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Abstract: One of the greatest issues for electric vehicles such as an electric vehicle (EV), a hybrid
vehicle (HV), a plug-in hybrid electric vehicle (PHEV) and a fuel cell vehicle (FCV) is further
improvement of effective motor cooling, since higher rated torque is achieved with higher cooling
performance. In this paper, we introduce and propose a newly developed motor cooling method
we tested using refrigerant, comparing with conventional water cooling. Test results show higher
cooling performance of refrigerant cooling, which achieved the rated torque 60% higher than that of
water cooling.
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1. Introduction

The experience of rally competitions with Outlander PHEV has made us aware that the
enhancement of motor cooling performance is essential to win the race. Rallies require driving
of high speed, high torque, long period and long range. Such driving generates serious motor
heating. To protect the motor materials, such as magnets or the insulation of copper coil windings,
torque limitation is required at the upper limit of coil temperature. Once coil temperature exceeds
the upper limit, torque is inhibited at limitation level, which results in deterioration of acceleration
performance. This is why higher motor cooling performance plays the key role for the faster driving.

Beyond rally cars, higher motor cooling performance contributes greatly to mass-produced
vehicles by the following two aspects:

• Rated torque increase
• Downsizing

First contribution is rated torque, which should be increased without negotiating the motor
size. The rated torque is generally defined as the torque where motor cooling maintains thermal
equilibrium so that a motor can operate continuously. Higher cooling performance enhances motor’s
rated torque. Second is downsizing of a motor with realizing higher rated torque. Diameter of copper
coil windings defines a motor size. Thinner windings increase its resistance that generates more
heat. Enhanced cooling performance should absorb increased heat generated by thinner windings,
which should realize downsizing of a motor.

Table 1 shows three methods of conventional motor cooling:

• Air cooling
• Oil cooling
• Water cooling
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Table 1. Motor cooling methods.
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First is air cooling, which is mainly utilized in train motors, not in the driving motors of electric 
vehicles except for some in-wheel motor cars [1,2]. Air cooling is superior to other methods in terms 
of the cost and the cooling uniformity; however its performance is the lowest among the three 
conventional cooling methods. Second is oil cooling, which has the best cooling performance since 
oil flowing into a motor housing cools a heat source directly [3,4]. Mitsubishi motors apply the oil 
cooling to the front motor of Outlander PHEV [1,5]; however, oil cooling compromises the cooling 
uniformity and the system cost. Moreover, it requires a water cooling system separately to cool an 
inverter. The final conventional method is water cooling, which is the most common method among 
electric vehicles [6]. Mitsubishi motors apply water cooling to the driving motor of i-MiEV and the 
rear motor of Outlander PHEV [1,5]. In this method, water flows into a jacket installed in the 
housing and exchanges generated heat. It achieves better cooling uniformity and less system cost 
than oil cooling; however, its cooling performance is not effective as much as that of oil cooling. 

2. Refrigerant Cooling 

2.1. Concept 

To enhance the conventional cooling performance, we have developed a new cooling method: 
refrigerant cooling. The refrigerant cooling system is connected with a car air conditioning (A/C) 
system in parallel as shown in Figure 1. It uses a jacket for water cooling as refrigerant path that is 
installed in a motor housing. A thermal expansion valve (TXV) is attached at an inlet of the motor 
housing, at which liquid refrigerant evaporates to some extent. The rest of liquid refrigerant 
evaporates in the path absorbing heat from the motor. A compressor regulates its operation rate to 
control the cooling performance. 

2.2. Expected Benefits 

Three expected benefits from replacing water cooling system by refrigerant cooling are: 

• Fewer components for PHEV 
• Greater cooling uniformity 
• Higher cooling performance 

First of all, integration of cooling systems with the A/C system should reduce components. 
Figure 2a shows the current cooling system of Outlander PHEV. Four heat exchangers are located 
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First is air cooling, which is mainly utilized in train motors, not in the driving motors of electric
vehicles except for some in-wheel motor cars [1,2]. Air cooling is superior to other methods in
terms of the cost and the cooling uniformity; however its performance is the lowest among the three
conventional cooling methods. Second is oil cooling, which has the best cooling performance since
oil flowing into a motor housing cools a heat source directly [3,4]. Mitsubishi motors apply the oil
cooling to the front motor of Outlander PHEV [1,5]; however, oil cooling compromises the cooling
uniformity and the system cost. Moreover, it requires a water cooling system separately to cool an
inverter. The final conventional method is water cooling, which is the most common method among
electric vehicles [6]. Mitsubishi motors apply water cooling to the driving motor of i-MiEV and the rear
motor of Outlander PHEV [1,5]. In this method, water flows into a jacket installed in the housing and
exchanges generated heat. It achieves better cooling uniformity and less system cost than oil cooling;
however, its cooling performance is not effective as much as that of oil cooling.

2. Refrigerant Cooling

2.1. Concept

To enhance the conventional cooling performance, we have developed a new cooling method:
refrigerant cooling. The refrigerant cooling system is connected with a car air conditioning (A/C)
system in parallel as shown in Figure 1. It uses a jacket for water cooling as refrigerant path that is
installed in a motor housing. A thermal expansion valve (TXV) is attached at an inlet of the motor
housing, at which liquid refrigerant evaporates to some extent. The rest of liquid refrigerant evaporates
in the path absorbing heat from the motor. A compressor regulates its operation rate to control the
cooling performance.

2.2. Expected Benefits

Three expected benefits from replacing water cooling system by refrigerant cooling are:

• Fewer components for PHEV
• Greater cooling uniformity
• Higher cooling performance
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First of all, integration of cooling systems with the A/C system should reduce components.
Figure 2a shows the current cooling system of Outlander PHEV. Four heat exchangers are located in
the front of a vehicle: Two radiators (one for an engine not illustrated in Figure 2 and another for water
cooling of EV system); one oil cooler for oil cooling of the front motor and the generator; and one
condenser for the A/C. If inverters and converter are integrated into the refrigerant cooling system
referring to previous researches [7,8], refrigerant cooling should reduce these four heat exchangers
into two: A radiator for the engine cooling and a condenser for the refrigerant cooling as shown in
Figure 2b. The essentials to realize this ideal system are: The greater cooling ability of the compressor;
the distribution control of refrigerant; and the compressor control to minimize the power consumption.
Second is that the refrigerant cooling achieves greater cooling uniformity than oil cooling by letting
refrigerant flow through the water jacket. The final benefit of the refrigerant cooling is higher cooling
performance than that of water cooling. The study in this paper aims to verify the fact that the
refrigerant cooling performance is higher than the water cooling through two approaches: simulation
and experiment.
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3. Simulation

Simulation shows that refrigerant cooling kept the coil temperature lower than water cooling.
This simulation was performed on a one-dimensional model [9,10]. The simulation used the same model
for water cooling and refrigerant cooling. The model describes a motor cooling structure without an AC
circuit. We introduced a cylindrical-shaped water jacket as shown in Figure 3 to simulate the complicated
water/refrigerant path. Heat generated by electrical current through copper coil windings is transferred
to water/refrigerant path across the steal stator core and the aluminum housing. For refrigerant cooling,
a TXV was attached at the inlet of the refrigerant path to let liquid refrigerant evaporate effectively.
Based on the initial experimental conditions Table 2 shows, we calculated the maximum temperatures at
thermal equilibrium for water, refrigerant and copper coil windings. As a result, the coil temperature of
refrigerant cooling was lower than that of water cooling by 48◦C as shown in Table 3.
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Table 2. Initial conditions.

Initial Motor Temperature ◦C 25

Maximum Motor Heat Loss kW 3

Water Cooling
Water Temperature ◦C 40

Water Flow Rate L/min 10

Pressure at Outlet kPa 104

Refrigerant Cooling

Refrigerant - HFC-134a

Refrigerant Flow Rate kg/s 0.0024

Gas Phase Ratio at Inlet - 0.3

Pressure at Outlet MPa 0.3
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Table 3. Simulation results.

Max. Temperature of Water or
Refrigerant [◦C]

Max. Temperature of Copper
Coil Windings [◦C]

Water Cooling 62 81

Refrigerant Cooling 21 33

4. Experiment

4.1. Procedure

The cooling performance was compared between water and refrigerant by using the same motor
of the specification in Table 4. All experiments started with water cooling as shown in Figure 4a.
A TXV was installed at the inlet of the water jacket as shown in Figure 4b before experimenting
refrigerant cooling. The refrigerant cooling experiment used the same motor as the water cooling
experiment. The water jacket worked as the refrigerant path. In addition, the water circulation system
was replaced by an A/C system. Compressor regulated its operation rate to control the refrigerant
cooling performance. The compressor kept operating until the motor surface temperature declined
to a target temperature. Note that the target temperatures for refrigerant cooling were set at 0, 10,
and 20 ◦C. The compressor stopped its operation when the motor surface temperature was lowered
below the target temperature. Three experiments were performed as shown in Table 5.

Table 4. Motor specification.

Type - PMSM

Max. output kW 47

Max. torque Nm 180

Max. speed rpm 8500

Max. system efficiency* % More than 90

Mass kg About 45

Cooling method - Water cooling

* Total efficiency of motor and inverter.
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In experiment 1, the motor temperature, which was operated at rated torque for 30 min,
was measured.

In experiment 2, new rated torque was estimated when water cooling was replaced by
refrigerant cooling.

In experiment 3, operation time at the maximum torque was measured.

Table 5. Experimental conditions.

Item Unit Exp.1 Exp.2 Exp.3

Room temperature ◦C 25

Motor speed rpm 1000 1000 2500

Motor torque Nm 65 (Rated) 65~180 180 (Maximum)

Motor power kW 7 7~19 47

Water temperature for inverter cooling ◦C 40

Water cooling
Water temperature ◦C 20, 40, 60

Water flow rate L/min 10

Initial coil temperature ◦C Dependent on water temperature

Refrigerant cooling
Refrigerant - HFC-134a

Target temperature ◦C 0, 10, 20

Initial coil temperature ◦C 25

4.2. Results and Discussion

4.2.1. Experiment 1

Figure 5 shows that refrigerant cooling kept the coil temperature lower than water cooling.
Comparing water cooling of 60 ◦C and refrigerant cooling of 0 ◦C, the difference of the coil temperatures
extended up to 53 ◦C after 30 minutes of motor operation at rated torque. The water cooling of 60 ◦C
was the highest water temperature allowed in the specification. The refrigerant cooling of 0 ◦C was
the lowest refrigerant temperature, which was determined by compressor ability. When the water
temperature was set at 20 ◦C to adjust the initial coil temperature, refrigerant cooling even showed the
higher cooling performance by 12 ◦C than water cooling.
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The coil temperature was proportional to the temperature of fluid through the water jacket as shown
in Figure 6, which shows the higher cooling performance of the refrigerant cooling. The compressor
achieved this result by keeping the refrigerant temperature below the ambient temperature for its
phase transition causing an endothermic reaction through the TXV.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 8 of 11 
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Figure 7 shows higher cooling performance of refrigerant cooling. The picture was taken after
30 min of motor operation at rated torque. The motor surface was frosted since the refrigerant
temperature was set at 0 ◦C.
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Figure 7. Frosted motor surface by refrigerant cooling.

4.2.2. Experiment 2

Figure 8 shows that the rated torque of the refrigerant cooling increased up to 60% more than
that of the water cooling. The new rated torque was estimated from the highest coil temperature
of the water cooling. After the operation of the water cooling motor with the water temperature of
60 ◦C operated for 30 min at the rated torque of 65 Nm, the coil temperature reached 92 ◦C. This result
indicates that the rated torque of the refrigerant cooling is allowed to increase until the coil temperature
becomes 92 ◦C. In that case, the motor torque was 105 Nm while the refrigerant cooling was 0 ◦C.
That was a 60% increase of the rated torque of the refrigerant cooling as a result of replacing the cooling
substance from water to refrigerant.
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Figure 8. Coil temperature after 30 min operation vs motor torque.

4.2.3. Experiment 3

Experiment 3 aims to clarify any impact on the maximum torque of the refrigerant cooling.
Note that the inverter performance restricts the maximum torque. What was focused on here was
whether refrigerant cooling affected the operation time at maximum torque. The results showed
two aspects.

First, cooling methods did not affect any operation time if the initial coil temperature was same as
shown in Figure 9. The time range of 150 s was too short for refrigerant cooling to show its effect.
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Figure 9. Coil temperature vs operation time at maximum torque.

However, when the motor was cooled down to 0 ◦C in advance of motor operation, the operation
time at the maximum torque of the refrigerant cooling was extended by 34% as Figure 10 shows.
Figure 11 shows that the lower initial coil temperature led to the longer operation time. In other words,
the refrigerant cooling had an advantage over the water cooling since the compressor decreased the
initial coil temperature before the motor operation.
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5. Conclusions

The superiority of the refrigerant cooling has been revealed comparing to the conventional water
cooling, because:

• The refrigerant cooling has the coil temperature lower than ambient temperature by the
compressor control;

• The rated torque was increased by 60% when the water cooling was replaced by the refrigerant
cooling; and

• Cooling the motor in advance of motor operation contributed to extend operation time at the
maximum torque by 34%.
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