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Abstract

This article considers a generalization of the classical structural flexibility matrix. It expands on previous papers by

taking a deeper look at computational considerations at the substructure level. Direct or indirect computation of

flexibilities as ‘‘influence coefficients’’ has traditionally required pre-removal of rigid body modes by imposing ap-

propriate support conditions, mimicking experimental arrangements. With the method presented here the flexibility of

an individual element or substructure is directly obtained as a particular generalized inverse of the free–free stiffness

matrix. This generalized inverse preserves the stiffness spectrum. The definition is element independent and only in-

volves access to the stiffness generated by a standard finite element program and the separate construction of an or-

thonormal rigid-body mode basis. The free–free flexibility has proven useful in special application areas of finite

element structural analysis, notably massively parallel processing, model reduction and damage localization. It can be

computed by solving sets of linear equations and does not require processing an eigenproblem or performing a singular

value decomposition. If substructures contain thousands of d.o.f., exploitation of the stiffness sparseness is important.

For that case this paper presents a computation procedure based on an exact penalty method, and a projected rank-

regularized inverse stiffness with diagonal entries inserted by the sparse factorization process. These entries can be

physically interpreted as penalty springs. This procedure takes advantage of the stiffness sparseness while forming the

full free–free flexibility, or a boundary subset, and is backed by an in-depth null space analysis for robustness. � 2002
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1. Motivation

The direct or indirect computation of structural flexibilities as ‘‘influence coefficients’’ has traditionally
required precluding rigid body modes (RBMs) by imposing appropriate support conditions. This analytical
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approach mimics time-honored experimental practices for static tests, in which forces are applied to a
supported structure, and deflections measured. See Fig. 1 for a classical example.
There are several application areas, however, for which it is convenient to have an expression for the

flexibility matrix of a free–free structure, substructure or element. Important applications include domain
decomposition for FETI-type iterative parallel solvers [1–5] as well as system identification and damage
localization [6–9]. The qualifier ‘‘free–free’’ is used here to denote that all rigid body motions are unre-
strained. This entity will be called a free–free flexibility matrix, and denoted by F.
In the symmetric case, which is the most important one in FEM modeling, the free–free flexibility

represents the true dual of the well-known free–free stiffness matrix K. More specifically, F and K are the
pseudo-inverses (also called the Moore–Penrose generalized inverses) of each other. The general expression
for the pseudo-inverse of a singular symmetric matrix such as K involves its singular value decomposition
(SVD) or, equivalently, knowledge of the eigensystem of K; see, e.g., [10]. That kind of analysis is not only
expensive, but notoriously sensitive to rank decisions when carried out in floating-point arithmetic. That is,
when can a small singular value be replaced by zero? Such decisions depend on the problem and physical
units as well as the working computer precision.
Explicit expressions are presented here that relate K and F but involve only matrix inversions or, equiv-

alently, the solution of linear systems. These expressions assume the availability of a basis matrix R for the
RBMs, which span the null space of K. Often R may be constructed by geometric arguments separately
from K and F. Because no eigenanalysis is involved, the formulas are suitable for symbolic manipulation in
the case of simple individual elements.
The free–free flexibility has been introduced in previous papers [11,12], but these have primarily focused

on theoretical and ‘‘system level use’’ considerations. Four practical aspects are studied here in more detail
at the individual substructure level:

1. Relations between the free–free boundary-reduced stiffness and flexibility matrices (Section 4).
2. Cleaning up ‘‘RBM-polluted’’ matrices by projector filtering (Section 5).
3. Use of congruential forms in symbolic processing of individual elements (Section 6).
4. Efficient computation of F for substructures of moderate or large size (Section 7). The procedure relies
on a general expression that involves a regularization matrix and the RBM projector.

This paper is organized as follows. Section 2 gives terminology and mathematical preliminaries. Section
3 introduces the free–free flexibility and its properties. Section 4 discusses the reduction of these expressions
to boundary freedoms. Section 5 discusses projector filtering to clean up RBM-polluted matrices. Section 6
derives the free–free flexibility of selected individual elements. Section 7 addresses the issue of efficient
computation of F, given K and R, for arbitrary substructures. Section 8 summarizes our key findings.
Appendix A collects background material on generalized inverses and the inversion of modified matrices.

Fig. 1. Old-fashioned experimental determination of wing flexibilities. The aircraft is set on rigid blocks (not its landing gear) and a

load P applied at the wing tip torque-center. The ratio of tip deflection to P gives the overall bending flexibility coefficient. The other

key coefficient for flutter speed calculations is the torsional flexibility obtained by measuring the pitch rotations produced by an offset

tip load.

2112 C.A. Felippa, K.C. Park / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2111–2140



2. Substructures terminology

A substructure is defined here as an assembly of finite elements that does not possess zero-energy modes
aside from RBMs (see Fig. 2). Mathematically, the null space of the substructure stiffness contains only
RBMs. (This restriction may be selectively relaxed, as further discussed in Section 7.9.) Substructures in-
clude individual elements and a complete structure as special cases. The total number of d.o.f. of the
substructure is called NF.
Should it be necessary, substructures are identified by a superscript enclosed in brackets; for example,

K½3� is the stiffness of substructure 3. Because this paper deals only with individual substructures, that su-
perscript will be omitted to reduce clutter.
Fig. 3(a) depicts a 2D substructure, and the force systems acting on its nodes from external agents. The

applied forces fa are given as data. The interaction forces k are exerted by other connected substructures. If
the substructure is supported or partly supported, it is rendered free–free on replacing the supports by
reaction forces fs as shown in Fig. 3(b). The total force vector acting on the substructure is the superpo-
sition

f ¼ fa þ fs þ k; ð1Þ
where each vector has length NF. Vectors k and fs are completed with zero entries as appropriate for
conformity.
At each node considered as a free body, the internal force p is defined to be the resultant of the acting

forces, as depicted in Fig. 3(c). Hence the statement of node by node equilibrium is

f � p ¼ 0 or fa þ fs þ k � p ¼ 0: ð2Þ
For some applications, notably iterative solvers, it is natural to view support reactions as interaction forces
by regarding the ‘‘ground’’ as another substructure (often identified by a zero number). In such case vector
fs is merged with k.
As for the kinematics, the free–free substructure has NR > 0, linearly independent RBMs. Rigid motions

are characterized through the RBM-basis matrix R, dimensioned NF � NR, such that any rigid node dis-
placement can be represented as uR ¼ Ra, where a is a vector of NR modal amplitudes. The total dis-
placement vector u can be written as a superposition of deformational and rigid motions:

u ¼ dþ uR ¼ dþ Ra; ð3Þ
Matrix R may be constructed by taking as columns NR linearly independent rigid displacement fields
evaluated at the nodes. For convenience those columns are assumed to be orthonormalized so that RTR ¼
IR, the identity matrix of order NR. The orthogonal projector associated with R is the symmetric idempotent
matrix

P ¼ I� RðRTRÞ�1RT ¼ I� RRT; ð4Þ

Fig. 2. Whereas (a) depicts a legal 2D substructure, the assembly (b) contains a nonRBM zero energy mode (relative rotation about

point A). If such mechanisms are disallowed, (b) is not a legal substructure.
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where I (without subscript) is the NF � NF identity matrix. The last simplification in (4) arises from the
assumed orthonormality of R. Note that P2 ¼ P and PR ¼ RTP ¼ 0.
Application of the projector (4) to u extracts the deformational node displacements d ¼ Pu. Subtracting

these from the total displacements yields the rigid motions uR ¼ u� d ¼ ðI� PÞu ¼ RRTu, which shows that
a ¼ RTu. Using the idempotent property P2 ¼ P it is easy to verify that dTuR ¼ 0. Fig. 4 gives a geometric
interpretation of the decomposition (3).
Invoking the Principle of Virtual Work for the substructure under virtual rigid motions duR ¼ Rda

yields

RTf ¼ RTðfa þ fs þ kÞ ¼ 0 ð5Þ

as the statement of overall self-equilibrium for the substructure.

Fig. 3. A generic substructure ½s� and the force systems acting on it. The top figures illustrate the conversion from a partly or fully

supported configuration (a) to a free–free configuration (b) by replacing supports by reaction forces. Diagram (c) illustrates the self-

equilibrium of a free-body node j.

Fig. 4. Geometric interpretation of the projector P.
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3. Stiffness and flexibility matrices

3.1. Definitions

The case of real-symmetric stiffness and flexibility matrices is the most important one in practice. This
article only considers that case. The real-unsymmetric case, which arises in nonconservative and corota-
tional FEM structural models, is briefly discussed in [11].
The well-known free–free stiffness matrix K of a linearly elastic substructure relates node displacements

to node forces through the stiffness equations:

Ku ¼ f ¼ fa þ fs þ k; K ¼ KT: ð6Þ
We assume throughout that K is nonnegative. If K models all rigid motions exactly, RTK ¼ KR must vanish
identically on account of (5). Such a stiffness matrix will be called clean as regards rigid body motions or,
briefly, RBM-clean.
The free–free flexibility F of the substructure is defined by the expressions

F ¼ PðKþ RRTÞ�1 ¼ ðKþ RRTÞ�1P ¼ FT: ð7Þ
The symmetry of F follows from the spectral properties discussed in the following subsection. Using F we
can write the free–free flexibility matrix equation dual to (6) as

Ff ¼ d ¼ Pu ¼ u� uR: ð8Þ
Pre-multiplication by RT and use of (5) shows that FR ¼ 0.
If the substructure is fixed (that is, fully restrained against all rigid motions), matrix R is void. The

definition (7) then collapses to that of the ordinary structural flexibility F ¼ K�1 whereas (8) reduces to
Ff ¼ u� uR ¼ u. Because of coalescence in the fully supported case, the same matrix symbol F can be used
without risk of confusion.

3.2. Spectral and duality properties

The basic properties can be expressed in spectral language as follows. The free–free stiffness K has two
kind of eigenvalues:

1. NR zero eigenvalues pertaining to rigid motions. The associated null eigenspace is spanned by the columns
of R because that basis matrix is assumed to be orthonormal.

2. Nd ¼ NF � NR nonzero eigenvalues ki. The associated orthonormalized ‘‘deformational eigenvectors’’ vi,
which span the range space of K, satisfy Kvi ¼ kivi, R

Tvi ¼ 0 and vTi vj ¼ dij.

The eigenvectors of Kþ RRT are identical to those of K but the RBM eigenvalues are raised to unity,
giving the spectral decompositions

Kþ RRT ¼
XNd
i¼1

kiviv
T
i þ RRT; ðKþ RRTÞ�1 ¼

XNd
i¼1

1

ki
viv

T
i þ RRT: ð9Þ

By construction the projector P ¼ I� RRT has Nd unit eigenvalues whose range eigenspace is spanned by
the vi, and the same null eigenspace as K. Consequently, use of orthogonality properties yields the spectral
decompositions

P ¼
XNd
i¼1

viv
T
i ; F ¼ PðKþ RRTÞ�1 ¼

XNd
i¼1

1

ki
viv

T
i : ð10Þ
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The foregoing relations show that the three symmetric matrices K, F and P have the same eigen-
vectors, and can be commuted at will. For example, FaKbPc ¼ KbPcFa for any integer exponents (a; b; c).
Commutativity proves the symmetrization in (7). Other useful relations that emanate from the spectral
decompositions are

K ¼ PðFþ RRTÞ�1 ¼ ðFþ RRTÞ�1P ¼ KT; ð11Þ

ðKþ aRRTÞðFþ bRRTÞ ¼ Iþ ðab � 1ÞRRT ¼ Pþ abRRT ða; b arbitrary scalarsÞ; ð12Þ

KR ¼ FR ¼ PR ¼ 0; ð13Þ

KFK ¼ K; FKF ¼ F; ðKFÞT ¼ FK ¼ KF ¼ P; ðFKÞT ¼ KF ¼ FK ¼ P; ð14Þ

RTðKþ RRTÞ�1R ¼ I; RTðFþ RRTÞ�1R ¼ I ðcf : Section A:3:2Þ: ð15Þ
This relation catalog shows that K and F are dual, because exchanging them leaves all formulas intact.
Comparing (14) to the definitions in Section A.1 of the Appendix, it is seen that F and K are both

pseudo-inverses and sg-inverses of each other: F ¼ Kþ ¼ Ky and K ¼ Fþ ¼ Fy. The practical importance of
(7) is that if K and R are given, F can be computed by solving linear equations without need of the more
expensive eigenvalue analysis of K. This is important for substructures containing hundreds or thousands of
elements because linear equation solvers can take advantage of the natural sparsity of K, as discussed in
Section 7. The stiffness matrix can be efficiently generated by the direct stiffness method (DSM) using
existing finite element libraries, whereas the construction of R from geometric arguments is straightforward
as explained in Section 3.4.

3.3. Alternative expressions

The flexibility expressions (8) are actually the first two of the following 12 formulas for F:

PðKþ RRTÞ�1; ðKþ RRTÞ�1P; PðKþ RRTÞ�1P;
PðPKþ RRTÞ�1; ðPKþ RRTÞ�1P; PðPKþ RRTÞ�1P;
PðKPþ RRTÞ�1; ðKPþ RRTÞ�1P; PðKPþ RRTÞ�1P;
PðPKPþ RRTÞ�1; ðPKPþ RRTÞ�1P; PðPKPþ RRTÞ�1P:

ð16Þ

The seventh form, PðKPþ RRTÞ�1, was found by Bott and Duffin [13] in a different context. Expressions
(16) are equivalent in exact arithmetic if K is ‘‘RBM clean’’ in the sense that KR ¼ 0. If K is, however,
‘‘polluted’’ so that KR 6¼ 0 the expressions (16) will generally yield different results for F. Furthermore,
matrices given by the formulas in the first three rows may not be symmetric. If K is polluted, the last three
formulas are recommended, because the filtered stiffness K ¼ PKP is guaranteed to be both symmetric and
clean. This point is further examined in Section 5.
Similarly, if F is known, K may be computed from one of the 12 formulas

PðFþ RRTÞ�1; ðFþ RRTÞ�1P; PðFþ RRTÞ�1P;
PðPFþ RRTÞ�1; ðPFþ RRTÞ�1P; PðPFþ RRTÞ�1P;
PðFPþ RRTÞ�1; ðFPþ RRTÞ�1P; PðFPþ RRTÞ�1P;
PðPFPþ RRTÞ�1; ðPFPþ RRTÞ�1P; PðPFPþ RRTÞ�1P;

ð17Þ

which are equivalent if FR ¼ 0.
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Using the fact that Pk ¼ P for any integer k > 0, any P in (16) and (17) may be raised to arbitrary integer
powers, but this generalization is vacuous.

3.4. Forming the RBM matrix

If the substructure is free–free and has no spurious modes, the construction of R by geometric arguments
is straightforward. This is illustrated here for the 2D case depicted in Fig. 3. To facilitate satisfaction of
orthogonality, it is convenient to place the x; y axes at the geometric mean of the N node locations of the
substructure. Three independent RBMs are the x-translation ux ¼ 1, uy ¼ 0, the y-translation ux ¼ 0, uy ¼ 1
and the z-rotation ux ¼ �y, uy ¼ x. Evaluation at the nodes gives

RT ¼
1 0 1 � � � 0
0 1 0 � � � 1

�y1 x1 �y2 � � � xN

2
4

3
5: ð18Þ

The columns of this R are mutually orthogonal by construction. All that remains is to normalize them
to unit length through division by N 1=2, N 1=2 and ½

P
i ðx2i þ y2i Þ�

1=2
, respectively. The 3D case is equally

straightforward if the substructure has only translational freedoms. If rotational freedoms are present,
explicit orthonormalization using Gram–Schmid or similar scheme may be required.
In geometrically nonlinear Lagrangian analysis a common occurrence is the loss of rotational RBMs

dues to initial stress effects in the geometric stiffness, which results in a gain of rank of K with respect to the
linear case. In plasticity analysis a loss of rank due to plastic flow mechanisms may occur. In either case the
null space basis of K has to be appropriately adjusted.

4. Reduction to boundary freedoms

The expressions of K, F and R used in the previous section pertain to all d.o.f. of the substructure. For
many applications, notably the case of domain decomposition illustrated in Fig. 5, only the substructural
boundary freedoms are involved. The interior d.o.f. are eliminated in some way. To illustrate the reduction
scheme it is convenient to partition F, K and R as follows:

K ¼ Kbb Kbi

Kib Kii

� �
; F ¼ Fbb Fbi

Fib Fii

� �
; R ¼ Rb

Ri

� �
: ð19Þ

Fig. 5. Reduction to boundary freedoms in the domain decomposition of a FEM mesh. In solving the so-called coarse problem, which

involves substructural interactions, only boundary node freedoms participate. The rightmost figure depicts such interactions occurring

indirectly through intermediate connection frames, as in algebraic FETI methods [3,4].
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In a free–free substructure, all interior d.o.f. are unconstrained (that is, nodal forces are known). Reduction
to the boundary by static condensation produces the matrices

Kb ¼ Kbb � KbiK
�1
ii Kib; Fb ¼ Fbb; ð20Þ

where Kb is the condensed stiffness matrix, also known as a Schur complement in the mathematical liter-
ature. Note that Kb and Fb are not dual: while the computation of Kb from K is involved, the reduction to a
boundary flexibility Fb is trivial and can be simply done by extracting appropriate rows and columns of F.
Furthermore Kb is singular while Fb is usually nonsingular and well conditioned. These aspects are further
addressed in Section 7, where efficient schemes to compute Fb from K and R are described.
Occasionally it is useful to pass directly from Fb to Kb. For example, boundary flexibilities might be

known from experimental data or a model reduction process. Denote the boundary projector by Pb ¼
I� RbSR

T
b , where S ¼ ðRTbRbÞ�1; note that since Rb is not generally orthonormal, the kernel scaling by S

must be retained. Matrices Kb and Fb ¼ PbFbPb may be related by expressions (16) and (17), in which all
matrices pertain to the boundary freedoms only. For example,

Kb ¼ Pb Fb

	
þ RbSR

T
b


�1
; Fb ¼ Pb Kb

	
þ RbSR

T
b


�1
: ð21Þ

The dual of the first relation only returns the projection-filtered boundary flexibility Fb ¼ PbFbPb, and not
Fb. Thus from a boundary stiffness matrix it is generally impossible to recover a full-rank boundary flexi-
bility. This observation explains the superiority of Fb in model reduction processes.

5. Handling an RBM-polluted stiffness

If KR 6¼ 0 the stiffness matrix is said to be polluted as regard RBMs. Physically, application of a rigid
motion to nodes produces nonzero forces. Assuming that all supports have been properly removed, RBM
pollution may arise from one or more of the following sources:

(i) Inexact arithmetic in forming K or R.
(ii) Kinematic defects in individual elements. For instance, some curved shell elements are known not to

model rotational RBMs correctly.
(iii) Kinematic defects in assembly. The classical example is that of a smooth thin shell surface modeled by

faceted elements without drilling d.o.f. Some FEM programs delete the surface-normal rotational free-
dom to preclude singularities in flat configurations, and in so doing pollute the assembled stiffness with
respect to the other two rotational RBMs.

While (i) is typically benign, (ii) and (iii) can have serious effects. Unfortunately correction at the element
and assembly level, respectively, may not be feasible because of ‘‘software legacy’’ conditions precluding
changes. One way to ‘‘sanitize’’ K post-facto is to apply congruential filtering through the projector

K ¼ PTKP ¼ PKP: ð22Þ
The filtered matrix satisfies KR ¼ 0 since PR ¼ 0 by construction.
A drawback of (22) at the substructure level is that K is generally full. This jeopardizes computations

where taking advantage of sparsity is important, such as those discussed in Section 7. Sparsity can be
recovered by doing (22) at the individual element level before assembly. This approach, however, would not
eliminate pollution from the assembly defects described under (iii) above.
The definition (7) of F is inconvenient if K is polluted because the spectral properties discussed in Section

3 are lost. And so is symmetry: F 6¼ FT. A symmetric F can be obtained in two ways. Either the stiffness is
filtered before inversion or the filter applied after inversion:
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F ¼ ðKþ RRTÞ�1P; F̂F ¼ PðKþ RRTÞ�1P: ð23Þ

Both F and F̂F are symmetric and RBM-clean. These two free–free flexibilities are generally different. As
of this writing there is not enough experience to decide on which form is best, although F̂F is more com-
putationally convenient if exploitation of stiffness sparseness is important.

6. Free–free flexibility of individual elements

The free–free flexibility of simple individual elements such as bars and beams may be computed directly
from the definition (7) as illustrated in Examples 1 and 2. For 2D and 3D elements it is recommended to
exploit the congruential forms outlined below.

6.1. Congruential forms

The following expressions follow from the pseudo-inverse forms listed in Appendix A.1.2:

K ¼ QTSQ ¼ Fþ; F ¼ QTCQ ¼ Kþ if QQT ¼ I and SC ¼ I: ð24Þ
Here Q is an orthonormalized Nd � NF strain–displacement matrix, S is a Nd � Nd deformational rigidity
matrix, and C ¼ S�1 the corresponding compliance. Mathematically P?

r ¼ QTQ is the orthogonal projector
complementary to P.
The element stiffness matrix can be maneuvered into the form (24) through various algebraic or geo-

metric transformations without need of an explicit spectral analysis. A particularly elegant scheme consists of
orienting local axes along the principal directions of inertia of the element, as Section 6.4 illustrates.
For some nonsimplex continuum elements generalizations of (24) that may facilitate analytical inversion

are

K ¼
Xq
i

QT
i SiQi; F ¼

Xq
i

QT
i CiQi if QiQ

T
j ¼ I and SiCi ¼ I: ð25Þ

Here the Qi matrices span qP 1 mutually orthogonal subspaces, all of which are orthogonal to the RBM
subspace. Elements that befit the template formulation [14], in which q ¼ 2, may be maneuvered into form
(25) through various orthogonalization techniques.

6.2. Example 1: Bar element

For the 1D 2-node bar element displayed in Fig. 6(a) direct application of the definition (8) yields

K ¼ k
1 �1
�1 1

� �
; R ¼ 1ffiffiffi

2
p

1

1

� �
; P ¼ 1

2

1 �1
�1 1

� �
¼ 1

2k
K;

F ¼ PðKþ RRTÞ�1 ¼ 1

4k
1 �1
�1 1

� �
¼ 1

4k2
K:

ð26Þ

Here k ¼ EA=L is the axial (equivalent spring) stiffness. It is easily verified that the result K ¼ 4k2F also
holds for 2-node bars in two and three dimensions.
Alternatively one may exploit formula (24) by following the scheme:

K ¼ QTð2kÞQ; Q ¼ 1ffiffiffi
2

p �1 1½ �; F ¼ QT 1

2k
Q ¼ 1

4k2
QTð2kÞQ ¼ 1

4k2
K; ð27Þ

which gives the same result.
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6.3. Example 2: Plane beam element

For the 2-node, 4-d.o.f., Bernoulli–Euler prismatic plane beam element shown in Fig. 6(b),

K ¼ EI
L3

12 6L �12 6L
6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
664

3
775; R ¼ 1ffiffiffi

2
p

1 �L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L2

p

0 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L2

p

1 L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L2

p

0 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L2

p

2
664

3
775; ð28Þ

whence

F ¼ L

6EIð4þ L2Þ2

2L2 L3 �2L2 L3

L3 24þ 12L2 þ 2L4 �L3 �24� 12L2 � L4

�2L2 �L3 2L2 �L3

L3 �24� 12L2 � L4 �L3 24þ 12L2 þ 2L4

2
664

3
775: ð29Þ

Note that entries of F are not dimensionally homogeneous. This is a consequence of mixing translational
and rotational nodal displacements and of normalizing the second column of R. A dimensionally homo-
geneous form can be obtained by scaling the rotational freedoms by a characteristic length, as done in the
example of Fig. 11.
The approach based on the congruential form (25) starts from

QT ¼ 1ffiffiffi
2

p 0 �1 0 1
2g=L g 2g=L g

� �
; S ¼ EI

L

2 0

0
6ð4þ L2Þ

L2

" #
; ð30Þ

in which g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=L2

p
. It is easy to verify that QTS�1Q reproduces (29).

6.4. Example 3: Plane stress 3-node triangle

The simplest continuum element is the 3-node, linear displacement, plane stress triangle illustrated in
Fig. 7. The element has area A, uniform thickness h, and constant 3� 3 elastic modulus matrix E. Axes x
and y pass through the centroid 0. With the nodal displacements arranged as

u ¼ ux1 uy1 ux2 uy2 uy3 uy3½ �T; ð31Þ
the free–free stiffness matrix has the well-known closed form expression

K ¼ hABTEB; B ¼ 1

2A

y32 0 y13 0 y21 0
0 x23 0 x31 0 x12
x23 y32 x31 y13 x12 y21

2
4

3
5; ð32Þ

Fig. 6. Bar and beam elements for free–free flexibility examples.
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in which xij ¼ xi � xj and yij ¼ yi � yj. To develop the free–free flexibility, it is convenient to select axes (�xx; �yy)
with respect to which �BBT�BB becomes a diagonal matrix, to allow use of (24). This is done by taking (�xx; �yy)
along the principal directions of inertia of the triangle. These are defined by the angle u shown in Fig. 7.
The calculations proceed as follows. Defining the nodal-lumped inertias

Ixx ¼ y221 þ y232 þ y231; Iyy ¼ x212 þ x223 þ x213; Ixy ¼ x12y21 þ x23y32 þ x13y31: ð33Þ
u and related trigonometric functions are obtained as

tan 2u ¼ Ixy
Iyy � Ixx

; cos 2u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 2u

p ; sin 2u ¼ tan 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 2u

p ;

cos2 u ¼ 1
2
ð1þ cos 2uÞ; sin2 u ¼ 1

2
ð1� cos 2uÞ;

ð34Þ

in which the angle �45�6u6 45� is chosen; if Ixx ¼ Iyy one conventionally takes u ¼ 0. The principal in-
ertias are

�IIxx ¼ 1
2
ðIxx þ IyyÞ þ R; �IIyy ¼ 1

2
ðIxx þ IyyÞ � R; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðIyy � IxxÞ þ I2xy

r
: ð35Þ

Introduce the strain transformation matrix and its inverse:

Te ¼
cos2 u sin2 u 1

2
sin 2u

sin2 u cos2 u � 1
2
sin 2u

� sin 2u sin 2u cos 2u

2
4

3
5; Tr ¼ T�1

e ¼
cos2 u sin2 u � 1

2
sin 2u

sin2 u cos2 u 1
2
sin 2u

sin 2u � sin 2u cos 2u

2
4

3
5: ð36Þ

Then define

J ¼ 1

4A2

�IIxx 0 0
0 �IIyy 0
0 0 �IIxx þ �IIyy

2
4

3
5; C ¼ TTrJT

T
rE

�1TrJTr: ð37Þ

Fig. 7. 3-node plane stress triangular element. Displayed triangle has corners placed at ðx; yÞ locations ð�2;�4Þ, ð3; 1Þ and ð�1; 3Þ.
Area A ¼ 9=2; principal direction angle u ¼ �26:5�.
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Here C is a modified constitutive matrix with dimensions of compliance (because J and Tr are dimen-
sionless). Using the formula (25) it may be verified that

F ¼ 1

Ah
BTCB: ð38Þ

Because the effort involved in computing C is minor, the work involved in forming F is not too different
from that required for the free–free stiffness (32). An alternative is to use the relation F ¼ ðAhBTEBÞþ ¼
ðAhÞ�1BþE�1ðBþÞT, which follows from Eqs. (A.4) and (A.5), with Bþ ¼ ðBTBÞ�1B. This is easier to im-
plement but lacks physical meaning.

7. Free–free flexibility of multielement substructures

We now pass to the case of a substructure that contains multiple elements. These may be of different
types; for instance combinations of beams, plates and shells. The approach of forming FðeÞ of each indi-
vidual element and merging is unfeasible because there is no simple flexibility assembly procedure com-
parable to the DSM. It is better to assemble first the free–free substructure stiffness matrix K by the DSM.
The geometric construction of the rigid body matrix R is also straightforward. From K and R one obtains
F, the computations being generally carried out in floating-point arithmetic. We review here approaches
appropriate to small and large size substructures; the crossover on present computers being roughly 300 to
500 freedoms.

7.1. Direct calculation from definition

The simplest calculation of the free–free flexibility F is by solving either of the linear systems

ðKþ RRTÞF ¼ P or ðKþ RRTÞðFþ RRTÞ ¼ I; ð39Þ
for F or Fþ RRT, respectively, following factorization of the positive-definite symmetric matrix Kþ RRT.
In the second form RRT is subtracted to get F. Matrix Kþ RRT is dense since RRT generally will ‘‘fill out’’
the matrix. Thus any sparseness initially present in K is lost. For substructures containing less than roughly
NF ¼ 300 d.o.f. this loss of sparsity is of little significance because the inversion of a full 300� 300 positive-
definite symmetric matrix requires on the order of 107 operations, which is insignificant on most computers
(even PCs) endowed with floating-point hardware. The two systems (39) are equivalent if K is ‘‘RBM-
clean’’ in the sense discussed in Section 5. If K is polluted the first form is preferable since P acts as a filter.
Equivalent to (39) are the block-bordered symmetric systems

K R

RT �IR

� �
F

G

� �
¼ P

0

� �
;

K R

RT �IR

� �
Fþ RRT

~GG

� �
¼ I

0

� �
; ð40Þ

in which IR denotes the NR � NR identity matrix. In exact arithmetic G ¼ RTF ¼ 0 and ~GG ¼ RT, respec-
tively, which may be used for verification. If K is stored in sparse form, such as a skyline format, the
coefficient matrices of (40) fit the well-known ‘‘arrowhead’’ format as R generally will couple all equations.
However, forward symmetric Gauss elimination will require diagonal pivoting because K is singular, thus
hindering sparsity. Backward elimination can be completed without pivoting, but this will fill out the K
block. Hence exploitation of sparsity with (40) remains troublesome, and the additional programming
complexity tilts the balance toward the more compact arrangements (39).

7.2. Woodburying

If NF exceeds roughly 500 freedoms direct inversion becomes progressively expensive in terms of CPU
time and storage, and becomes impractical in the thousand-freedom or above range. This would be the
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case, for example, when substructures arise as a result of a domain decomposition process for task-parallel
processing. Furthermore, since F is generally full, storing the complete flexibility would demand significant
storage resources. Fortunately, as noted in Section 4, more often than not only a boundary subset of F needs
to be computed, which reduces the need for storage. It is therefore of interest to develop computational
techniques that take advantage of

(i) The sparseness of K, in the sense that pivoting on the K block is precluded.
(ii) The low rank of R.
(iii) The need for only a boundary subset of F.

If only RBMs are allowed in R this matrix has at most rank 6. It is therefore tempting to consider using the
Woodbury inverse-update formula for ðKþ RRTÞ�1. The standard formula cannot be used, however, be-
cause K is singular. A work-around is developed in Appendix A: the formula is applied to KþHHT, where
H is a NF � NR matrix such that HHT is a diagonal matrix of rank NR that renders KþHHT positive
definite while preserving its sparsity and makes pivoting unnecessary.
The necessary theory is worked out in Section A.3 of the Appendix, and only the relevant results are

transcribed here. In those equations replace A by K, B by F, n by NF and k by NR, while keeping the same
notation for other matrices and vectors. The first of (39) is replaced by

ðKþHHT �HHT þ RRTÞF ¼ P: ð41Þ
The equivalent block-symmetric form is

KþHHT R H

RT �IR 0
HT 0 IR

2
4

3
5 F

GR

GH

2
4

3
5 ¼

P

0

0

2
4

3
5: ð42Þ

Since KþHHT is positive definite no pivoting is necessary while processing that block, which contains the
bulk of the equations. The explicit matrix borderings of (42) can be avoided by doing two linear blocksolves
followed by a matrix combination:

ðKþHHTÞX ¼ I; ðKþHHTÞYR ¼ R;

F ¼ PXP ¼ X� YRR
T � RYTR þ RRTYRR

T:
ð43Þ

In the first stage, KþHHT is factored by a sparse symmetric solver and NF þ NR right hand sides, namely
the columns of I and R, solved for. The second (combination) stage involves dyadic matrix multiplications,
which may be resequenced as Z ¼ XP ¼ X� YRR

T followed by F ¼ PZ ¼ Z� RRTZ. This reorganization
is useful when computing a subset Fbb of F, as further discussed in Section 7.5.

7.3. Constructing H

To close the algorithm specification, it is necessary to state how H is constructed. The scheme (43) is
valid for an arbitrary H matrix such that HTR has full rank. To preserve the sparsity of K, however, HHT is
required to be diagonal. That requirement is easily handled by choosing the columns of H to be elementary
vectors hj. This vector has all zero entries except for its jth entry, which is set to sj > 0. Obviously hjh

T
j is the

null matrix except for the jth diagonal entry, which is s2j . Since this is added to Kjj, s2j can be viewed as the
stiffness of a penalty spring added to the jth freedom. The goal is to insert NR springs to suppress the NR
rigid body modes. Two insertion strategies may be followed:

1. Prescribed insertion. Penalty spring stiffnesses and their locations are picked beforehand from inspection
or separate analysis of the substructure.
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2. Adaptive insertion. The NR penalty springs are inserted ‘‘on the fly’’ as a byproduct of the factorization of
K, as described below. This strategy has the advantage of providing consistency cross-checks, and is the
one selected here.

This kind of adaptive strategy was originally proposed for the stable traversal of critical points in
geometrically nonlinear analysis [15,16]. Although there are procedural differences (in critical point tra-
versal usually one spring is sufficient) the underlying idea is the same.
The following tests are patterned after the skyline solver implementation described in [17], but are ap-

plicable with minor changes to most direct solvers. We assume that the sparse factorization program carries
out the symmetric LDLT decomposition

KþHHT ¼ LDLT; ð44Þ
where D is diagonal and L unit lower triangular. As pre-processing step the factoring program computes
the Euclidean row lengths ‘j of K and their running maxima mj, which are saved in a work array:

‘j ¼
XNF
i¼1

K2ij

 !1=2
; mj ¼ max

j

i¼1
‘i; j ¼ 1; . . . ;NF: ð45Þ

Initially H ¼ 0. Suppose that the factorization (44) has reached the jth column and row. Entry dj of D
(known as a diagonal pivot) is computed as last substep. The following singularity test is performed:

jdjj6Cd�mj ¼ Ctolmj: ð46Þ
Here � is a machine tolerance (the smallest number for which 1þ � > 1 in the floating-point arithmetic
used) and Cd is a ‘‘loosen up’’ coefficient typically in the range 10 to 100. If (46) holds, a penalty spring with
s2j ¼ Csmj, where Cs is a coefficient of order 10

2 or 103, is added to dj so effectively dj � s2j . The penalty
spring count is incremented by one and the factorization continued.
If K is found to be NR times singular as per (46), NR springs are inserted. On exit, the adaptive procedure

has effectively changed K by the diagonal matrix HHT of rank NR defined as

DH ¼ HHT ¼
XNR
i¼1

hjh
T
j ; where ith entry of hj ¼ sj > 0 if i ¼ j; else 0; ð47Þ

where H is the NF � NR rectangular matrix obtained by stacking the hj’s as columns. For example, suppose
that NF ¼ 6, NR ¼ 2 and that freedoms j ¼ 3 and j ¼ 6 receive penalty springs. Then

h3 ¼

0
0
s3
0
0
0

2
6666664

3
7777775
; h6 ¼

0
0
0
0
0
s6

2
6666664

3
7777775
; H ¼ h3 h6½ � ¼

0 0
0 0
s3 0
0 0
0 0
0 s6

2
6666664

3
7777775
; HHT ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 s23 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 s26

2
6666664

3
7777775
: ð48Þ

It is important to note that H is used in the theoretical developments for convenience but is never formed
explicitly.
The foregoing scheme is called an exact penalty method in the sense that in exact arithmetic the penalty

spring values have no effect on the final result for F, as long as they are positive nonzero. In inexact floating-
point arithmetic it is wise to constrain the sj to a certain range to minimize rounding errors and cancel-
lations, but within that range the results remain insensitive to the value. The recommended range s2j ¼
100mj to 1000mj fulfills that objective.
On factorization exit it is necessary to verify whether the penalty spring count is NR. This a posteriori

consistency check is discussed in Section 7.9.
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7.4. Tutorial example: Three springs in series

This simple example is worked out in detail to display the equivalence between the direct and penalty-
spring flexibility computations. It consists of three springs of stiffnesses k1, k2 and k3 attached in series, as
shown in Fig. 8. The springs can only move longitudinally and consequently the substructure has 4 d.o.f.:
u1 through u4. The stiffness, rigid-body and projector matrices are

K ¼

k1 �k2 0 0
�k2 k1 þ k2 �k2 0
0 �k2 k2 þ k3 �k3
0 0 �k3 k3

2
664

3
775; R ¼ 1

2

1
1
1
1

2
664
3
775; P ¼ 1

4

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

2
664

3
775: ð49Þ

If k1 ¼ k2 ¼ k3 ¼ 1, a direct calculation gives

F ¼ PðKþ RRTÞ�1 ¼ ðKþ RRTÞ�1P ¼ 1
8

7 1 �3 �5
1 3 �1 �3
�3 �1 3 1
�5 �3 1 7

2
664

3
775: ð50Þ

The calculation is now repeated with the method of penalty springs. Because NR ¼ 1 one spring has to be
injected. The adaptive collocation method will insert s2 at freedom u4 because the symmetric forward
factorization of K will get a zero or tiny pivot there. Thus

H ¼

0
0
0
s

2
664
3
775; KH ¼ KþHHT ¼

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1þ s2

2
664

3
775: ð51Þ

We will keep s arbitrary to study its propagation in the calculation sequence. Solving the systems KHX ¼ I

and KHYR ¼ R, we obtain

X ¼ 1
4

3þ 1=s2 2þ 1=s2 1þ 1=s2 1=s2

2þ 1=s2 2þ 1=s2 1þ 1=s2 1=s2

1þ 1=s2 1þ 1=s2 1þ 1=s2 1=s2

1=s2 1=s2 1=s2 1=s2

2
664

3
775; YR ¼ 1

2

6þ 4=s2
5þ 4=s2
3þ 4=s2
4=s2

2
664

3
775; ð52Þ

and combining

F ¼ X� YTRR
T � RYTR � RRTYRR

T ¼ 1
8

7 1 �3 �5
1 3 �1 �3
�3 �1 3 1
�5 �3 1 7

2
664

3
775: ð53Þ

As expected the effect of a nonzero s cancels out in F because of the exact arithmetic. Numerical com-
putations in double-precision floating-point show that F is obtained with full (16-place) accuracy if s > 1

Fig. 8. Three springs in series.
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(but not so large as to cause overflow). If s < 1, the accuracy in X drops because KþHHT approaches a
singular matrix, since its condition number is CðKHÞ � 13:6=s2 for s � 1.

7.5. Computing a subset of F

As noted in Section 4, for many applications of the free–free flexibility it is only necessary to evaluate a
submatrix Fb � Fbb of F that pertains to Nb < NF freedoms at boundary nodes. The penalty spring pro-
cedure can be adjusted to cut down on both computations and storage. The changes are best illustrated
through a modification of the previous example. Suppose that only the end freedoms ðu1; f1Þ and ðu4; f4Þ are
of interest for Fbb. The construction of K, H and KH ¼ KþHHT proceeds as before and the solution for YR
does not change. The linear system KHX ¼ I may be reduced to KHXb ¼ Ib, in which the 4� 2 matrices Xb

and Ib hold columns 1 and 4 of X and I, respectively. A trimmed version Rb of the R matrix that keeps only
rows 1 and 4 is formed. For this example

Xb ¼
1

4

3þ 1=s2 1=s2

2þ 1=s2 1=s2

1þ 1=s2 1=s2

1=s2 1=s2

2
664

3
775; YR ¼ 1

2

6þ 4=s2
5þ 4=s2
3þ 4=s2
4=s2

2
664

3
775; R ! Rb ¼

1

2

1
1

� �
: ð54Þ

The NF � Nb matrix Zb ¼ Xb � YRR
T
b is computed, and a trimmed version Zbb formed by keeping only rows

1 and 4:

Zb ¼ Xb � YRR
T
b ¼ 1

4

6 �6
3 �5
1 �3
0 0

2
664

3
775! Zbb ¼

1

4

6 �6
0 0

� �
: ð55Þ

Combining:

Fbb ¼ Zbb � RbR
TZb ¼

1

8

7 �5
�5 7

� �
: ð56Þ

The projected boundary flexibility is

�FFb ¼ PbFbbPb ¼
3

4

1 �1
�1 1

� �
;

in which Pb ¼ I2 � RbðRTbRbÞ�1RTb . This is the pseudo-inverse of the condensed stiffness

Kb ¼
1

3

1 �1
�1 1

� �
:

For this simple problem these gyrations are hardly worth the trouble. But they make sense for larger
systems. For example, a substructure made of a 50� 50 plane stress quadrilateral mesh contains 400
boundary and 4802 internal freedoms, respectively. Hence F would be 5202� 5202, requiring 210 MB for
storage in double precision as a full matrix. But the 400� 400 matrix Fbb would need only 1.3 MB.

7.6. A model reduction example

This example illustrates the application of F to a model reduction process that retains only selected
boundary freedoms. It can also be used as a benchmark problem to test implementations of the exact
penalty spring method. Fig. 9(a) shows a 16-element, free–free substructure built with 4-node square plane
stress elements with two freedoms per node. The mesh has 25 nodes and NF ¼ 50 d.o.f., and three inde-
pendent RBMs (NR ¼ 3). The plate dimensions and thickness are shown in the figure. The material is
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isotropic with E ¼ 160 and m ¼ 1=3 except for element 6, which is taken to have either Eð6Þ ¼ 0 (hole) or
Eð6Þ ¼ 160� 108 (near-rigid inclusion). The reduced model retains only the 10 horizontal displacements and
forces at the boundary nodes shown in Fig. 9(b). (There are 32 boundary freedoms, but only 10 are kept
here to keep Fbb printable.)
Although the problem size is too small for sparse computations to be advantageous, it facilitates the

visualization of matrix configurations as depicted in Fig. 10.
With the fx; yg axes placed as shown, the 50� 3 orthonormalized RBM matrix R is

RT ¼ 1

10

2 0 2 0 2 0 2 0 2 0 2 0 . . . 2 0
0 2 0 2 0 2 0 2 0 2 0 2 . . . 0 2
�2 �2 �1 �2 0 �2 1 �2 2 �2 �2 �1 . . . 2 2

2
4

3
5: ð57Þ

Fig. 9. Application of F to model reduction: (a) a 25-node, 50-DOF plane-stress substructure; (b) a reduced model that retains only 10

boundary freedoms. The shaded element (6) models either a hole (Eð6Þ ¼ 0) or a near-rigid inclusion (Eð6Þ ¼ 160� 108).

Fig. 10. Leftmost diagram shows the configuration of KþHHT for the substructure of Fig. 9. Each square represents a 2� 2 block.
White squares mark zero entries. The rightmost diagrams depict the configuration of the right-hand side matrices I and R. Border

numbers above I are node numbers. Shaded columns in I mark the 10 columns of I to be processed. Black circles mark the unit di-

agonal elements at which processing starts. Three penalty springs suppressing the RBMs are inserted at freedoms 47, 49 and 50. These

are marked with black squares in the diagonal of K.
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The isoparametric element stiffness matrix for m ¼ 1=3, h ¼ 1=100 and variable E is

KðeÞ ¼ E
1600

8 3 �5 0 �4 �3 1 0
3 8 0 1 �3 �4 0 �5
�5 0 8 �3 1 0 �4 3
0 1 �3 8 0 �5 3 �4
�4 �3 1 0 8 3 �5 0
�3 �4 0 �5 3 8 0 1
1 0 �4 3 �5 0 8 �3
0 �5 3 �4 0 1 �3 8

2
66666666664

3
77777777775
; ð58Þ

from which the 50� 50 free–free stiffness matrix K is easily assembled by the DSM.
For the hole case, with Eð6Þ ¼ 0 and E ¼ 160 elsewhere, the diagonal entries of K are
diagðKÞ ¼ 1

5
½4 4 8 8 8 8 8 8 4 4 8 8 12 12 12 12 16 16 8 8 � � � 8 8 4 4�: ð59Þ

The rowlength maxima, listed to three places, are

mj ¼ ½1:11 1:11 2:02 2:02 2:02 2:02 2:02 2:02 2:02 2:02 2:02 2:02 2:81 2:81 2:81 2:81 3:65 3:65 � � � 3:65�:
ð60Þ

On factoring K ¼ LDLT in double-precision floating-point the first 47 diagonal entries of D, listed to four
decimal places, are

diagðDÞj1:47j ¼ 0:8000 0:6875 1:5854 1:2368 � � � 0:1851 0:7415 1:066� 10�14
�� ��: ð61Þ

With Ctol ¼ 10�13 used in the test (46), the first singularity is detected at j ¼ 47 because d47 ¼ 1:066�
10�14 < 10�13 � 3:65. A penalty spring s247 ¼ 100� 3:65 ¼ 365 is inserted, whence d47 becomes s247 to 14
places. The factorization continues with d48 ¼ 0:6084 and d49 ¼ 9:326� 10�15. The second spring is inserted
at j ¼ 49 changing d49 also to 365. The third singularity is detected at the last entry: d50 ¼ 9:992� 10�16.
The third spring goes at j ¼ 50 and d50 becomes 365. On completing the remaining steps in (43) the fol-
lowing reduced flexibility, listed to 4 decimal places, is obtained:

Fbb¼

2:0510 0:0587 �0:2545 �0:2086 �0:0018 �0:4334 �0:2064 �0:1644 �0:1145 0:0295

1:0558 0:1168 �0:1083 �0:1746 �0:1971 �0:1462 �0:1680 �0:1518 �0:0843
1:0647 0:1420 �0:2225 �0:2334 �0:1676 �0:1172 �0:0846 �0:0894

0:9642 �0:0260 �0:1486 �0:1274 �0:0843 �0:0808 �0:1920
1:9373 0:0950 �0:0489 �0:1240 �0:2237 �0:5066

2:0534 0:0313 �0:2078 �0:1960 �0:0556
0:9341 0:0831 �0:0797 �0:1731

0:9442 0:0934 �0:1841
0:9313 0:0080

symmetric 1:9614

2
6666666666666664

3
7777777777777775

:

ð62Þ
Its eigenvalues are

2:6335 2:4016 2:0182 1:4903 1:4570 1:0796 0:9497 0:7887 0:7717 0:3071½ �:
Comparison with the exact full F obtained in rational arithmetic with Mathematica shows that the double-
precision floating-point computation sequence delivers 15 places of accuracy.
For the near-rigid intrusion case, in which Eð6Þ ¼ 160� 108 and E ¼ 160 elsewhere, the diagonal entries

of K are as in (59) except at nodes 7, 8, 12 and 13 (j ¼ 13; 14; 15; 16; 23; 24; 25; 26) where they jump to

2128 C.A. Felippa, K.C. Park / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2111–2140



8000002:4. The rowlength maxima mj start as in (60), but jump to 1:1136� 107 at j ¼ 13 and stay at that
value through j ¼ 50. The factorization proceeds without incident until reaching d47 ¼ 2:19� 10�8, which
flags a singularity since 2:19� 10�8 < 10�13 � 1:1136� 107. A penalty spring of s247 ¼ 100� 1:1136�
107 ¼ 1:1136� 109 is added there. The next tiny pivot is d49 ¼ 1:028� 10�8, immediately followed by
d50 ¼ 1:3175� 10�12. The same penalty spring values are inserted at j ¼ 49 and j ¼ 50. Proceeding with the
remaining steps the following reduced flexibility, listed to four decimal places, is obtained:

Fbb¼

1:8371 �0:0633 �0:1338 �0:1101 �0:0138 �0:5129 �0:2392 �0:1377 �0:0480 0:1181

0:7467 �0:0018 �0:0542 �0:1238 �0:2237 �0:0675 �0:0323 �0:0559 �0:0674
0:7546 0:0068 �0:1519 �0:1007 �0:0346 �0:0250 �0:0799 �0:1762

0:8500 �0:0041 �0:0321 �0:0725 �0:0898 �0:1230 �0:2503
1:9126 0:0859 �0:0832 �0:1618 �0:2379 �0:4886

1:8441 �0:0470 �0:1767 �0:1204 0:0183

0:8622 0:0396 �0:0776 �0:1281
0:8632 0:0398 �0:1830

0:8729 �0:0270
symmetric 1:9030

2
666666666666666664

3
777777777777777775

:

ð63Þ

Its eigenvalues are

2:5252 2:2875 1:8236 1:2890 1:0172 0:9076 0:8070 0:7698 0:7294 0:2902½ �:

Comparison with the exact F obtained in rational arithmetic shows that the double-precision floating-point
computation delivers on average 11 places of accuracy. Hence the effect of the poorly scaled stiffness has
been to lose four decimal places with respect to the well-scaled (hole) case.
Although the full stiffness K and flexibility F of the two cases have entries that differ by eight orders of

magnitude, the reduced-model flexibilities are of the same order. Furthermore, observe that both (62) and
(63) are diagonally dominant and very well conditioned. This ability of boundary flexibilities to filter out
interior details is a key factor in the success of FETI-type iterative solvers [1–4].

7.7. A substructure with internal mechanisms

The last example illustrates how to handle a substructure that exhibits non-RBM zero energy modes.
Symbolic analysis is used to make the result valid for a wide range of property data and hence more useful
as validation benchmark. Three identical prismatic plane beam-column members are connected as shown in
Fig. 11(a). The hinge at node 4 permits members to rotate independently: hð1Þ

4 6¼ hð2Þ
4 6¼ hð3Þ

4 , while enforcing
equal translations. The system has the 14 d.o.f. defined in Fig. 11(a), which are ordered as

uT ¼ ux1 uy1 Lh1 ux2 uy2 Lh2 ux3 uy3 Lh3 ux4 uy4 Lhð1Þ
4 Lhð2Þ

4 Lhð3Þ
4

h i
: ð64Þ

The rotational freedoms are scaled by L to get dimensionally homogeneous results. The three mem-
bers have the same length L, elastic modulus E, cross-section area A and moment of inertia I ¼ Izz.
For convenience in subsequent symbolic expressions, we set I ¼ r2A ¼ q2AL2, where r is the cross-section
radius of gyration and q ¼ r=L the reciprocal of the bending slenderness ratio. The assembled free–free
stiffness is
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K¼EA
L

1 0 0 0 0 0 0 0 0 �1 0 0 0 0

0 12q2 6q2 0 0 0 0 0 0 0 �12q2 6q2 0 0

0 6q2 4q2 0 0 0 0 0 0 0 �6q2 2q2 0 0

0 0 0 l2 l1 l5 0 0 0 �l2 �l1 0 l5 0

0 0 0 l1 l3 �3q2 0 0 0 �l1 �l3 0 �3q2 0

0 0 0 l5 �3q2 4q2 0 0 0 �l5 3q2 0 2q2 0

0 0 0 0 0 0 l2 �l1 �l5 �l2 l1 0 0 �l5
0 0 0 0 0 0 �l1 l3 �3q2 l1 �l3 0 0 �3q2

0 0 0 0 0 0 �l5 �3q2 4q2 l5 3q2 0 0 2q2

�1 0 0 �l2 �l1 �l5 �l2 l1 l5 l4 0 0 �l5 l5
0 �12q2 �6q2 �l1 �l3 3q2 l1 �l3 3q2 0 l4 �6q2 3q2 3q2

0 6q2 2q2 0 0 0 0 0 0 0 �6q2 4q2 0 0

0 0 0 l5 �3q2 2q2 0 0 0 �l5 3q2 0 4q2 0

0 0 0 0 0 0 �l5 �3q2 2q2 l5 3q2 0 0 4q2

2
66666666666666666666666666666664

3
77777777777777777777777777777775

; ð65Þ

in which

l1 ¼ 1
4

ffiffiffi
3

p
ð1� 12q2Þ; l2 ¼ 1

4
þ 9q2; l3 ¼ 3

4
þ 3q2; l4 ¼ 3

2
þ 18q2 and l5 ¼ 3

ffiffiffi
3

p
q2:

The 5� 14 null space basis will also be denoted by R. This matrix contains the three rigid-body modes
plus two mechanisms, and can be constructed directly by geometric inspection without having to analyze K.
As initial basis we select the two translational RBMs along x and y, plus the three individual beam ro-
tations depicted in Fig. 11(b). Applying Gram–Schmid yields the orthonormal basis

Fig. 11. Three identical plane beam-columns hinged at node 4. (b) depicts three null basis modes (NBM) used to start the construction

of the 5� 14 null space basis matrix (66); NBMs #1 and #2 are the translational RBMs.
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RT¼

1
2

0 0 1
2

0 0 1
2

0 0 1
2

0 0 0 0

0 1
2

0 0 1
2

0 0 1
2

0 0 1
2

0 0 0

0 �3c1 4c1 0 c1 0 0 c1 0 0 c1 4c1 0 0

c2 �2c3 �c3 �3c2 8c3 c4 c2 �2c5 0 c2 �2c5 �c3 c4 0

�6c7 �4c6 �2c6 �5c7 �7c6 �2c6 17c7 17c6 46c6 �6c7 �6c6 �2c6 �2c6 c8

2
6666664

3
7777775
; ð66Þ

in which

c1 ¼ 1=ð2
ffiffiffiffiffi
11

p
Þ; c2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11=161

p
; c3 ¼ 2=

ffiffiffiffiffiffiffiffiffiffi
5313

p
; c4 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11=483

p
; c5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=1771

p
;

c6 ¼ 1=ð6
ffiffiffiffiffiffiffiffi
161

p
Þ; c7 ¼ 1=ð2

ffiffiffiffiffiffiffiffi
483

p
Þ and c8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
23=63

p
:

A symbolic calculation with Mathematica using the method of penalty springs delivers the following
boundary flexibility associated with the 9 d.o.f. at nodes 1, 2 and 3:

Fbb ¼
L

5292EAq2

v1 0 0 �v6 v9 �v10 �v6 �v9 v10
0 v2 v7 2v8 �v11 v12 �2v8 �v11 v12
0 v7 v3 v8 �v13 v14 �v8 �v13 v14

�v6 2v8 v8 v4 �v15 v16 �v17 v18 v19
v9 �v11 �v13 �v15 v5 �v20 �v18 �v21 v22

�v10 v12 v14 v16 �v20 v3 �v19 v22 v14
v6 �2v8 �v8 �v17 �v18 �v19 v4 v15 �v16
�v9 �v11 �v13 v18 �v21 v22 v15 v5 �v20
v10 v12 v14 v19 v22 v14 �v16 �v20 v3

2
66666666666664

3
77777777777775
; ð67Þ

in which

v1 ¼ 24þ 2916q2; v2 ¼ 132þ 288q2; v3 ¼ 1356þ 72q2; v4 ¼ 105ð1þ 9q2Þ; v5 ¼ 51þ 2259q2;

v6 ¼ 6ð4þ 171q2Þ; v7 ¼ 66þ 144q2; v8 ¼ 3
ffiffiffi
3

p
ð1� 36q2Þ; v9 ¼ 2

ffiffiffi
3

p
ð8� 225q2Þ;

v10 ¼ 2
ffiffiffi
3

p
ð5þ 72q2Þ; v11 ¼ 46þ 360q2; v12 ¼ 16� 72q2; v13 ¼ 23þ 180q2; v14 ¼ 8� 36q2;

v15 ¼ 9
ffiffiffi
3

p
ð3� 73q2Þ; v16 ¼ 3

ffiffiffi
3

p
ð11þ 24q2Þ; v17 ¼ 3ð19þ 9q2Þ; v18 ¼

ffiffiffi
3

p
ð5� 117q2Þ;

v19 ¼
ffiffiffi
3

p
ð13þ 36q2Þ; v20 ¼ 33þ 72q2; v21 ¼ 13þ 1359q2 and v22 ¼ 7þ 252q2:

Symbolic penalty springs are inserted at K-factorization pivots 10, 11, 12, 13 and 14, which become exact
zeroes in the exact arithmetic used by Mathematica.
Matrix (67) has full rank of 9 if q > 0. If q ! 1, which for fixed A and L means that the three members

become infinitely stiff in bending, Fbb approaches a finite matrix of rank 3 whereas K ! 1.

7.8. Computational costs

If a sparse skyline solver is used for the factor and blocksolve stages, the amount of arithmetic work
required in the penalty spring method may be estimated as follows. Denote by b the root-mean-square
bandwidth of K, n ¼ NF the order of K and k ¼ NR the RBM count. The cost in floating-point operation
units to get the full F is approximately

Ctot ¼ CF þ CS þ CC; CF ¼ 1
2
nb2; CS ¼ 2nb 1

2
n
	

þ k


; CS ¼ 3n2k; ð68Þ
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where CF , CS , and CC denote the costs of KH-factorization, blocksolve and matrix combination, respec-
tively. For CS the special form of the right-hand side in block solving KHX ¼ I has been accounted for. The
storage requirement is approximately S ¼ nbþ 1

2
n2 þ 2nk double-precision floating-point (8-byte) locations.

If only a subset Fbb or order nb < n is required, then again Ctot ¼ CF þ CS þ CC, where now

CF ¼ 1
2
nb2; CS ¼ 2nb 1

�h
� nb
2n

�
nb þ k

i
; CS ¼ 3nnbk: ð69Þ

Thus CF stays the same whereas CS and CC drop. The storage required is approximately S ¼ nbþ nnb þ
1
2
n2b þ 2nk double-precision floating-point (8-byte) locations.
To provide a more concrete cost picture, two regular mesh configurations are chosen and results posted

in Table 1. The case labeled ‘‘2D’’ pertains to a regular N � N 2D plane stress mesh of 4-node quadrilaterals
with two freedoms per node, n ¼ NF � 2N 2, b � 2N , k ¼ NR ¼ 3 and nb ¼ 8N . Table 1 lists costs (in billions
of operation units) for N ¼ 50, 100 and 200 to compute the full F and the boundary-reduced Fbb. The
leading term in Ctot is 8N 5 for F and 68N 4 for Fbb. In both cases the blocksolve cost CS is dominant. On a
one-gigaflop (1 GF) CPU, typical of present high-end offerings by Intel and AMD, the estimate runtime in
seconds will be that shown in Table 1 for Ctot; for instance 109 s to get the Fbb of a 200� 200 mesh.
The case labeled ‘‘3D’’ pertains to a regular N � N � N 3D mesh of 8-node bricks with three freedoms

per node, n ¼ NF � 3N 3, b � 3N 2, k ¼ NR ¼ 6 and nb � 18N 2. The leading term in Ctot is 27N 8 for F and
338N 7 for Fbb. Table 1 lists data for N ¼ 10, 20 and 40. The total cost is again strongly dominated by the
blocksolve. On a 1 GF processor, the computation of Fbb for a 20� 20� 20 mesh would take 373 s. Note
that the ratio of full to boundary-reduced costs is not so significant as in the 2D case because a larger
percentage of nodes are on the boundary; for example, that ratio is only about 2 for N ¼ 20.
Several conclusions emerge from the cost analysis:

1. The factorization cost is comparatively insignificant for fine meshes in 2D and 3D. Multiple refactorization
passes, for example, to test the effect of different singularity tolerances on the penalty spring count,
would have minor impact on the total cost.

2. Improved computational efficiency in the blocksolve, for example, using assembly language to squeeze
high performance out of superscalar or pipeline processors, would have a more immediate payoff than
improvements in the sparse factorization. For the same reason, complicated sparse solvers with high in-
dexing overhead should be avoided.

Table 1

Computational costs and storage demands for sample 2D/3D regular meshes

Case N n ¼ NF nb CF CS CC Ctot S in GB

2D! F 50 5000 5000 0.03 2.50 0.22 2.75 0.10

2D! F 100 20 000 20 000 0.40 80.02 3.60 84.02 1.63

2D! F 200 80 000 80 000 6.40 2560.20 57.60 2624.20 25.86

2D! Fbb 50 5000 400 0.03 0.39 0.02 0.44 0.02

2D! Fbb 100 20 000 800 0.40 6.30 0.14 6.84 0.16

2D! Fbb 200 80 000 1600 6.40 101.57 1.15 109.12 1.29

3D! F 10 3000 3000 0.2 2.7 0.2 3.1 0.04

3D! F 20 24 000 24 000 17.3 691.6 10.4 719.2 2.54

3D! F 40 192 000 192 000 2211.8 176958.4 663.6 179833.8 154.85

3D! Fbb 10 3000 1800 0.2 2.3 0.1 2.6 0.06

3D! Fbb 20 24 000 7200 17.3 352.9 3.1 373.2 1.82

3D! Fbb 40 192 000 28 800 2211.8 49113.9 99.6 51425.3 54.95

C’s in billions of floating-point operation units, storage in gigabytes.
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3. The estimated CS may be used as a guide in model decomposition to attain load balance in parallel com-
putations where one or more substructures are assigned to each processor. The solution cost will also
dominate the parallel recovery of internal states if the factorization of KH is saved in each processor.

It should be noted that the cost of forming the projected boundary flexibility �FFb ¼ PbFbbPb described in
Section 4 is not included in these estimates. This may be viewed as a postprocessing step required for some
applications.

7.9. Implementation considerations

The determination of rank in floating-point arithmetic is a delicate ‘‘� threshold’’ problem [10,18]. Ac-
cordingly, when processing general substructures the penalty spring method should be complemented with
appropriate safeguards to achieve robustness. A software configuration that implements two consistency
tests is diagramed in Fig. 12.
Upon forming (or procuring) K and R, an obvious check is whether KR ¼ 0 within floating-point tol-

erance. Failure flags serious inconsistencies; for example, K may come from a ‘‘black box’’ source such as a
commercial FEM code and be RBM polluted, or the substructure geometric data are flawed. An immediate
error exit is indicated.
The second test checks whether the penalty spring count Ns returned by the sparse factor agrees with the

column dimension NR of R. If so, processing continues with the blocksolve and combination steps to return
either F or Fbb. Handling discrepancies is tricky because many error sources, whether model-based or

Fig. 12. Schematics of the free–free flexibility analysis of a substructure. For the in-depth null space analysis, which is not treated here,

see [19,20].
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computational, are possible. A spring count exceeding NR may be due to (i) spurious kinematic mecha-
nisms, (ii) highly ill-conditioned K, or (iii) overly loose tolerance in the singularity test (46). A count less
than NR may be due to (iv) overstrict singularity test tolerance, (v) RBM polluted stiffness, or (vi) physical
mechanisms (such as initial stress effects in geometrically nonlinear analysis) that eliminate some RBMs.
(The last two sources, however, should be caught by the prior KR ¼ 0? test.)
If a count discrepancy occurs, it is recommended to proceed to an in-depth diagnosis of the null space of

K, as flowcharted in Fig. 12. This may involve an SVD analysis [19] or a geometric analysis complemented
by the SVD [20]. The interested reader should consult those references for procedural details. On return
from this step a decision must be made to proceed, or to take an error exit requiring further instructions
from the user. Two scenarios are:

1. The null-space analyzer confirms the initial R. The factorization singularity tolerance should be then
adjusted until the correct number of springs is returned (discrepancy one way or the other is not ac-
ceptable and will result in an incorrect flexibility). As noted in the cost study, the expense of multiple
refactorizations is negligible for fine 2D and 3D meshes. If agreement cannot be achieved K is likely to
be extremely ill-conditioned and/or poorly scaled, and the model substructuring process should be re-
vised.

2. Additional kinematic mechanisms are found. If these are disallowed an error exit is taken. If allowed and
the spring count agrees with the null space dimension, the geometric R is replaced by the updated null
space basis and the blocksolver path taken. If acceptable but the spring count disagrees, the factorization
path is retraced with adjusted tolerances as above.

The ultimate solution to fatal error conditions is revision of the model decomposition process and
imposition of element quality control (in particular, to eliminate the pollution errors discussed in Section 5)
until all substructures behave as expected. For this reason, it pays to be conservative in handling error
conditions at this level.
A question may be raised as to whether an in-depth null space analysis of the substructural stiffness

should be always done on entry. The philosophy of the present implementation is that such analysis serves
primarily to catch model or substructuring flaws. Once those are fixed, it is not only superfluous but may
contaminate the geometric R with roundoff noise. The analysis of complex structural configurations
typically requires hundreds or thousands of production runs for design modifications during which the
substructuring is kept unchanged. It is better to keep the null space analysis as a background tool for
verification and troubleshooting of the initial passes.
A more difficult decision is: should non-RBM substructural kinematic mechanisms be forbidden? Our

recommendation is to allow only those that possess physical significance; for example, vehicle steering and
suspension linkages, or control surface motions in aircraft. These mechanisms can often be defined geo-
metrically by inspection, as in the example of Fig. 11, again making a detailed null space analysis of K
superfluous.

8. Conclusions

The introduction of the free–free flexibility closes a duality gap with the stiffness method. This paper
treats the subject at the level of individual substructures that arise from a model decomposition process.
The major new contributions presented here are:

1. An exact penalty method to compute F or a subset thereof, given K and R, for arbitrary substructures.
The method preserves the sparseness structure of K and can be implemented in the framework of existing
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symmetric sparse linear solvers. To increase robustness it is recommended to complement the basic al-
gorithm with a null space analyzer to handle difficult or borderline cases.

2. A general expression for F, derived through the Woodbury formula, that involves a rank-regularization
matrix H.

3. Congruential transformation methods for symbolic derivation of the free–free flexibility of individual el-
ements.

4. Dual and nondual relations that connect boundary-reduced stiffness and flexibility matrices, which are
expected to be useful in model reduction and system identification.

Further refinements in null space analysis of substructures and subdomains can be expected as interest
grows in multilevel parallel solution of extremely large FEM models, containing tens or hundreds of
millions of freedoms. The solution framework may involve boundary flexibilities connected by displace-
ment frames and should be able to accommodate nonmatching meshes as well as nonlocal (inter-subdo-
main) multipoint constraints.
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Appendix A. Background theory

A.1. Generalized inverse terminology

We summarize below terminology concerning the generalized inverses that are used in the development
of Sections 3–5. For a complete coverage of the subject the monograph by Rao and Mitra [21] may be
consulted.

A.1.1. Pseudo and spectral g-inverses of nondefective square matrices
Consider a n� n square real matrix A, which may be unsymmetric and singular but is assumed non-

defective (that is, it has a complete eigensystem). Its pseudo-inverse, also called the Moore–Penrose gen-
eralized inverse or g-inverse, is the matrix X that satisfies the four Penrose conditions

AXA ¼ A; XAX ¼ X; AX ¼ ðAXÞT; XA ¼ ðXAÞT: ðA:1Þ
The pseudo-inverse is identified as X ¼ Aþ below. It can be shown that this matrix exists and is unique [10].
An equivalent definition is

AX ¼ PA; XA ¼ PX ; ðA:2Þ
where PA and PX are projection operators associated with the column space of A and X, respectively. If A is
symmetric, so is X and PA ¼ PX ¼ P.
The spectral generalized inverse of A, or simply sg-inverse, is the matrix Ay that has the same eigen-

vectors as A, and whose nonzero eigenvalues are the reciprocals of the corresponding nonzero eigenvalues
of A. (The name and notation for this class of g-inverses is not standardized in the literature; see [21, Sec
4.7] for other identifiers.) More precisely, if the nonzero eigenvalues of A are ki and associated left and right
bi-orthonormalized eigenvectors are xi and yi, respectively, we have
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A ¼
X
i

kixiy
T
i ; Ay ¼

X
i

1

ki
xiy

T
i ; ki 6¼ 0; xTi yj ¼ dij: ðA:3Þ

where dij is the Kronecker delta. If A is symmetric, A
þ ¼ Ay. For unsymmetric matrices these two g-inverses

generally differ. It can be shown [21] that Ay always satisfies the first two Penrose conditions (A.1) but not
necessarily the others. Note, however, that A, Aþ and Ay have the same rank.

A.1.2. g-Inverses of rectangular matrices, products and sums
The definition of pseudo-inverse may be extended to rectangular matrices with real or complex elements.

The general expressions for rectangular real A are

Aþ ¼ ðATAÞþAT ¼ ATðAATÞþ; ðATÞþ ¼ ðAATÞþA ¼ AðATAÞþ: ðA:4Þ
This reduces the problem to the pseudo-inversion of a symmetric matrix. (For complex matrices transposes
are replaced by conjugate-transposes.) On the other hand, the definition (A.3) of sg-inverse is restricted to
square matrices.
Let A and B be arbitrary rectangular matrices such that AB is defined. Let B1 ¼ AþAB and A1 ¼ AB1B

þ
1 .

Then AB ¼ A1B1 and ðABÞþ ¼ Bþ
1 A

þ
1 [22]. Of particular interest is the case of symmetric square real A and

rectangular real B with the following common-projector property: AþA ¼ P, PB ¼ B, BBþ ¼ P. Then
B1 ¼ PB ¼ B, A1 ¼ AP ¼ A and ðABÞþ ¼ BþAþ. Applying this to the congruential transformation BTAB
yields

ðBTABÞþ ¼ BþAþðBþÞT: ðA:5Þ
In particular, ðBTABÞþ ¼ BAþBT if BTB ¼ I, which can be verified directly.
The pseudo-inverse of a sum of real matrices A ¼

P
i Ai is generally a complicated function of the Ai

[23]. There is, however, a simple orthogonality result [21, p. 67]:

Aþ ¼
X
i

Aþ
i if AiA

T
j ¼ 0 and ATj Ai ¼ 0; i 6¼ j: ðA:6Þ

A.2. The inversion of modified matrices

This section summarizes major results concerning the inversion of a general square matrix modified by a
lower rank update. For a more thorough coverage of the subject the reader is referred to the survey articles
by Hager [24] or Henderson and Searle [25], and references therein.

A.2.1. The Woodbury formula
Let A be a square nonsingular n� n matrix, the inverse of which is available. This will be called the

baseline matrix. Let U and V be two n� k matrices of rank k, with 16 k6 n, and S be an invertible k � k
matrix. Assume that a nonsingular k � k matrix T, which satisfies T�1 þ S�1 ¼ VTA�1U, exists. The inverse
of the baseline matrix A modified by DA ¼ �USVT is given by the identity

A�1
D ¼ Að þ DAÞ�1 ¼ A

	
�USVT


�1 ¼ A�1 � A�1UTVTA�1: ðA:7Þ

This is known as the Woodbury formula [26]. The notation used here is that of Householder [27, p. 124].
Eq. (A.7) is called the Sherman–Morrison formula [28] if k ¼ 1, in which case U and V are column vectors
and S and T reduce to scalars. The historical development of these important formulas is discussed in the
aforementioned surveys [24,25].
The Woodbury formula can be verified by direct multiplication. A less known way to prove it makes use

of the block-bordered system
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A U

VT S�1

� �
B

G

� �
¼ In

0

� �
; ðA:8Þ

in which In is the n� n identity matrix. Elimination in the order G ! B gives ðA�USVTÞB ¼ In whence
B ¼ A�1

D . Elimination in the order B ! G and backsubstitution for B gives (A.7). Note that G ¼ TVTA�1.
Both (A.7) and (A.8) are of interest to derive efficient computational methods for A�1

D when A is a sparse
matrix that can be factored without pivoting, e.g., a symmetric positive-definite matrix.

A.2.2. Singular baseline matrix
Suppose next that A is singular with rank n� k, whereas AD ¼ Aþ DA ¼ A�USVT has full rank n. If

so the Woodbury formula (A.7) fails, and extensions to cover pseudo-inverses [23,29] are too complicated
to be of practical use.
Although (A.8) works in principle for singular A because the bordered coefficient matrix is nonsingular,

partial or full pivoting would be necessary in the forward factorization pass. This hinders the computa-
tional efficiency if A is sparse. It is possible to restore efficiency as follows. The singular A is rendered
nonsingular by adding and subtracting a diagonal matrix DH ¼ HHT, of rank k:

AD ¼ AþHHT �HHT �USVT ¼ AþHHT � U H½ � S�1 0

0 Ik

� �
V

H

� �T
; ðA:9Þ

where Ik is the k � k identity matrix. The Woodbury formula is applied with AþHHT as baseline matrix.
The equivalent block-bordered form is

AþHHT U H

VT S�1 0

HT 0 Ik

2
4

3
5 B

GU

GH

2
4

3
5 ¼

In
0
0

2
4

3
5: ðA:10Þ

Because DH ¼ HHT is diagonal, it does not affect the sparseness of A. If A is symmetric and AþDH

positive definite, the coefficient matrix in (A.10) may be stably factored without pivoting. In fact, it is not
even necessary to form AþHHT explicitly because the diagonal entries of H can be inserted ‘‘on the fly’’ as
explained in Section 7. Upon backsubstitution A�1

D appears in B.

A.3. The inversion of modified symmetric matrices

This final section specializes the results of the previous section to symmetric baseline matrices modified
by a lower rank symmetric update. The case of singular baseline matrix, which is relevant to the methods of
Section 7, is covered in more detail.

A.3.1. Invertible baseline matrices
If the n� n baseline matrix A is symmetric and invertible, and the update is DA ¼ þUUT, where U is

n� k and has rank k, we only need to set S ¼ �Ik and V ¼ U in (A.8). The Woodbury formula becomes
ðAþUUTÞ�1 ¼ A�1 � A�1UTUTA�1, where T�1 ¼ UTA�1Uþ Ik. The explicit inversions can be avoided by
solving three linear systems and combining the results:

AX ¼ In; AY ¼ U; YTU
	

þ Ik


ZT ¼ YT; A�1

D ¼ X� YZT: ðA:11Þ

This sequence requires solving for nþ k right-hand sides with the n� n coefficient matrix A, and n right-
hand sides with the k � k coefficient matrix YTUþ Ik, which is symmetric because Y

TU ¼ UTA�1U. This
has computational advantages if A is sparse and k � n.
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A.3.2. Null space relations
The scenario relevant to the development of the free–free flexibility theory starts with A as a symmetric

singular matrix of rank n� k. Here A can stand for either K or F, since all formulas are dual. The k-
dimensional null space of A is spanned by the n� k orthonormal basis matrix R satisfying AR ¼ 0 and
RTR ¼ Ik. The columns ri of R are the null eigenvectors of A. The other n� k orthonormalized eigenvectors
vi that span the range space of A are columns of a matrix V. The nonzero eigenvalues of A are ki ¼ vTi Avi.
We consider symmetric updates DA ¼ UUT such that AþUUT has full rank n. Therefore U must have the
spectral decomposition

U ¼ VWþ RJ; ðA:12Þ

where the k � k matrix J ¼ RTU has rank k whereas the ðn� kÞ � ðn� kÞ matrixW is arbitrary. A long and
involved analysis based on Woodbury’s formula applied to ðAþUUTÞ�1 ¼ ½ðAþ RJJTRTÞ þ VWWTVT��1
reveals that

VTðAþUUTÞ�1V ¼ diagð1=kiÞ; ðA:13Þ
although the vi are not generally eigenvectors of ðAþUUTÞ�1 since (A.12) couples the null and range
eigenspaces unless W ¼ 0. From (A.13) follows the important property

UTðAþUUTÞ�1U ¼ Ik: ðA:14Þ

The specialization U ! R gives the following identities, of which the first two follow easily from spectral
analysis, and the last one from either (A.14) or RTR ¼ Ik:

RTðAþ RRTÞ�1 ¼ RT; ðAþ RRTÞ�1R ¼ R; RTðAþ RRTÞ�1R ¼ Ik: ðA:15Þ

A second useful specialization is U ! H, the rank regularization matrix introduced in the previous section.
From HTðAþHHTÞ�1H ¼ HTXH ¼ Ik and (A.15) it is not difficult to find the following relations, which
hold for any H as long as rankðJÞ ¼ k. For notational brevity introduce YH ¼ ðAþHHTÞ�1H ¼ XH and
YR ¼ ðAþHHTÞ�1R ¼ XR. Then

HTYH ¼ Ik; YTHR ¼ HTYR; YHH
TR ¼ R; YTHRR

T ¼ YTH;

HTYRR
T ¼ YTH; YTHYH ¼ ðHTRRTHÞ�1; YHðYTHYHÞ

�1
YTH ¼ RRT:

ðA:16Þ

A.3.3. Computing B with linear solvers
We are now ready to tackle the efficient computation of B in

ðAþHHT �HHT þ RRTÞB ¼ P; ðA:17Þ

where P ¼ I� RRT. If A is K or F, B gives F or K, respectively; the first case being more important in
practice. Using AþHHT as baseline matrix, the equivalent block bordered system is

AþHHT R H
RT �Ik 0

HT 0 Ik

2
4

3
5 B

GR

GH

2
4

3
5 ¼

P

0

0

2
4

3
5: ðA:18Þ

Applying the staged solving sequence (A.11) while accounting for the presence of P on the right gives

ðAþHHTÞX ¼ I; ðAþHHTÞYR ¼ R; ðAþHHTÞYH ¼ H; ðA:19Þ
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YTRRþ Ik YTRH

YTHR YTHH� Ik

� �
ZTR
ZTH

� �
¼ YTR

YTH

� �
; ðA:20Þ

B ¼ X
	

� YRZ
T
R � YHZ

T
H



P: ðA:21Þ

This sequence may be considerably simplified by taking advantage of the relation catalog (A.16). Since
YTHH ¼ Ik the lower diagonal block of the coefficient matrix of (A.20) vanishes. The second matrix equation
becomes YTHRZ

T
R ¼ YTH. Comparing this to the fourth of (A.16) shows that Z

T
R ¼ RT, whence the term

YRZ
T
RP in (A.21) drops out since R

TP ¼ 0. Pre-multiplying the first matrix equation of (A.20) by YTH and
solving for the remaining unknown gives ZTH ¼ HRRTHYTHðRYR � IÞ ¼ HTRðYTR � RTÞ. Substitution into
(A.21) and use of the last of (A.16) yields

B ¼ PXP ¼ PðAþHHTÞ�1P ¼ X� YRR
T � RYTR þ RRTYRR

T: ðA:22Þ

This shows that the solution YH of the third linear system in (A.19) is not actually needed. In fact, the only
place where H appears is in the regularization of A to AH.
The final result (A.22) holds for arbitrary H such that J ¼ HTR has rank k. (It is not restricted to di-

agonal HHT, which is used in the actual computations because it preserves sparsity.) In particular, if H ¼ R

we recover the third forms listed in (16) and (17). In this special case one of the P multipliers may be
dropped because of (A.15). But for general H the result is at first sight puzzling. The spectrum of X ¼
ðAþHHTÞ�1 does not look at all like that of A because the null and range eigenspaces R and V of A
become strongly entangled via H, and zero eigenvalues disappear. So how come B ¼ PXP?
The answer to the puzzle is (A.13): the range eigenspace V is imprinted in the spectral morass of X. Two

projector applications disentangle V and restore the null space.
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