discuss in the following
sections the modifications to adapt it to applications of wind engineering, which
will be the topic of deliverable 6.5.

Additionally, there are two improvements which we may attempt on this simpler
optimisation problem. The first one is to make the time horizon a level parameter
in the MLMC method, in addition to the time-step size: for any level 𝑙 ∈ N, we
choose (𝑁𝑙, 𝑇𝑙) ∈ N× ]0, 𝑇] and consider the Van der Pol oscillator over ]0, 𝑇𝑙] with
the discretisation in time T𝑙 ≔ {𝑛𝑇𝑙/𝑁𝑙 ∶ 𝑛 ∈ J0, 𝑁𝑙K}. This could improve the
performance of the MLMC method, provided the parameters (𝑁𝑙, 𝑇𝑙) are chosen
aptly.

The second point is to investigate an alternative objective function:

̃𝐽 (𝑧, 𝑠) ≔ ⟨CVaR𝛽((𝑢 − 𝑎)2)⟩𝑇.

A first question is the pertinence of this choice for engineering purposes, compared
to (2.6). If it has merits, there is the mathematical question of the reformulation
of the optimisation problem, and gradient-descent method thereof.
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Figure 2: Simplified representation of the domain D and its boundary Γ

4 Potential flow around an airfoil
We consider here a well-known problem in aeronautics: to find the section of an
airfoil to maximise its lift. The physics model used is that of the potential flow,
described below. This is one of the applications chosen in the ExaQUte project to
benchmark methods of OUU, and has been published along with the solver Kratos
MultiPhysics (Ferrándiz, Bucher et al. 2020; Ferrándiz, Tosi et al. 2020). In this
section we present the deterministic shape optimisation problem as well as the
computation of sensitivities by adjoint calculus. Finally, we discuss the applicability
to this test case of the OUU problem with CVaR minimisation presented above.

4.1 Potential-flow problem
Starting from Navier-Stokes equations, assuming that the flow is irrotational and
inviscid, and assuming that the velocity can be written as the gradient of a potential
such that 𝑣 = ∇ Φ, the mass conservation equation is reduced to:

𝜕𝜌
𝜕𝑡

+ ∇ ⋅(𝜌 ∇ Φ) = 0 (4.1)

where the density, 𝜌, can be written in terms of far-field quantities and using the
isentropic flow.

𝜌
𝜌∞

= (1 + 𝛾 − 1
2

𝑢2
∞

𝑎2
∞

(1 − ∇ Φ ⋅ ∇ Φ
𝑢2

∞
))

1
𝛾−1

(4.2)
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This relation comes from introducing the potential flow assumption in Euler’s
momentum equation. Pressure can be computed using the isentropic relation.

𝑝
𝑝∞

= ( 𝜌
𝜌∞

)
𝛾

The boundary conditions defined in the problem are equivalent as those introduced
in Davari et al. 2019; a schematic is shown in figure 2, where the far-field boundary
is represented by the outer circle. A line denoted by Γ𝑊 represents the wake
modelled in the problem. Depending on the flux passing through the domain, the
imposed conditions are defined as Γ𝐷 or Γ𝑁, which will be considered the inlet and
the outlet of the domain, respectively. If 𝒏 is defined as the outer normal on the
boundary, then Γ𝑁 and Γ𝐷 are defined as follows.

Γ∞ = { Γ𝐷 if 𝑽∞ ⋅ 𝒏 < 0
Γ𝑁 if 𝑽∞ ⋅ 𝒏 ⩾ 0

At the inlet, a Dirichlet condition is imposed by fixing an initial potential value
as specified in (4.3). A Neumann condition is imposed in (4.4) at the outlet by
setting a mass flux 𝑔. At the walls, a no-penetration condition is set with 𝑔 = 0.
Also, the wake requires the imposition of two specific boundary conditions: (4.5)
imposes mass conservation across the wake; (4.6) imposes pressure equality between
the upper and lower parts of the wake.

Φ = Φ∞ on Γ𝐷, (4.3)
𝒏 ⋅ (𝜌 ∇ Φ) = 𝑔 on Γ𝑁, (4.4)

𝒏 ⋅ (𝜌+ ∇ Φ+ − 𝜌− ∇ Φ−) = 0 on Γ𝑊, (4.5)
|∇ Φ+|2 − |∇ Φ−|2 = 0 on Γ𝑊. (4.6)

From (4.1), the weak form of the system can be derived by applying the Galerkin
method and the divergence theorem:

∫
D

𝜌 ∇ 𝜑 ⋅ ∇ ΦdD = ∫
Γ𝑁

𝜑𝒏 ⋅ (𝜌 ∇ Φ)dΓ.

This weak form is discretized by linear finite elements: it is expressed in terms of
the 𝑀 nodal shape functions 𝑁𝑗 and the 𝑀 corresponding nodal values Φ𝑗:

∀𝑖 ∈ J1, 𝑀K,
𝑀

∑
𝑗=1

∫
D

𝜌 ∇ 𝑁𝑖 ⋅ ∇ 𝑁𝑗dDΦ𝑗 = ∫
Γ𝑁

𝑁𝑖𝑔dΓ. (4.7)

The right-hand side of the equation has been replaced by the Neumann boundary
condition. The dependence of 𝜌 on the potential makes the problem non-linear, so
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the system is written in residual form 𝑅(Φ) = 0. The system is solved by means of
the Newton method, which requires the calculation of the Jacobian 𝔍. The solution
is updated by an increment ∆Φ𝑘. For every element D𝑒 in the mesh with boundary
Γ𝑁𝑒

= Γ𝑁 ∩ 𝜕D𝑒, its contribution to the residual and the Jacobian is computed,
denoted by 𝑅𝑒

𝑖 and 𝔍𝑒
𝑖,𝑗 respectively.

𝑅𝑒
𝑖 (Φ) =

𝑀
∑
𝑗=1

∫
D𝑒

𝜌 ∇ 𝑁𝑖 ⋅ ∇ 𝑁𝑗dDΦ𝑗 − ∫
Γ𝑁𝑒

𝑁𝑖𝑔dΓ,

𝔍𝑒
𝑖,𝑗(Φ) = 𝜕𝑅𝑒

𝑖 (Φ)
𝜕Φ𝑗

= ∫
D𝑒

𝜌 ∇ 𝑁𝑖 ⋅ ∇ 𝑁𝑗 + 2 𝜕𝜌
𝜕|𝑣|2

(∇ 𝑁𝑗 ⋅ ∇ Φ)(∇ 𝑁𝑖 ⋅ ∇ Φ).(4.8)

Elemental contributions are assembled to the total system and the potential values
Φ𝑘+1 are updated.

𝔍(Φ𝑘)∆Φ𝑘 = −𝑅(Φ𝑘),
Φ𝑘+1 = Φ𝑘 + ∆Φ𝑘.

In (4.8), the derivative of the density with respect to the local velocity is obtained
from (4.2):

𝜕𝜌
𝜕|𝑣|2

= − 𝜌∞
2𝑎2

∞
(1 + 𝛾 − 1

2
𝑢2

∞
𝑎2

∞
(1 − |𝑣|2

𝑢2
∞

))
2−𝛾
𝛾−1

As it is well-known, the definition of a wake is required in potential flow methods
in order to model lift. The wake forms a discontinuity in the domain that allows
a discontinuity in the potential field. The intensity of this jump in the potential
is related to the lift created by the geometry by means of the Kutta–Joukowsky
condition. A first approach to model this wake was presented by Eller 2012, where
the wake is explicitly modelled in the mesh. This makes the mesh generation
complex, as the wake is body-fitted in the domain.

In this deliverable, the approach from Davari et al. 2019 is used, where the
wake is implicitly defined with a level-set function that cuts the elements that form
the wake, easing mesh generation. The elements that are cut by the wake have
duplicated degrees of freedom and use modified shape functions to deal with the
split elements. The domain is therefore split into two by the wake. To refer to each
side of the wake, the + and the − signs will be used, representing the upper and
lower sides of the wake respectively. This leads to the definition of the domains
D+

𝑊,𝑒, D−
𝑊,𝑒, Γ+

𝑊,𝑒 = Γ𝑁 ∩𝜕D+
𝑊,𝑒, Γ−

𝑊,𝑒 = Γ𝑁 ∩𝜕D−
𝑊,𝑒, which refer to the elements

and the boundary of the elements that form the wake, for which the system of
equations for the wake will be defined.
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The duplicated degrees of freedom on the wake elements are denoted by Θ. The
residuals and Jacobians derived form the full potential equation are rewritten for
the elements that are intersected by the wake, denoted with 𝑅𝑒,+

𝑖,𝑊, 𝑅𝑒,−
𝑖,𝑊 and 𝔍𝑒,−

𝑖,𝑗,𝑊,
𝔍𝑒,−

𝑖,𝑗,𝑊 respectively. As detailed previously, the sign denotes if the equations are
evaluated in the upper or lower side of the wake.

Thus, (4.7) can be rewritten into:

𝑅𝑒,+
𝑖,𝑊(Θ+) =

𝑀
∑
𝑗=1

∫
D+

𝑊,𝑒

𝜌+ ∇ ̂𝑁+
𝑖 ⋅ ∇ ̂𝑁+

𝑗 dDΘ+
𝑗 − ∫

Γ+
𝑊,𝑒

̂𝑁+
𝑖 𝑔dΓ (4.9)

𝑅𝑒,−
𝑖,𝑊(Θ−) =

𝑀
∑
𝑗=1

∫
D−

𝑊,𝑒

𝜌− ∇ ̂𝑁−
𝑖 ⋅ ∇ ̂𝑁−

𝑗 dDΘ−
𝑗 − ∫

Γ−
𝑊,𝑒

̂𝑁−
𝑖 𝑔dΓ (4.10)

Where ̂𝑁𝑖 denotes the modified shape functions due to the element cutting. From
these residuals, Jacobians for the wake elements are derived in the same manner as
in (4.8), by computing 𝔍𝑒,+

𝑖,𝑗,𝑊 = 𝜕𝑅𝑒
𝑖 (Θ+)

𝜕Θ+
𝑗

and 𝔍𝑒,−
𝑖,𝑗,𝑊 = 𝜕𝑅𝑒

𝑖 (Θ−)
𝜕Θ−

𝑗
. Here, Θ+ and Θ−

are composed as:

Θ+
𝑖 = { Φ𝑖 if 𝑖th node ∈ D+

Ψ𝑖 if 𝑖th node ∈ D− (4.11)

Θ−
𝑖 = { Ψ𝑖 if 𝑖th node ∈ D+

Φ𝑖 if 𝑖th node ∈ D− (4.12)

This division effectively duplicates the degrees of freedom on the wake elements in
order to allow for a discontinuity in the potential, as shown in figure 4. Consider the
element in figure 3a, where the wake splits the element, leaving one node above the
wake and two nodes below the wake. Each node has duplicated degrees of freedom
Φ𝑖, Ψ𝑖. When evaluating the upper terms of the wake in figure 3b, (4.11) is used,
assigning Φ𝑖 and Ψ𝑖 accordingly. If the lower terms are evaluated in figure 3c, (4.12)
is used instead.

Boundary conditions for both sides of the wake are imposed by a least-square
finite-element approach, combining (4.5) and (4.6) in a single two-dimensional
vector equation, by minimising the functional:

Π(Θ+, Θ−) = 1
2

∫
Γ𝑊

‖𝜌+ ∇ Θ+ − 𝜌− ∇ Θ−‖2dΓ = 0 (4.13)

This expression will act as a constraint in the element formulation. The residual
terms and its Jacobian are found by deriving the functional in (4.13), where
derivatives on the density are neglected due to the assumption of small velocity
perturbations 𝑢 = 𝑣 − 𝑉∞ ≪ 𝑉∞, as only streamlined bodies without sharp edges
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Figure 3: Scheme showing the cutting performed in a wake element from Davari
et al. 2019. Wake elements have duplicated degrees of freedom Φ𝑖, Ψ𝑖, which are
divided depending on whether the integration is performed on the upper wake D+

or the lower wake D−.

are considered. Here, 𝑢 represents the velocity difference between the free-stream
unperturbed flow 𝑉∞, and the actual velocity around the airfoil 𝑣. The elemental
contributions of the residual for the constraint are written with the subscript 𝐵
(e.g. 𝑅𝑒,+

𝑖,𝐵 ) to refer to the terms enforcing the boundary conditions of the wake:

𝑅𝑒,+
𝑖,𝐵 (Θ) = 𝜕Π(Θ)

𝜕Θ+
𝑖

= ∫
Γ+

𝑊,𝑒

∇ ̂𝑁+
𝑖 (𝜌+ ∇ Θ+ − 𝜌− ∇ Θ−)dΓ (4.14)

𝑅𝑒,−
𝑖,𝐵 (Θ) = 𝜕Π(Θ)

𝜕Θ−
𝑖

= − ∫
Γ−

𝑊,𝑒

∇ ̂𝑁−
𝑖 (𝜌+ ∇ Θ+ − 𝜌− ∇ Θ−)dΓ (4.15)

where Jacobians are computed and renamed to 𝐵𝑒,+
𝑖,𝑗 and 𝐵𝑒,−

𝑖,𝑗 to refer to the terms
enforcing the boundary conditions of the wake.

𝐵𝑒,+
𝑖,𝑗 =

𝜕𝑅𝑒,+
𝑖,𝐵

𝜕Θ+
𝑗

(Θ) = ∫
Γ+

𝑊,𝑒

𝜌+ ∇ ̂𝑁+
𝑖 ∇ ̂𝑁+

𝑗 + 2 𝜕𝜌+

𝜕‖𝑣‖2 (∇ ̂𝑁+
𝑗 Θ+

𝑖 )(∇ ̂𝑁+
𝑖 Θ+

𝑖 )dΓ

𝐵𝑒,−
𝑖,𝑗 =

𝜕𝑅𝑒,−
𝑖,𝐵

𝜕Θ−
𝑗

(Θ) = − ∫
Γ−

𝑊,𝑒

𝜌− ∇ ̂𝑁−
𝑖 ∇ ̂𝑁−

𝑗 + 2 𝜕𝜌−

𝜕‖𝑣‖2 (∇ ̂𝑁−
𝑗 Θ−

𝑖 )(∇ ̂𝑁−
𝑖 Θ−

𝑖 )dΓ
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Since linear elements are considered, their gradients are constant and the boundary
integrals can be replaced by volume integrals.

𝐵𝑒,+
𝑖,𝑗 =

𝜕𝑅𝑒,+
𝑖,𝐵

𝜕Θ+
𝑗

(Θ) = ∫
D+

𝑊,𝑒

𝜌+ ∇ ̂𝑁+
𝑖 ∇ ̂𝑁+

𝑗 + 2 𝜕𝜌+

𝜕‖𝑣‖2 (∇ ̂𝑁+
𝑗 Θ+

𝑖 )(∇ ̂𝑁+
𝑖 Θ+

𝑖 )dD(4.16)

𝐵𝑒,−
𝑖,𝑗 =

𝜕𝑅𝑒,−
𝑖,𝐵

𝜕Θ−
𝑗

(Θ) = − ∫
D−

𝑊,𝑒

𝜌− ∇ ̂𝑁−
𝑖 ∇ ̂𝑁−

𝑗 + 2 𝜕𝜌−

𝜕‖𝑣‖2 (∇ ̂𝑁−
𝑗 Θ−

𝑖 )(∇ ̂𝑁−
𝑖 Θ−

𝑖 )dD(4.17)

The terms in the system of equations obtained in (4.16) and (4.17) are equivalent
to those defined by the full-potential equation in (4.8), only adapting the degrees
of freedom according to (4.11) and (4.12). If this is expressed in matrix form for
a triangular element with the same cutting as the element shown in figure 3, the
residuals and Jacobians on the auxiliary degrees of freedom are written as:

𝐵𝑒
𝑖,𝑗 = (𝐵𝑒,+

𝑖,𝑗 𝐵𝑒,−
𝑖,𝑗 ) = ⎛⎜

⎝

𝐵+
11 𝐵+

12 𝐵+
13 𝐵−

11 𝐵−
12 𝐵−

13
𝐵+

21 𝐵+
22 𝐵+

23 𝐵−
21 𝐵−

22 𝐵−
23

𝐵+
31 𝐵+

32 𝐵+
33 𝐵−

31 𝐵−
32 𝐵−

33

⎞⎟
⎠

𝑅𝑒
𝑖,𝐵 = (𝑅𝑒,+

𝑖,𝐵
𝑅𝑒,−

𝑖,𝐵
) = ⎛⎜

⎝

𝑅+
2,𝐵

𝑅+
3,𝐵

𝑅−
1,𝐵

⎞⎟
⎠

These terms replace the terms in the auxiliary degrees of freedom of (4.9) and (4.10)
and their Jacobians, acting as a constraint.

𝔍𝑒
𝑖,𝑗,𝑊 = (𝔍𝑒,+

𝑖,𝑗,𝑊 𝔍𝑒,−
𝑖,𝑗,𝑊) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝔍+
11 𝔍+

12 𝔍+
13 0 0 0

𝐵+
11 𝐵+

12 𝐵+
13 𝐵−

11 𝐵−
12 𝐵−

13
𝐵+

21 𝐵+
22 𝐵+

23 𝐵−
21 𝐵−

22 𝐵−
23

𝐵+
31 𝐵+

32 𝐵+
33 𝐵−

31 𝐵−
32 𝐵−

33
0 0 0 𝔍−

21 𝔍−
22 𝔍−

23
0 0 0 𝔍−

31 𝔍−
32 𝔍−

33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑅𝑒
𝑖,𝑊 = (𝑅𝑒,+

𝑖,𝑊
𝑅𝑒,−

𝑖,𝑊
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑅+
1

𝑅+
2,𝐵

𝑅+
3,𝐵

𝑅−
1,𝐵

𝑅−
2

𝑅−
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Θ𝑖 = (Θ+
𝑖

Θ−
𝑖

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Φ1
Ψ2
Ψ3
Ψ4
Φ5
Φ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

These elemental contributions replace the residuals in (4.9) and (4.10) and its
Jacobians, now with the constraint of the boundary conditions of the wake applied
in the auxiliary degrees of freedom. In summary, the above approach allows to

Page 24 of 59



Deliverable 6.4

(a) Mesh with both sides of
the domain and the wake
defined as a distance func-
tion

(b) Portion of the mesh
that lies above the wake

(c) Portion of the mesh
that lies below the wake

Figure 4: Representation of an embedded wake with body fitted geometry. The wake
is defined implicitly through a distance function, and its intersection subdivides
the mesh into two, shown in figures 4b and 4c

model a discontinuity on the potential field, while respecting the wake boundary
conditions, without the need of explicitly model the wake in the mesh. This will be
a key feature for optimisation, where the same mesh will be reused after deformation
according to the geometry change in each optimisation step.

4.2 Deterministic adjoint equations derivation
The sensitivity calculation of the objective function 𝐽 with respect to the design
parameters 𝑧 is now performed. In this problem, 𝑧 is the coordinates of the nodes
defining the airfoil shape. A snapshot of a mesh example is shown if figure 6.

The derivation of the adjoint equation follows the dual approach by Giles and
Pierce 2000, and it starts with the definition of the sensitivities d𝑄

d𝑧 .

d𝑄
d𝑧

= 𝜕𝑄
𝜕𝑧

+ 𝜕𝑄
𝜕𝑢

d𝑢
d𝑧

(4.18)

since the residual of the full potential equation need to be satisfied for all considered
set of 𝑧, the derivative of the residual with respect to the geometry parameters is
zero.

𝐹(𝑢, 𝑧) = 0 ∀𝑢, 𝑧

d𝐹
d𝑧

= 𝜕𝐹
𝜕𝑧

+ 𝜕𝐹
𝜕𝑢

d𝑢
d𝑧

= 0

This allows to find the rate of change of the primal variables with respect to the
geometry parameters.

d𝑢
d𝑧

= −𝜕𝐹
𝜕𝑢

−1 𝜕𝐹
𝜕𝑧
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(a) Potential field on a NACA0012 airfoil at 5°. The discontinuity on the potential caused
by the wake can be seen on the contour fill

(b) Pressure field on a NACA0012 airfoil at 5°. The pressure field is computed using the
gradient of the potential field and Bernoulli’s equation

Figure 5: Contour fills of the primal solution for a NACA0012 airfoil
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Figure 6: Mesh of a body fitted NACA0012 airfoil. The nodes marked with red
define the shape of the airfoil and they are also the geometry parameters considered
in the problem

which is replaced in the expression of the sensitivities in (4.18).

d𝑄
d𝑧

= 𝜕𝑄
𝜕𝑧

− 𝜕𝑄
𝜕𝑢

𝜕𝐹
𝜕𝑢

−1 𝜕𝐹
𝜕𝑧

where the term 𝜕𝑄
𝜕𝑢

𝜕𝐹
𝜕𝑢

−1 can be seen as a the solution of the linear problem for
some variable 𝜆 given by:

𝜕𝑄
𝜕𝑢

= −(𝜕𝐹
𝜕𝑢

)
⊤

𝜆 (4.19)

whose solution 𝜆 is used to assemble the final sensitivities and the partial derivatives
on 𝑧 with:

d𝑄
d𝑧

= 𝜕𝑄
𝜕𝑧

+ 𝜆⊤ 𝜕𝐹
𝜕𝑧

.

Equation (4.19) is known as the ‘adjoint equation’.

4.2.1 Partial derivatives of the physical problem

Next, the terms involving the adjoint equations are derived. The derivative of the
residual of the problem with respect to the primal variables is the Jacobian of the
problem defined in (4.8), also known as the left-hand side term, where the primal
variable is the potential 𝑢 = Φ.

𝜕𝐹(𝑢, 𝑧)
𝜕𝑢

= 𝜕𝐹(Φ, 𝑧)
𝜕Φ

= 𝔍 (4.20)
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The derivative of the residual with respect to the geometry parameters 𝑧 is computed
by finite differences for some perturbation 𝜀.

𝜕𝐹(𝑢, 𝑧)
𝜕𝑧

= 𝜕𝐹(Φ, 𝑧)
𝜕𝑧

= 𝐹(Φ, 𝑧 + 𝜀) − 𝐹(Φ, 𝑧)
𝜀

. (4.21)

Evaluating the residual for a new set of geometry parameters, 𝐹(Φ, 𝑧 + 𝜀), does
not require to compute the solution of the whole analysis, since the potential field
remains constant. In this case, the same potential field Φ obtained in the primal
analysis is used to compute the Jacobians 𝐹(Φ, 𝑧 + 𝜀), but the coordinates 𝑧 are
different. This simply requires to recompute the shape function and shape function
derivatives to evaluate the term 𝐹(Φ, 𝑧 + 𝜀), which is performed elementally. Note
that these partial derivatives are also applicable to the wake boundary elements,
where 𝐹 is replaced by (4.14) and (4.15) and the partial derivative 𝜕𝐹(𝑢,𝑧)

𝜕𝑢 by the
Jacobians in (4.16) and (4.17).

4.2.2 Partial derivatives of the lift coefficient

Following the potential flow formulation, the lift force can be expressed in terms
of the free-stream quantities by the Kutta–Joukowsky theorem for streamlined
bodies Anderson and Venkatakrishnan 1999.

𝐿 = 𝜌∞𝑉∞Γ,

where Γ is the circulation of the flow and the subscript ‘∞’ denotes free-stream
quantities. It can be shown that Γ can be expressed as the potential jump across
the domain Γ = Φ+ − Φ− Nishida and Drela 1995. The lift force can be divided by
a reference pressure to retrieve the lift coefficient.

𝐶𝑙 = 𝐿
1
2𝜌∞𝑉 2

∞𝑐
= 2

𝑉∞𝑐
(Φ+ − Φ−)

The derivative of the objective function with respect to the primal variables is
computed analytically from the potential-jump expression of the lift coefficient.

𝜕𝐶𝑙
𝜕𝑢

= 𝜕𝐶𝑙
𝜕Φ

= 2
𝑉∞𝑐

× { 1 if Φ = Φ+

−1 if Φ = Φ−

In order to compute the sensitivities of this objective function with respect to the
geometry parameters, d𝐶𝑙

d𝑧 , an adjoint problem is solved. In a deterministic case,
these sensitivities are computed as:

d𝐶𝑙
d𝑧

= 𝜕𝐶𝑙
𝜕𝑧

− 𝜆⊤ 𝜕𝐹(𝑢, 𝑧)
𝜕𝑧

(4.22)
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Here 𝐹 is the residual of the potential flow problem whose partial derivative are
computed in (4.20) and (4.21). 𝜆 is the set of adjoint variables, which are computed
by solving the adjoint equation:

−(𝜕𝐹(Φ, 𝑧)
𝜕Φ

)
⊤

𝜆 = 𝜕𝐶𝑙
𝜕Φ

Finally, the partial derivative of the objective function with respect to the geometry
parameters is null in this case, since the expression of the lift coefficient for the
potential jump does not depend explicitly on the geometry parameters.

𝜕𝐶𝑙
𝜕𝑧

= 𝜕
𝜕𝑧

( 2
𝑉∞𝑐

(Φ+ − Φ−)) = 0

Assembling the partial derivatives, the final sensitivities are computed using (4.22).
The values of the sensitivities can now be used to update the geometry and

advance in the design space. However, using the sensitivities as they are would
result in mesh irregularity after a few iterations. For this reason, the Vertex-
Morphing method (Hojjat et al. 2014) is employed to compute the actual shape
update at every iteration, which smooths the shape update in order to preserve
mesh quality. This approach ensures the same solution is achieved on convex
optimisation problems independently of the filter radius. However, for non-convex
optimisation problems, which is the common case in engineering, this approach
may lead to some local minimum depending on the filtering size chosen. For this
problem, a filter radius that lies between half the chord and the thickness of the
airfoil is chosen.

4.2.3 Partial derivatives of volume and perimeter functionals

The volume of the domain can be used either as an objective function, where
typically the volume aims to be minimised, or as a constraint, where the geometry
of study is restricted to not be greater or less than a certain value. The expression
of the volume results from the integral of the domain, which is computed using the
shape functions,

𝑉 = ∫
D

dD. (4.23)

The volume gradient is computed by finite differences for some perturbation 𝜀:

𝜕𝑉 (𝑧)
𝜕𝑧

= 𝑉 (𝑧 + 𝜀) − 𝑉 (𝑧)
𝜀
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𝛼
𝑉∞

chord line

leading edge
trailing edge

Figure 7: Scheme showing some of the main characteristic and attributes on an
airfoil, which play an important role in the optimisation problem, showcasing the
free stream velocity 𝑉∞, the angle of attack 𝛼, and the chord line, defined by the
leading and trailing edge

The perimeter can also be used as an objective function or constraint. The
expressions and utilities used for the volume can be used to compute the perimeter,
but applied on the boundary surfaces.

𝑃 = ∫
Γ𝑔

dΓ𝑔 (4.24)

where Γ𝑔 refers to the boundary enclosing the geometry of the airfoil. The gradient
of the perimeter is also computed by finite differences.

𝜕𝑃(𝑧)
𝜕𝑧

= 𝑃(𝑧 + 𝜀) − 𝑃(𝑧)
𝜀

4.2.4 Partial derivatives on airfoil geometry definitions

In the context of airfoil optimisation, it is important to define some of the geometry
aspects that come into play and that define the airfoil shape and condition. In the
following figure, a highlight of the most important features of an airfoil is presented.
The chord line is the line defined by both the leading edge and the trailing edge.
The angle between the chord line and the free stream direction is known as the
‘angle of attack’.

Both the chord and the angle of attack will be enforced as constant, as a change
of angle of attack or a different chord length changes drastically the airfoil nature.
It is desired that the optimal shape obtained is some variation of the initial airfoil
which keeps constant the initial angle of attack and the chord of the airfoil.

Angle of attack As stated above, the first geometry definition that will be
considered is the angle of attack of the airfoil. The angle of attack is defined as the
angle between the inflow velocity and the chord line. Let 𝑣 be the inflow velocity
and 𝒄 the chord vector, defined as the position of the leading edge and the trailing
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edge, with the trailing edge as origin. The angle of attack is then defined as the
angle between these two vectors:

𝛼 = arccos( 𝑣 ⋅ 𝒄
‖𝑣‖‖𝒄‖

) (4.25)

The gradient of the angle of attack will only depend on the position of the
trailing edge and the leading edge nodes. It can easily be computed by finite
differences.

𝜕𝛼
𝜕𝑧

= 𝛼(𝑧 + 𝜀) − 𝛼(𝑧)
𝜀

Chord line length Another feature that is important to preserve across the
design space is the chord length, that can be defined as the norm of the chord
vector, represented by the leading and trailing edge nodes.

𝑙𝑐 = ‖𝒄‖ (4.26)
And its gradient is easily computed by finite differences:

𝜕𝑙𝑐
𝜕𝑧

= 𝑙𝑐(𝑧 + 𝜀) − 𝑙𝑐(𝑧)
𝜀

Optimisation problem In this setup, the desired optimisation problem is to
maximise lift will keeping constant the airfoil characteristics and volume.

Problem 4 (Deterministic maximisation of the lift). For convenience, the op-
timisation problem will be defined as the minimisation of the negative of the lift
coefficient:

𝑧⋆ ≔ argmin{𝐽(𝑧) ∶ 𝑧 ∈ 𝑍, 𝐹(𝑢, 𝑧) = 0, 𝑲(𝑧) = 0},
with 𝐽(𝑧) = 𝑄(𝑧) ≔ −𝐶𝑙.

In this scenario, four constraints 𝑲(𝑧) = 0 are applied, where the subscript ‘0’
denotes the initial values of the quantities to be constrained:

𝐾1(𝑧) = 𝑉0 − ∫
D

dD

𝐾2(𝑧) = 𝑃0 − ∫
Γ𝑔

dΓ𝑔

𝐾3(𝑧) = 𝛼0 − arccos( 𝑣 ⋅ 𝒄
‖𝑣‖‖𝒄‖

)

𝐾4(𝑧) = 𝑙𝑐0 − ‖𝒄‖
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Figure 8: Adjoint field 𝜆 corresponding to the resolution of the adjoint problem
with the lift coefficient as quantity of interest. This field was obtained by solving
an extra linear problem comparable to the primal one, and it is an intermediate
step towards obtaining the final sensitivities, as seen in (4.2)

(a) Shape update on the airfoil geometry on a gradient descent step

(b) Shape update on the airfoil geometry with the constraints activated on the trust
region algorithm

Figure 9: Two snapshots of the optimisation problem showcased in the deliverable,
corresponding to step 4 and step 6 of the optimisation loop. On 9a, the problem
is driven by the objective function only, and the shape update is focusing on
minimising it. On 9b, the constraints are activated and the shape update is trying
to correct the current shape to satisfy the constraints
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where the volume, perimeter, angle of attack and chord lengths have been substi-
tuted by (4.23), (4.24), (4.25) and (4.26) respectively. ♦

A trust-region optimisation algorithm is used to solve the problem. This
algorithm works as a classical gradient-descent method if the constraints are
satisfied. In case a constraint is not satisfied, the gradient is corrected using the
gradient of the constraints to correct the shape update and respect the constraints.

4.3 Results on deterministic optimisation
An example of an optimisation problem using the lift sensitivities together with the
geometric constraints defined in the previous section is shown next, for a NACA0012
profile with an angle of attack 𝛼 = 5°. The problem has been solved using the
Vertex Morphing method using a Gaussian filter with radius 𝑟fil = 0.3𝑐, i.e. 30 %
of the airfoil chord.

In figure 10a the evolution of the objective function with the number of optim-
isation steps is shown, reaching convergence of the algorithm after 121 iterations.
The convergence criteria used is the relative change of the objective function of
a given step with its previous one, with a tolerance set 0.1 %. The shape update
is controlled by a step size, that is reduced in half when the objective function
oscillates. The initial step size was set to 𝑘 = 0.1.

In figure 11, a comparison between the initial and optimal shape is shown, as
well as the pressure distribution in both cases.

4.4 Prospects on optimisation under uncertainty
Let (𝑽∞, Φ∞) be uncertain parameters, following a known distribution. The de-
terministic optimisation problem 4 becomes a problem of OUU, which we reformulate
similarly to problem 1.

Problem 5 (Airfoil shape for CVaR-optimal lift). We use the notations from
problem 4. The lift coefficient 𝐶𝑙 ≕ −𝑄(𝑧) is now a random variable, and we wish
to minimise CVaR𝛽(−𝐶𝑙). We define the optimal airfoil as 𝑧⋆ such that

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ 𝜙(𝑄(𝑧), 𝑠) ∶ (𝑧, 𝑠) ∈ 𝑍 × R, 𝐹 (𝑢, 𝑧) = 0, 𝑲(𝑧) = 0}

♦

Like problem 3 for the Van der Pol oscillator (from § 3), this problem falls
into the category of OUU problems represented by problem 5 and discussed in § 2,
except for the constraints represented by 𝑲. Let us note 𝑲−1(0) ⊂ 𝑍 the set of
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Figure 10: Evolution of the objective function and the relative tolerance in the
optimisation problem showcased. Relative tolerance of 0.1 %; convergence reached
after 121 iterations.
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(b) Pressure distribution on the initial and optimised airfoil, which produces the increase
in lift. ̂𝑥 refers to the normalised position of the airfoil coordinated with the chord

Figure 11: Example of the results obtained on the resolution of an optimisation
problem using the lift sensitivities, with volume, angle of attack and chord length
as constraints. The optimal shape was achieved after 121 iterations.
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admissible shapes and Π𝑲−1(0) ∶ 𝑍 → 𝑲−1(0) a projector onto that set. A simple
approach to account for these constraints in algorithm 2 would be to replace l. 11
with

𝑧𝑘+1 ≔ Π𝑲−1(0)(𝑧𝑘 + 𝛾𝑘𝑝).

The rest of algorithm 2 can be used verbatim to solve problem 5, since adjoint-based
sensitivities are available. Instead of the time discretisation, the levels in the MLMC
method would be defined by the spatial discretisation, i.e. the refinement of the
mesh. After being implemented and tested on the simpler Van der Pol oscillator,
algorithm 2 will be applied to this benchmark problem.
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Figure 12: Absolute World twin-tower skyscraper complex. Mississauga, Ontario,
Canada

5 Unsteady wind around a building

5.1 Drag of a twisted, tapered building
The past decades have seen increasingly-taller building structures built all around
the world. Lateral loads like that of external wind force play a major role in
deciding the structural system of these buildings. As the wind load attracted by the
building increases with greater height, many mitigation strategies have been used
in practice. Geometrical modification of the building shape is found to be effective
in reducing the wind load on tall buildings. These include global geometrical
modifications and local geometrical modifications. Various methods for global
geometrical modifications exist: tapering, twisting, providing openings, providing
stepping, et cætera (etc.). Herein, two such global geometrical modifications are
applied to an elliptical tower. The twist along the axis and the tapering of the
structure are the design parameters and are optimised to minimise the total force
at the base of the building. Here, the geometry is motivated from the Absolute
World towers shown in figure 12.

5.1.1 Uncertainties in the incoming wind flow

Wind is associated with inherent uncertainties. As is common in the wind-engin-
eering community, we model the natural wind effects in the atmospheric boundary
layer (ABL) by decomposing the incoming wind velocity into its stationary mean
profile 𝑢 and its unsteady turbulent fluctuations 𝑢′: 𝑢 = 𝑢 + 𝑢′.
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The mean wind profile is a contribution to the velocity field which changes over
the span of several hours or days. On the contrary, the turbulent fluctuations in
wind introduce short-term gusts with a life span ranging from few seconds to several
minutes. However, the mean wind velocity and direction are also associated with
uncertainties. The wind profile along the height is associated with the uncertainties
in the terrain categories. During analysis, one needs to take into account the many
uncertain parameters in the inlet conditions of a typical problem of CFD. Although
the fluctuations will eventually be modelled and included in the simulations, they
have been ignored in the work reported here. The wind inlet consists exclusively of
the mean profile, which we proceed to describe below.

Most of the buildings reside entirely within the ABL. An ABL is characterised
by constant shear stress in the vertical direction (Kaimal and Finnigan 1994). The
ABL is neutrally stable at high wind speeds. Ground friction is majorly contributed
from pressure drag – a force generated by pressure differences near the surface
and is caused by wind flowing across obstacles at the surface. The ground friction
depends largely on the type of the terrain and the size of the obstacles. The various
terrain types are classified into terrain categories in codes and standards (Structural
Eurocode 2005).

In this study, the local terrain type is assumed to be sufficiently characterised
by a single roughness length parameter ̄𝑥3 > 0. The mean value of this parameter
for each of the terrain categories can be found in the design codes. In the current
study, the range of values of this parameter for each terrain category is taken
from Probabilistic model code (Joint Committee on Structural Safety 2001). In
addition, our mean-profile model incorporates the friction velocity 𝑢∗, which can
be derived from the shear stress on the ground 𝜏0 by the simple formula 𝜏0 = 𝜌𝑢2

∗ ,
and the incidence wind angle 𝜃.

Let D denote a section of the ABL lying above a flat section of Earth’s surface,
parameterised by the Cartesian coordinates (𝑥1, 𝑥2, 𝑥3). Under the assumptions of
neutral stability and homogeneous roughness, the mean velocity 𝑢 = 𝑢(𝑥3) can be
modelled by the following logarithmic profile (Kareem and Tamura 2015):

𝑢 = 𝑢∗
𝜅

ln(𝑥3
̄𝑥3

+ 1)𝑒(𝜃), (5.1)

where 𝑒(𝜃) ≔ (cos(𝜃), sin(𝜃), 0) ∈ R3

is a unit normal vector denoting the mean wind direction, and 𝜅 ≈ 0.41 is the von
Karmán constant.

Each of the parameters 𝑢∗, 𝜃, and ̄𝑥3 in (5.1) are random variables. It is
often assumed (see ibid.) that the friction velocity 𝑢∗, averaged over all angles
𝜃, obeys a Weibull distribution 𝒲(𝜆, 𝑘), with scale 𝜆 and shape 𝑘. Likewise,
the variation of the wind angle 𝜃 is assumed uniform. In this study, we assume
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Table 1: Fluid properties and building details

Quantity Value Unit

Density 1.225 kg m−3

Viscosity 1.507 · 10−5 m2 s−1

Dynamic viscosity 1.846 · 10−5 N s m−2

Reynolds number 9.7 · 107

Characteristic length 45 m
Height of the building 180 m
Major base diameter 45 m
Minor base diameter 30 m

that ̄𝑥3 ∼ 𝒰(𝑥𝐿
3 , 𝑥𝑈

3 ), where 𝑥𝐿
3 and 𝑥𝑈

3 are positive constants inferred from the
engineering code book Probabilistic model code. If 𝑢∗, 𝜃, and ̄𝑥3 are independent
random variables, then this is enough to form a complete, parameterised statistical
model for 𝑢.

5.1.2 Details of numerical simulation

Table 1 lists the values used for the fluid properties and the building characterist-
ics. The large Reynolds number in the current simulation makes the flow highly
turbulent. Since natural wind is being considered in this work, the incompressible
Navier–Stokes model used for the wind flow.

Problem 6 (Incompressible Navier–Stokes flow). The incompressible Navier–Stokes
equations state the conservation of mass and linear momentum in a fluid domain
D. The mass conservation reads

∇ ⋅𝑢 = 0 (5.2)

where 𝑢 is the fluid velocity. The momentum conservation is expressed as

𝜌𝜕𝑡𝑢 + 𝜌𝑢 ⋅ ∇ 𝑢 − ∇ ⋅𝜎 = 𝑓, (5.3)

where 𝜌 is the fluid density, 𝜎 is the stress tensor, and 𝑓 is the external force acting
on D. Suitable initial and boundary conditions need to be prescribed for (5.2)
and (5.3). The initial and boundary conditions for the problem are

𝑢 = 𝑢0 over D × {0}
𝑢 = 𝑢𝐷 over Γ𝐷 × ]0, 𝑇]

𝜎 ⋅ 𝒏 = 𝒕𝑟 over Γ𝑁 × ]0, 𝑇]
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Figure 13: Details of the simulation domain and boundary conditions

where 𝑢0 is the initial velocity field; 𝑢𝐷 is the imposed velocity on the Dirichlet
boundary Γ𝐷; 𝒏 is the outer normal vector; 𝒕𝑟 is the imposed traction acting along
the Neumann boundary Γ𝑁. ♦

The wind flow around the building is simulated using CFD analysis with the
open-source Kratos Multiphysics solver (Ferrándiz, Bucher et al. 2020). This
involves a finite-element method (FEM) for flow problems based upon a variational
multi-scale (VMS) formulation from Cotela-Dalmau et al. 2016. The fluid domain
is modelled with fractional step elements. The computational domain is detailed in
the figure 13, along with the boundary conditions. The blockage ratio5 is less than
0.8 %.

The geometry is meshed with different refinement zones and the details of the
adopted meshes are shown in figure 14. The general mesh structure is preserved for
all the geometries and optimisation steps. Within this work, the geometry subject
to shape optimisation encounters shape updates driven by the gradient-descent
optimisation algorithm employed. The embedded CFD approach as proposed
in Zorrilla et al. 2019 is herein used in the preliminary results. However, for the
simulations with a high Reynolds number, a very fine mesh resolution is required
for the representation of the building geometry and hence a body-fitted approach
with mesh generation is also being explored.

In the original work of ibid., the constraints are generally formulated for the
weak imposition of slip conditions along the boundary of the embedded geometry.
The latter constraint is formulated by means of an auxiliary parameter whose limit
towards zero recovers the no-slip condition which is of interest within this study.

5Ratio of the projected area of the structure along the flow direction to the cross-sectional
area of the domain
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Full domain

Section at height of 120m

Figure 14: Details of adopted meshes

The corresponding variational formulation of the VMS-stabilised Navier–Stokes
equations is extended by Nitsche-type terms accounting for a weakly-zero-velocity
field along the boundary of the embedded geometry. The formulation of the
momentum conservation includes a penalty term on the embedded boundary to
constrain the normal projection of velocity in order to ensure non-penetration (see
Zorrilla et al. 2019, for details).

5.2 Minimisation of the expected base moment
5.2.1 Description of the optimisation problem

Geometry of the building A tall building of height 180 m is used for the
problem. The two design parameters that can be optimised are the twist of the
building and the tapering of the building. These two parameters are shown in
figure 15. Twist denotes how much the top cross section is rotated around vertical
axis in the clockwise direction with respect to the cross section at the base. The
major and minor axis of each of the cross section is changed along the height in
such a way that the area of cross section remains the same. This indicates that the
floor area of the building (i.e. the usable space) remains the same for the initial and
the optimal geometry. Tapering along the height indicates how much the minor
axis length is changed along the height. The major axis length is constrained to
this quantity through the area.

Consequently, the design space of this problem is R2 ≕ 𝑍. It parameterises
the building surface 𝐵(𝑧). We denote by 𝒜 ≔ [0, 2𝜋[ × ]0, +∞[ ⊂ 𝑍 the set of
admissible designs.
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Figure 15: Details of tower geometry and design parameters
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Quantities of interest A complete and accurate modelling and analysis of the
building geometry under uncertain wind is required as the wind load are complex
and flow pattern is greatly influenced by the geometrical features of the building.
Two design criteria need to be met in the design of the building, namely the
strength and serviceability criteria. The strength criterion guarantees that the
building will not fail under the extreme design load with a specific probability. The
serviceability criterion ensures the comfort of the occupants in the building. These
are the displacement and acceleration of the building are below certain threshold
with a specific probability. The quantities of interest discussed in the current study
relate to the strength criterion of the design; they are of interest to the design of
the foundation and structural elements of the building. A reduction in these values
indicate a reduction in total cost of the building.

Two important quantities regarding the strength criterion are the force and the
base moment. For any given design 𝑧 ∈ 𝑍, the force applied by the fluid at any
point over the surface of structure 𝐵(𝑧) is

𝑭 (𝑧) = ∫
𝐵(𝑧)

𝑝𝒏d𝑆,

where 𝒏 is the normal to the surface d𝑆 and 𝑝 is the pressure solution of problem 6;
the values from table 1 still apply. Similarly, the fluid pressure creates at the base
𝑂 of the building the mechanical moment

𝑴𝑂(𝑧) = ∫
𝐵(𝑧)

(𝒙 − 𝑂) × 𝑝(𝒙)𝒏(𝒙)d𝑆(𝒙).

NB 𝑝 depends directly on the design as well. Since 𝑝 depends on random events, so
do 𝑭 (𝑧) and 𝑴(𝑧).

Formulation of the optimisation problem In this application, so far we have
considered the following minimisation problem.

Problem 7 (Minimal expected base moment). Let us recall the previous definitions
of 𝒜, 𝐵 and 𝑴𝑂. We consider as quantity of interest the time average of the
magnitude of the base moment:

𝑄(𝑧) ≔ ⟨‖𝑴𝑂(𝑧)‖2⟩𝑇. (5.4)

The optimal design 𝑧⋆ ∈ 𝑍 is defined as the one minimising the expected value of
this random quantity:

𝑧⋆ ≔ argmin{𝐽(𝑧) ≔ E(𝑄(𝑧)) ∶ 𝑧 ∈ 𝒜}.

♦
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A critical drawback of the choice of risk measure in this problem is that the
expectation does not account for extreme loading conditions. This shortcoming
will be discussed in § 5.3.

5.2.2 Preliminary results on optimisation under uncertainties

Some preliminary results are included in this section. The simulations are run only
for a time window 𝑇 = 90 s. At a given design 𝑧, we choose to approximate 𝐽(𝑧)
from 𝑚 ∈ N i.i.d. samples with a MC estimator 𝜇𝑚; this is one of the common
procedures used in stochastic optimisation (Kouri and Shapiro 2018). To describe
the procedure, we begin by using problem 7 as an example.

At each iteration 𝑘 ∈ N, we choose a number of samples 𝑚𝑘. Let 𝑄(𝑖)(𝑧𝑘) be
independent random variables following the same probability distribution as 𝑄(𝑧𝑘).
We estimate

𝐽(𝑧𝑘) ≈ 𝜇𝑚𝑘
(𝑄(𝑧𝑘)) = 1

𝑚𝑘

𝑚𝑘

∑
𝑖=1

𝑄(𝑖)(𝑧𝑘)

The gradient of each sample, ∇ 𝑄(𝑖)(𝑧𝑘), is estimated via finite differences with
a first-order, forward scheme:

Δℎ,𝒆𝑖
𝑄(𝑖)(𝑧𝑘) ≔ 𝑄(𝑖)(𝒛𝑘 + ℎ𝒆𝑖) − 𝑄(𝑖)(𝒛𝑘)

ℎ
≈ 𝒆𝑖 ⋅ ∇ 𝑄(𝑖)(𝑧𝑘).

From these we get an approximation Δℎ𝑄(𝑖)(𝑧𝑘) of ∇ 𝑄(𝑖)(𝑧𝑘), similarly to what
was described in § 2.1 p. 10. This involves 1 + dim(𝑍) numerical fluid simulations
per sample. Due to the chaotic nature of the flow, an accurate gradient for an
individual sample requires a long time interval (Lea et al. 2000), the exact length
of which is problem-dependent. In addition, special care must be taken to select
an appropriate finite difference increment in each component of design space.

Once each of the individual estimations Δℎ𝑄(𝑖)(𝑧𝑘) have been computed, we
estimate the descent direction as

𝜇𝑚𝑘
(Δℎ𝑄(𝑧𝑘)) ≈ ∇ 𝐽(𝑧𝑘).

Then we choose a step size 𝛾𝑘 ∈ ]0, +∞[ and update the design in a steepest-descent
fashion:

𝑧𝑘+1 = 𝑧𝑘 − 𝛾𝑘𝜇𝑚𝑘
(Δℎ𝑄(𝑧𝑘)).

The initial and final design are shown in figure 16. The objective function and the
design parameters are shown in figure 17. The CVaR is also computed for each of
the optimisation steps along with the expectation.
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(a) Initial geometry (b) Final geometry

Figure 16: Geometry modifications from optimisation
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Figure 17: Optimisation results
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5.3 Prospects on CVaR optimisation
In many applications, the CVaR is a more realistic measure of risk than the
VaR because controlling expected failure states is more important than simply
controlling the most optimistic failure state. Indeed, VaR𝛽(𝑋) represents the
most optimistic value that 𝑋 can achieve in the worst (1 − ) × 100 % of possible
events. Alternatively, CVaR𝛽(𝑋) represents the expected value of 𝑋 in the worst
(1 − ) × 100 % of possible events. Therefore, in the near future we wish to consider
a problem of OUU similar to problem 7 but using the CVaR instead of the expectation
as a risk measure.

Consequently, we reformulate problem 7 into problem

Problem 8 (CVaR-minimal base moment). We define 𝑄 as in (5.4): the temporal
average of the squared magnitude of the base moment. The optimal design 𝑧⋆ that
we seek is such that

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ 𝜙(𝑄(𝑧), 𝑠) ∶ (𝑧, 𝑠) ∈ 𝒜 × R}.

The set of admissible designs 𝒜 is defined as in problem 7. ♦

The optimisation problem 8 fits into the category discussed in § 2. Therefore,
the generic algorithm 1 is applicable, albeit not exactly as in § 3 and 4. There are
two major differences:

(I) the turbulent flow is too chaotic for MLMC methods to perform well, so we
consider only single-level MC methods;

(II) adjoint-based sensitivities are not available to us, which lead us to consider
finite-difference methods to estimate the gradient of the objective function.

Item (I) does not prevent us from applying algorithm 2, since a MC estimator
is a particular MLMC estimator. However, it prevents us from leveraging simpler
models to reduce the cost of statistical estimations. This may yet be achieved with
a multi-fidelity Monte Carlo (MFMC) approach, which may perform better than
a MLMC one in this case. We refer the reader to deliverable 5.4, § 5.1 for more
details on this option.

Item (II) is the only change to algorithm 2 required for problem 8 The major
drawback of finite differences compared to the adjoint approach is the complexity
with respect to dim 𝑍. As discussed previously in § 2.1 p. 10, the partial objective
function 𝐽1 ≔ 𝒛 ↦ 𝐽(𝒛, 𝑠) (for a given 𝑠 ∈ R) has to be evaluated at every point
of a stencil which grows at least linearly with dim 𝑍. Consequently, only shapes
with few parameters can realistically be optimised. Here are two considerations to
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mitigate this. First, let us consider the simple example of a first-order, forward
difference scheme:

E(D 𝐽1(𝒛)(𝒆𝑖)) ≈ E(Δℎ,𝒆𝑖
𝐽1(𝒛)) = Δℎ,𝒆𝑖

E(𝐽1(𝒛)),

with Δℎ,𝒆𝑖
𝐽1(𝒛) ≔ 𝐽1(𝒛 + ℎ𝒆𝑖) − 𝐽1(𝒛)

ℎ
.

Its variance reads

Var(Δℎ,𝒆𝑖
𝐽1(𝒛)) = 1

ℎ2 (Var(𝐽1(𝒛 + ℎ𝒆𝑖)) + Var(𝐽1(𝒛))

− 2Cov(𝐽1(𝒛 + ℎ𝒆𝑖), 𝐽1(𝒛))). (5.5)

We see from (5.5) that a high, positive correlation between the values of 𝐽1 across
the stencil may yield a finite-difference coefficient with much smaller variance than
the individual values of 𝐽1. It is therefore beneficial to compute samples of 𝐽1
across the stencil jointly rather independently, i.e. for the same random events:

E(Δℎ,𝒆𝑖
𝐽1(𝒛)) ≈ 𝜇𝑚′(Δℎ,𝒆𝑖

𝐽1(𝒛)) ≠ 𝜇𝑚′(𝐽1(𝒛 + ℎ𝒆𝑖)) − 𝜇𝑚′(𝐽1(𝒛))
ℎ

. (5.6)

This dependent sampling is even necessary, since setting Cov(𝐽1(𝒛 + ℎ𝒆𝑖), 𝐽1(𝒛))
to 0 in (5.5) entails limℎ→0 Var(Δℎ,𝒆𝑖

𝐽1(𝒛)) = +∞. Even then, a good choice of
value for ℎ is not trivial: reducing it may increase Var(Δℎ,𝒆𝑖

𝐽1(𝒛)).
Equation (5.6) leads us to the second consideration. The estimation of this

gradient occurs at line 6 of algorithm 2, at which point 𝑚 samples of 𝐽1(𝑧𝑘) are
known, from lines 4–5. We propose to choose as many as possible of the 𝑚′ random
events used in (5.6) from these 𝑚 events. Thus, only 𝑚′ samples of 𝐽1(𝒛𝑘 + ℎ𝒆𝑖)
and (𝑚′ − 𝑚)+ of 𝐽1(𝒛𝑘) need be computed along each direction 𝒆𝑖.

5.4 Variation: parameterised facade
We present here a final application of interest to the project, proposed by our
partner str.ucture. It is a variation of the previous problem of OUU, with a
different building shape and parameterisation. The goal is to optimise a facade
design without interference on the structure itself (i.e. sectional geometry fixed).
This application is motivated by its industrial interest: such designs are already
being investigated and even built, as illustrated by the example on figure 18.

Ideally, the whole volume would be parameterised with a rich design space
(e.g. as the airfoil in § 4), to achieve the kind of design represented in figure 19.
However, since adjoint-based sensitivities are not currently available for this CFD
problem, we use a finite-difference method to estimate the shape sensitivities; this
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Figure 18: Aqua tower in Chicago, Illinois. Credits to Steve Hall © Hedrich Blessing

method is notoriously expensive in high dimension. Therefore, we consider a single
bulge on the facade, as represented on figure 20. This spherical bulge is defined by
its radius and the cylindrical coordinates of its centre, thus the design is controlled
by four parameters:

• the radius of the bulge;
• the radial distance of the bulge centre to the axis of the building6;
• the azimuth angle of the bulge centre around the axis of the building6;
• the height of the bulge centre.
Consequently, the design space is 𝑍 ≔ R4 and the set of admissible designs is

𝒜 ≔ [√𝑏2
1 + 𝑏2

2, 𝑏3] × [0, 𝑏3] × [0, 2𝜋[ × [0, √𝑏2
1 + 𝑏2

2]; (5.7)

where 𝑏1, 𝑏2, and 𝑏3 are respectively the length, width, and height of the building.
The box constraints represented by 𝒜 ⊊ 𝑍 amount to preventing the bulge from
being too large and keeping its centre within the cylinder circumscribing the
building.

Problem 9 (Facade for CVaR-minimal base moment). Let us denote by �̃�(𝑧)
a building consisting of a bulge parameterised by 𝑧 ∈ 𝑍 over a fixed block of
dimensions 𝒃 ∈ R3, as described above. We wish to find the optimal design 𝑧⋆
defined as

(𝑧⋆, 𝑠⋆) ≔ argmin{E(𝜙(𝑄(𝑧), 𝑠)) ∶ (𝑧, 𝑠) ∈ 𝒜 × R}.
6In the horizontal plane.
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Figure 19: Conceptual goal of facade design

Figure 20: Parametric facade design with few parameters
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The set of admissible designs is given in (5.7); the function 𝜙 is expressed in (2.3);
and the quantity of interest is defined in (5.4) from the base moment. ♦

As expressed above, the industrial interest is the main motivation for this
problem. From the point of view of the properties of the optimisation problem, it
is not different from problem 8 – the reformulation of problem 7 with the CVaR
as measure of risk. Therefore, the methodology discussed in § 5.3 apply here as
well. The larger dimension of the design space will only stress the challenge of
computing efficiently the descent direction.
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6 Conclusion
This report brought together work on optimisation under uncertainties (OUU) for
the efficient and accurate optimisation of the conditional value at risk (CVaR) on one
hand, and developments on computational fluid dynamics (CFD) and deterministic
optimisation for the numerical simulation of engineering problems on the other
hand. The applicability of the method proposed was explained, along with possible
solutions to the issues identified. This led to the explanation of the next steps to
take until the end of the projects.

The practical optimisation method proposed in this report is of the gradient-
descent type and relies either on adjoint solutions or finite differences for the
computation of shape sensitivities. Statistical estimations are performed with a
multi-level Monte Carlo (MLMC) method whose accuracy is controlled via reliable
error estimators, which allow one to adapt the sample sizes to the required precision.
The algorithm proposed is meant to be cost-efficient, and well-suited to parallel
computing. The particularisation of this algorithm to a specific unsteady problem
was illustrated on the Van der Pol oscillator. This trial problem is comparatively
easy to implement and solve, and therefore will be used to assess the implementation
and performance of the algorithm.

Two target applications were described in detail, and the application of the
proposed optimisation method was presented. First, the shape optimisation of an
airfoil is a problem that has been extensively studied, which evinces a suitable
mesh convergence and for which the adjoint-based sensitivities can be computed.
Results of deterministic optimisation are already available and the application
of the proposed method is straightforward, although its implementation is more
involved (fluid solver, remesher, etc.); its higher cost will test the efficiency of
the optimisation method. It is already used as a benchmark within the project,
and will serve as such for the tools of OUU, once implemented. Secondly, the
shape optimisation of a building in turbulent wind is the most emblematic and
most aspired application of the ExaQUte project. It is also the most challenging
problem discussed: the chaotic behaviour of turbulent fluids precludes the use of a
MLMC method, and adjoint solutions are not available to us; work on its simulation
is still underway. An adaption of the optimisation method was proposed, with
a single-level Monte Carlo (MC) method and finite differences instead of adjoint
solutions. Other leads will be explored for the acceleration of statistical estimation
– e.g. multi-fidelity approaches. This problem was presented in two variants of
shape: the twisted and tapered building, already well studied; the parameterised
facade, novel to the project and proposed for its industrial interest.

The next step will be to implement the proposed optimisation method. Most
of the tools of uncertainty quantification required are already available in the
XMC (Ayoul-Guilmard, Ganesh, Nobile, Rossi et al. 2020) library. However, a few
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improvements and new features will be required: ability to resume an interrupted
algorithm, better parallelisation, interface extended for optimisation, etc.. Many
recent and ongoing improvements on efficient parallelisation are to be leveraged
in the optimisation tool; e.g. support for Message Passing Interface (MPI) in the
solver and remesher. This tool, once tested locally on the oscillator problem,
will be benchmarked on the airfoil problem in a distributed environment – more
challenging on the implementation and efficiency. Finally, this will be applied to –
and adjusted for – the building problem, benefiting from the future improvements
on its simulation. This is the eventual goal for the end of the project.

There are a few noteworthy topics of interest that are beneficial but not necessary
to ExaQUte. These deserve to be mentioned as they may be pursued concurrently
or subsequently to the project. First the two ideas mentioned in § 3.3: to use
varying time windows for stochastic optimisation of a temporal average, and to
explore alternative interpretations of the CVaR for random processes. Then there
is the research of a multi-fidelity approach well-suited to turbulent fluid dynamics.
Finally, adaptive mesh refinement such as developed in the ExaQUte project could
be leveraged much more efficiently in a MLMC method with a more sophisticated
strategy.
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A Adjoint of first-order ODE with additive noise
We present here the derivation of the adjoints for a first-order ordinary differential
equation (ODE) with white noise forcing for an objective function containing the
CVaR of a time-averaged quantity of the trajectory. Let (Ω, ℱ,P) be a complete
probability space. Let 𝑢(𝑡) ⊂ R𝑁𝑢 be the state vector at time 𝑡 ∈ [0, 𝑇 ] governed
by the following ODE with additive noise.

�̇� = 𝑔(𝑢, 𝑧) + 𝜏�̇� over ]0, 𝑇],
𝑢(0) = 𝑢0

where 𝑧 ∈ 𝑍 ⊂ R𝑁𝑧 are the input parameters, 𝑔 ∶ R𝑁𝑢 × 𝑍 → R𝑁𝑢 , and 𝑊 ∶
[0, 𝑇 ] × Ω → R𝑁𝑢 is a 𝑁𝑢-dimensional standard Wiener process.

We discretise the problem on a uniform temporal grid T where the interval
[0, 𝑇] is divided into 𝑁 ∈ N segments of step size Δ𝑡 = 𝑇 /𝑁. T ≔ {𝑡𝑛 ≔ 𝑛Δ𝑡 ∶
𝑛 ∈ J0, 𝑁𝑙K}. The ODE is discretised using the Euler–Maruyama scheme, which
reads as follows.

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡𝑔(𝑢𝑛, 𝑧) + 𝜏
√

Δ𝑡𝜉𝑛

𝑢0 = 𝑢0

where 𝜉𝑛 ∈ R𝑁𝑢 are 𝑁𝑢-dimensional random vectors whose components are in-
dependent and identically-distributed (i.i.d.) standard normal variables. We are
interested in computing the statistics of time-averages of functions of the trajectory.

𝑄 = ⟨𝑓(𝑢)⟩𝑇

We approximate the time integral using the trapezoid rule on the aforementioned
temporal grid, leading to

𝑄 ≈ ⟨𝑓(𝑢)⟩T ≔
𝑁−1
∑
𝑛=0

(𝑓(𝑢𝑛) + 𝑓(𝑢𝑛+1)
2

)Δ𝑡
𝑇

We are interested in minimising the CVaR of this quantity over the parameters 𝑧
but use the combined formulation as follows.

(𝑧⋆, 𝑠⋆) ≔ argmin{𝑠 + E((𝑄 − 𝑠)+)
1 − 𝛽

∶ 𝑠 ∈ R, 𝑧 ∈ 𝑍}.

The Lagrangian for the problem reads

ℒ = 𝑠 + E((𝑄 − 𝑠)+)
1 − 𝛽

+ E(
𝑁−1
∑
𝑛=0

𝜆𝑛+1(𝑢𝑛 + Δ𝑡𝑔𝑛 + 𝜏
√

Δ𝑡𝜉𝑛 − 𝑢𝑛+1) − 𝜆0(𝑢0 − 𝑢0)),
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where we use 𝑔𝑛 ≔ 𝑔(𝑢𝑛, 𝑧), and 𝜆𝑛 ∈ R𝑁𝑢 , 𝑛 ∈ J0, 𝑁K denote the Lagrange
multipliers for the initial condition and the steps of the discretised equations.

Differentiating with respect to 𝑧 gives

dℒ
d𝑧

= E(1(𝑄 ≥ 𝑠)
(1 − 𝛽)𝑇

𝑁
∑
𝑛=0

(𝑓𝑛
𝑢 𝑢𝑛

𝑧 + 𝑓𝑛+1
𝑢 𝑢𝑛+1

𝑧
2

)Δ𝑡)

+ E(
𝑁−1
∑
𝑛=0

𝜆𝑛+1(𝑢𝑛
𝑧 + Δ𝑡(𝑔𝑛

𝑢𝑢𝑛
𝑧 + 𝑔𝑛

𝑧 ) − 𝑢𝑛+1
𝑧 )) ≕ E( ̂ℒ)

Re-arranging the terms leads to

̂ℒ = 𝑢𝑁
𝑧 (1(𝑄 ≥ 𝑠)

(1 − 𝛽)𝑇
𝑓𝑁

𝑢 Δ𝑡
2

− 𝜆𝑁) + Δ𝑡𝜆𝑛+1𝑔𝑛
𝑧

+
𝑁−1
∑
𝑛=1

𝑢𝑛
𝑧 (𝜆𝑛+1(1 + Δ𝑡𝑔𝑛

𝑢) − 𝜆𝑛 + 1(𝑄 ≥ 𝑠)
(1 − 𝛽)𝑇

Δ𝑡𝑓𝑛
𝑢 )

+ 𝑢0
𝑧(𝜆1(1 + Δ𝑡𝑔0

𝑢) + 1(𝑄 ≥ 𝑠)
(1 − 𝛽)𝑇

𝑓0
𝑢Δ𝑡
2

) + Δ𝑡𝜆1𝑔0
𝑧 ,

where we have used the subscript notation for partial derivatives.
We have in our case that 𝑢0

𝑧 = 0. To remove terms dependent on 𝑢𝑛
𝑧 , we set

∀𝑛 ∈ J1, 𝑁 − 1K, 𝜆𝑛 = 𝜆𝑛+1(1 + Δ𝑡𝑔𝑛
𝑢) + 1(𝑄 ≥ 𝑠)

(1 − 𝛽)𝑇
Δ𝑡𝑓𝑛

𝑢 ,

and 𝜆𝑁 = 1(𝑄 ≥ 𝑠)
(1 − 𝛽)𝑇

𝑓𝑁
𝑢 Δ𝑡
2

.

This gives us the adjoint equations which are solved backwards in time. Once the
adjoints are solved, the sensitivity can be computed as

dℒ
d𝑧

= E(
𝑁−1
∑
𝑛=0

Δ𝑡𝜆𝑛+1𝑔𝑛
𝑧 ).

That is, setting

𝐽(𝑧, 𝑠) = 𝑠 + E((𝑄(𝑧) − 𝑠)+)
1 − 𝛽

,

we have that ∇0
𝑧𝐽 = E(∑𝑁−1

𝑛=0 Δ𝑡𝜆𝑛+1𝑔𝑛
𝑧 ).

Page 56 of 59



Deliverable 6.4

List of Algorithms
1 Ideal gradient-descent with exact VaR . . . . . . . . . . . . . . . . . 11
2 Practical gradient-descent for CVaR optimisation with MLMC . . . . 14

List of Figures
1 Trajectory of an unforced Van der Pol oscillator . . . . . . . . . . . 16
2 Scheme of the domain in the potential flow formulation . . . . . . . 19
3 Scheme of an element split by the wake . . . . . . . . . . . . . . . . 23
4 Embedded wake representation in body fitted meshes . . . . . . . . 25
5 Contour fills of the primal solution for a NACA0012 airfoil . . . . . . 26
6 Example mesh and geometry parameters for a NACA0012 airfoil . . . 27
7 Scheme of the main airfoil geometrical characteristics . . . . . . . . 30
8 Example of the adjoint field solution . . . . . . . . . . . . . . . . . 32
9 Example of the shape update in two steps of the optimisation problem 32
10 Evolution of objective and relative tolerance . . . . . . . . . . . . . 34
11 Comparison of the initial and final results in the optimisation problem 35
12 Absolute World towers . . . . . . . . . . . . . . . . . . . . . . . . . 37
13 Details of the simulation domain and boundary conditions . . . . . 40
14 Details of adopted meshes . . . . . . . . . . . . . . . . . . . . . . . 41
15 Details of tower geometry and design parameters . . . . . . . . . . 42
16 Geometry modifications from optimisation . . . . . . . . . . . . . . 45
17 Optimisation results . . . . . . . . . . . . . . . . . . . . . . . . . . 45
18 Aqua tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
19 Conceptual goal of facade design . . . . . . . . . . . . . . . . . . . 49
20 Parametric facade design with few parameters . . . . . . . . . . . . 49

Page 57 of 59



Deliverable 6.4

Acronyms
ABL atmospheric boundary layer

CFD computational fluid dynamics

CDF cumulative distribution function

CVaR conditional value at risk

FEM finite-element method
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MFMC multi-fidelity Monte Carlo
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Abbreviations
i.e. id est

e.g. exempli gratia

a.e. almost every

a.e. almost everywhere

a.s. almost surely

i.i.d. independent and identically-distributed

s.t. such that

iff. if and only if

ibid. ibidem

et al. et alii

etc. et cætera

cf. confer

NB nota bene
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