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A 3D LOW-ORDER PANEL METHOD FOR UNSTEADY AERODYNAMIC 

PROBLEMS

Enrique Ortega, Roberto Flores and Eugenio Oñate

International Center for Numerical Methods in Engineering (CIMNE)
Universidad Politécnica de Cataluña
Edificio C1, Campus Norte, UPC
Gran Capitán, s/n, 08034 Barcelona, España

Abstract. An unsteady low-order panel method for three-dimensional subsonic analyses is 

presented. The method, which is based on well-established techniques in computational 

aerodynamics, is intended to achieve a cost-effective solution of unsteady flows around 

arbitrary aerodynamic configurations. This work has two main objectives. First, to relax

geometry discretization requirements and, second, to simplify the treatment of problems in 

which the analysis configuration moves along specified flight paths and/or changes its

geometry during the simulation. Following this aim, a time-marching solution procedure is 

adopted in conjunction with a free-wake model which avoids iterative solutions for wake 

shape and position. The suitability of the present approach for solving typical aerodynamic 

problems is illustrated by means of several numerical examples.      

1. INTRODUCTION

The behaviour of general fluid flows is described by the Navier-Stokes system of equations. 

In particular problems, these equations allow introducing simplifications intended to achieve 

reduced equation models, easier to analyze and solve with a lesser computational cost. In the 

study of high-Reynolds number flows around aerodynamic bodies, the analysis domain can be 

divided into a zone where the viscous and rotational effects of the fluid are relevant and a 

zone where they can be neglected. According to Prandtl’s boundary layer concept, the zone 

where viscous effects are important is confined to thin boundary layers developed close to the 

body and thin wake regions. The rest of the fluid field can be considered to be inviscid and 

irrotational. This ideal flow field outside the viscous regions can be mathematically described 

by a Laplace’s equation for a scalar field named velocity potential and its solution allows 

determining many features of aerodynamic attached flows with considerably accuracy. It 

should be noticed that the viscous effects of the flow must be negligible for the solution of the 

potential problem to render an accurate representation of the flow phenomena. Fortunately, 

this assumption is valid for a large range of typical problems in aerodynamics.
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The solution of potential problems has been extensively addressed in aerodynamics since the 

beginning of the past century. Most advanced techniques developed for potential 

aerodynamics problems are based on Green’s second identity and take advantage of the fact 

that the velocity potential field is linear. Hence, simple harmonic flow functions

(singularities) subject to suitable boundary conditions can be combined and distributed along 

the body under study in order to construct more complex flow fields. Numerical models based 

on this approach are known as panel methods. These techniques are extremely advantageous

because any flowfield of interest can be resolved by distributing singular functions over the 

body boundaries without the need of defining and solving a grid for the surrounding fluid 

domain. Thus, the computational effort is drastically reduced with respect to standard volume-

based methods (e.g. Finite Differences, Finite Volumes and Finite Elements) at the same time 

that pretty accurate solutions can be achieved. This explains why panel methods, though 

based on a rather old technology, are still a primary simulation tool widely used for 

aerodynamic analysis and design. A comprehensive description of the most typical panel 

methods is presented by Katz and Plotkin in [1]. Furthermore, a wide variety of applications 

of panel methods can be found in the literature; see for instance the treatment of unsteady 

subsonic problems in [2], transonic and supersonic flows in [3, 4] and coupled inviscid-

boundary layer analyses in [5].

In this work we present a numerical model based on a three-dimensional low-order panel 

technique which is intended to perform subsonic unsteady analyses of arbitrary aerodynamic 

configurations. The methodology employed follows the lines proposed in [2, 6] and addresses 

important issues such as a simpler geometry discretization, the treatment of bodies which 

move or deform in time during the simulation and a straightforward wake definition. In the 

following, Section 2 reviews the main features of the potential flow model. The panel 

technique applied for its solution is described in Section 3 and details concerning the 

numerical implementation are given in Sections 4 and 5. Three numerical test cases are 

presented in Section 6 in order to assess the performance of the method. Finally, some 

conclusions of the work and future lines of investigation are outlined in Section 7.

2. THE POTENTIAL FLOW MODEL

The potential flow model describes the physics of inviscid and irrotational flows. Under these 

assumptions, the incompressible fluid equations reduce to

0 V (1)
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0 V (2)

where Eq. (1) models the dynamics of an irrotational fluid and Eq. (2) ensures mass 

conservation. Due to the fact that the curl of a gradient is identically equal to zero, the 

irrotational condition given by Eq. (1) can be fulfilled by defining the velocity field as

 V  (3)

being (X,Y,Z)   a scalar function known as velocity potential. Then, replacing Eq. (3)

into Eq. (2), a Laplace’s problem for the velocity potential is obtained

2 0  (4)

which must be solved with suitable boundary conditions according to the problem under 

consideration. For aerodynamic analyses, typical conditions are:

a. Far-field condition: the flow disturbances must disappear far away from the body.

b. Neumann condition: the normal component of the velocities across the body’s boundary

must be equal to zero if the boundary is solid, or equal to a prescribed value when flow 

across the boundary is allowed (transpiration conditions).

In conjunction with boundary conditions (a) and (b), Eq. (4) leads to a mathematically well-

posed problem. However, its solution is not uniquely determined unless the circulation around 

the body is fixed (see a mathematical proof in [1]). The correct amount of circulation to be 

specified is determined on physical grounds by the Kutta condition. The latter leads to ideal 

flow solutions in agreement with the real attached flow behaviour and can be enunciated as:

c. The circulation around the body is fixed in such a way that the resulting velocity at the 

trailing edge is finite and continuous, i.e. the flow leaves the body smoothly.

When conditions (a)-(c) are applied, the potential problem is completely defined and the 

solution of the flow field around a lifting aerodynamic body proceeds as follows. The velocity 

potential is solved from Eq. (4) (or some equivalent form) and the velocity field is computed 

from Eq. (3). Thus, the pressures acting on the body can be obtained by applying the 

Bernoulli’s equation, which results from integrating the momentum conservation equations in 

an inviscid and irrotational flow. Finally, the aerodynamic forces, the main objective of any 

aerodynamic analysis, can be readily calculated by integrating the pressure distribution over

the body boundaries.
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Notice that no temporal terms are involved in Eqs. (4) and (3) when solved for the velocity 

field. This can be explained by the fact that in the incompressible limit, the speed of the sound 

goes to infinite causing the flow field to adapt instantaneously to changes in the boundary 

conditions. As a result, time-dependence in the problem solution can be introduced by 

defining unsteady boundary conditions.

2.1 Coordinate systems for unsteady analyses

A body-fixed coordinate system (x,y,z) and a steady inertial frame (X,Y,Z) are defined in 

order to facilitate the treatment of unsteady problems. The body system is attached to a 

reference point in the analysis configuration and follows the motion of the latter in the steady 

inertial frame. At time 0t   both coordinates systems are coincident and at rest. Then, at time 

0t  , the position and orientation of the body system is determined by the translation of its 

origin  0 0 0 0( ) X ,Y ,Zt R  in the inertial frame and the Euler rotation angles ( ) ( , , )t   

around the fixed axes. As both 0 ( )tR  and ( )t  are considered to come from a specified flight 

path data, the velocity of the body system’s origin  0 0 0 0X ,Y ,ZV     and the rates of rotation 

( , , )      can be obtained. Then, the instantaneous kinematic velocity at each point on 

the body can be evaluated in the inertial axes according to

0 rel   v V vr (5)

where ( , , )x y zr is the position vector of a given point with respect to the body’s origin and 

 x,y,zrel v     is a relative velocity accounting for deformations of the body.

2.2 The Neumann boundary condition

In potential flow problems, the Neumann condition (b) prescribes the normal component of 

the velocity across the boundaries. In the body axes this condition results

  Nˆ V  v n = (6)

where   is the total velocity of a fluid particle, v is the kinematic local velocity of the 

boundary (Eq. (5)),  ˆ x, y,zn is the outward normal vector to the boundary and VN is a 

specified normal velocity (relative to the boundary) aimed at modeling transpiration surfaces.

Note that the boundary condition (6) changes in time as a consequence of the body motion in 

the stationary frame and introduces time dependence in the potential problem solution.
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3. UNSTEADY LOW-ORDER PANEL METHOD

The aerodynamic problem to be solved consists of a three-dimensional body immerse in an 

ideal fluid flow  which is enclosed by a far-field boundary S. The body is defined by the 

boundary SB, with normal vector n̂  pointing outside the analysis domain . SW represents the 

upper (U) and lower (L) sides of a thin wake which extends downstream from the body

introducing a discontinuity in the velocity potential field. As observed in Figure 1, the 

boundaries S = SB + SW divide the problem domain into external and internal regions. The

external region contains the flowfield of interest, defined by a velocity potential . In the 

internal region, a fictitious flow is assumed due to a velocity potential i. The velocity 

potentials  and i are considered to be harmonic functions satisfying Eq. (4).

Figure 1. A section of the analysis domain passing through the aerodynamic body and its wake.

For the typical arrangement described above, a general solution for the velocity potential at 

any point p, in either flow region, can be constructed in terms of surface integrals of the 

velocity potential and its derivatives by applying Green’s theorem [1]. This procedure yields

 

 

1 1
ˆ ˆ(

4 4

1
ˆ (p)

4

B B

W

p i i

S S

U L

S

dS dS
r r

dS
r

 


 

                
   

      
 

 



 



n n

n

(7)
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where r is the distance between the point p and a differential surface element dS having

normal vector n̂ ,  is a constant freestream potential at point p due to S (the fluid 

surrounding the body is assumed to be stationary in the inertial frame) and the wake is

considered to be thin enough so that the jump in the normal component of the velocity across 

the same is zero (flow entrainment in the wake is neglected). Note that the total velocity 

potential in Eq. (7) can be seen as being composed of a freestream potential   plus a 

perturbation potential due to the body and its wake, given by   . Next, defining the 

jump in velocity potential across the boundary as a doublet distribution with strength

i     and the jump in the normal component of the velocity as a source distribution 

with strength   ˆi     n , Eq. (7) can be rewritten as

1 1 1
ˆ ˆ (p)

4 4 4
B B W

p W

S S S

dS dS dS
r r r

  
   

                 
        n n (8)

being W U L     the jump in potential across the wake. The solution of Eq. (8) reduces to 

find a suitable distribution of doublets and sources along the body and its wake satisfying the 

boundary conditions (b) and (c). Note that the far-field condition (a) is automatically satisfied 

by Eq. (8) as the perturbation potential tends to zero when r .

In order to satisfy Neumann conditions (b), the velocity across the boundaries can be directly 

specified by enforcing Eq. (6) or a similar effect can be achieved indirectly by modeling the 

flow inside the body (classical approaches are discussed in [5]). In this work, the internal 

Dirichlet condition .i const  = =  is applied [1, 5]. Accordingly, the doublet strength -

turns into the perturbation velocity potential

       (9)

and the source strength results

  ˆ      n (10)

Then, introducing Eqs. (9) and (10) into Eq.(8), the total potential inside the body becomes

1 1 1
ˆ ˆ0

4 4 4
B B W

W

S S S

dS dS dS
r r r

 
  

               
        n n (11)

and the source strengths are determined by replacing ˆ  n   from Eq. (6) in Eq. (10). Hence,
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 N 0 ˆV rel     V v  r n (12)

and the internal Dirichlet boundary condition, given by Eq. (11), can be solved for the 

unknown body doublet distribution (the wake doublicity will be determined by the Kutta 

condition). The flow field around thick body configurations having an internal volume 

enclosed by boundaries SB is solved on the base of this equation.

Usually, it is of interest in aerodynamic analyses to deal with component parts or bodies 

which are extremely thin (e.g. relative thickness < 1% [5]). In such cases, the upper and lower 

sides of the boundary are collapsed into a sheet across the same the normal component of the

velocity is assumed to be continuous. An equation for modeling thin boundaries is achieved at 

a given point p by replacing the perturbation velocity, obtained by differentiating Eq.(8), into

the Neumann condition given by Eq. (6). This yields,

N

1 1
ˆ ˆ ˆ ˆ ˆ V

4 4 P

B W

p W p p

S S

dS dS
r r

 
 

                           
  vn n n n n    (13)

which can be solved for the doublet distribution on thin aerodynamic surfaces. Note that the 

source contributions are zero in Eq. (13) as the normal component of the velocity is assumed 

to be constant across thin boundaries. However, if aerodynamic configurations having mixed 

thin/thick surfaces are considered, the contribution to the normal component of the velocity 

due to the source distribution on thick boundaries must be accounted for in Eq. (13).

3.1 Wake modeling

As mentioned in Section 2, the solution of lifting problems is not uniquely determined unless 

the circulation  around the body is fixed. If we take a close path line around a spanwise

section along the body, the circulation can be related with the jump in velocity potential 

across the wake by means of [1]

 U L WW
     (14)

Therefore, given the fact that circulation is related to lift by the Kutta-Joukowski theorem, a

proper wake doublicity W must be specified in order to obtain realistic solutions for lifting 

aerodynamic problems (notice that no wake is needed for non-lifting problems as 0  ). 

With this purpose, the Kutta condition (c) is applied.

In 2D lifting airfoil problems, the Kutta condition can be met by setting the vorticity at the 

trailing edge to zero, i.e. 0TE  . Moreover, since the component of vorticity in the flow 
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direction s is related to the doublet strength by ( ) /s s    , the condition TE W const.  

must also be satisfied at the trailing edge. These results can be extrapolated to the 3D case in 

order to determine the doublicity shed into the wake. This is accomplished by forcing zero 

total vorticity at each spanwise station along the trailing edge (shedding line) through

0
U LTE TE W     (15)

where 
UTE and 

LTE are the doublet strength at the upper and lower surfaces of the trailing 

edge respectively and W is the unknown wake doublet strength next to the trailing edge (the 

shedding line location is assumed to be known and determined by the body and flow 

geometry). Moreover, the doublicity W  obtained from Eq. (15) must remain constant along 

mean streamlines in the wake surface in order to satisfy vorticity conservation theorems. It 

should be noticed that condition (15) turns into 0TE W    for thin boundaries.

As long as wake shape is concerned, it is determined by considering a differential surface 

element in the wake dSW and evaluating the elemental aerodynamic force acting on it. In 

virtue of the Kutta-Joukowski theorem, this elementary force is

Wd dS F V  (16)

with  and V being the density and local mean velocity of the flow respectively. As no force 

can act on a wake surface element, from Eq. (16) it follows that

0 V  (17)

hence, the vorticity vector must be parallel to the velocity at any point on the wake surface. In 

other words, the wake surface must be parallel to the local streamlines of the flow.

Due to the fact that the wake shape depends on the velocity field which, in turn, depends on 

the wake shape (this must be known when computing Eq. (11) or Eq. (13)), an iterative 

approach seems to be necessary for obtaining the solution of the problem. A typical iterative 

scheme is the wake-relaxation method employed in [5]. In the present work, the non-linearity

is avoided by adopting a time-steeping procedure [2, 6] where a free-wake is developed 

according to the motion of the body as the solution advances in time. We will come back to 

this point later on in Section 4.2.

4. NUMERICAL SOLUTION
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The aerodynamic analysis of arbitrary configurations is carried out by solving a discrete 

version of the governing integral equations (11) and (13) in a numerical manner. With this 

aim, the body boundaries SB are discretized into NB triangular or quadrilateral flat surface 

panels forming a surface grid. The wake surface SW is assumed to be composed of NW

quadrilateral panels developing from specified shedding lines on the body. Each panel is 

identified by its corner points, a particular point named control point and a local coordinates

system. The control point is located at the centroid of the panel, on the surface or slightly 

inside the body. The panel coordinate system, whose origin is located at the control point, is 

defined by a unit outward normal vector n̂  and a set of unit tangent vectors l̂  and m̂ . A 

typical panel discretization for a wing-body configuration is shown in Figure 2.

Figure 2. Typical wing-body and wake discretization.

The discretized form of the integral governing equations is achieved by breaking down the 

surface integrals over SB and SW into integrals over the panels. Assuming that the doublet and 

source strength is constant on each panel (low-order method), these terms can be factored out 

of the panel integrals allowing the latter to be solved in a closed manner. Then, the discrete 

equations are satisfied at each control point 1, BJ N  on the body by considering all panels

contributions 1, B WK N N  . According to this procedure, the discrete version of the internal 

Dirichlet condition (Eq. (11)) is set at each control point 1, thick
BJ N on thick boundaries by

1 1 1

WB BNN N

K JK L JL K JK
K L K

C C B  
  

    (18)

where CJK and BJK denote, respectively, the perturbation potential (per unit strength) due to a 

constant doublet and source distribution on panel K acting on a control point J. These

influence coefficients are given by
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ˆ
K

JK K K K
JKS

C dS
r

 
  

 
 n (19)

1

K

JK K
JKS

B dS
r

  (20)

being ˆ
Kn  and dSK the normal vector and a differential surface area of panel K respectively. 

The distance rJK is measured from the control point K to the control point J, i.e. 

JK J Kr  x x and the gradient is computed with respect to the coordinates of panel K. It

should be pointed out that the surface integrals become singular when rJK  0. For that 

special case, a slightly different approach is followed when deriving Eq. (7) leading to 

p ( 2 2i         when p is inside the body (see for instance [1]). Accordingly,

JJC 2  is set in Eq. (18) when evaluating the panel influence on itself.

Similarly, Eq. (13) is discretized for each control point 1, thin
Bj N on thin surfaces as

N
1 1 1

ˆ V
WB B

J

NN N

K JK L JL K JK J
K L K

E E D  
  

       vn (21)

where v is the instantaneous kinematic velocity given by Eq.(5), VNJ denotes a prescribed 

normal velocity relative to the boundary and ˆ
Jn  is the unit normal vector at the control point 

J. The normal components of the perturbation velocity at control point J due to a constant 

doublet and source distribution (per unit strength) on panel K are obtained as

ˆ
JKJK JE  Vn (22)

ˆ
JKJK JD  Vn (23)

with

1
ˆ

4JK

K

J K K K
JKS

dS
r 

  
      

V  n (24)

1

4JK

K

J K
JKS

dS
r 

 
  

 
V  (25)

In spite of the fact that the source distribution vanishes for thin surface panels as there is no 

jump in the normal velocity across these boundaries (see Eq. (13)), the influence coefficient 

DJK is included in the discrete Eq. (21) to account for the perturbation velocity induced on 
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thin panels by source distributions placed on thick panels (for configurations presenting

mixed thin/thick boundaries).

4.1 Calculation of the influence coefficients

The influence coefficients, given by Eqs. (19) and (20) for the velocity potential and Eqs. (24)

and (25) for the velocity vector, are computed in a closed manner following the procedure 

presented in [5]. In that work, the integrals on a given panel are evaluated by adding 

individual contributions of its sides (rounded in a counter-clockwise sense) and this fact 

allows quadrilateral and triangular panels (as a matter of fact any closed polygonal panel) to 

be treated in a similar manner.

The geometrical model employed for the calculations is presented in Figure 3. Each panel is 

geometrically defined by its corner points R1, R2,..,Rn (numbered in a counter-clockwise 

sense according to the panel’s outward normal vector), the control point RC (given by 

 1
/

n

ii
n

 R ) and a set of unit normal and tangent vectors. The normal vector n  is computed 

by the cross product of the panel’s diagonals. The first tangent vector m is generated between 

the control point and the mid-point of one of the panel sides (e.g. in a quadrilateral panel

3 4( ) / 2 C  m R R R ) and the second tangent vector l  is defined to be orthogonal to m and 

n , i.e  l m n . Then, these vectors are normalized ( ̂ ).

Figure 3. Geometrical arrangement for the evaluation of the panel influence coefficients.

The influence of a panel K on a point J is computed exclusively by the geometry of the panel 

and the coordinates of the point where the panel’s influence is sought. Previous to the 

calculations, the panel corner points Ri and the point RJ are converted to the panel local 

system, defined by the unit vectors ˆ ˆ ˆ( K K K, ,l m n ) , with origin at the control point RCK. Then, 
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each panel side is defined as 1i i i s R R  and three auxiliary vectors are introduced: 

i J i a R R , 1i J i b R R  and JK J CK J  P R R R  (in panel coordinates). Note that 

i i-1a b  when the panel is rounded in a counter-clockwise sense. 

Following the former definitions, the influence coefficients for constant strength doublet and 

source panels are computed. In this work we will focus on the final expressions for the sake of 

brevity. Derivation details can be found in [5] and the references cited therein. 

4.1.1 Velocity potential influence coefficients

The velocity potential at a given point J due to a unit doublet constant distribution on panel K

is given by Eq. (19). This integral term can be computed as

1,
iJK JK

i n

C C


  (26)

where 
iJKC is the contribution of each panel side si. Following VSAERO [5] nomenclature, 

i

-1
JKC = tan

RNUM

DNOM
 
 
 

(27)

with

2 2

( )RNUM SM PN B PA A PB

DNOM PA PB PN A B SM

     

     
(28)

where

2

2

1

1

2

2

2

ˆ ( (3))

ˆ1 ( [ ( )]

1 1

ˆ1 ( ( ))

ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

JK K JK

i

i

i K i i

K i i

i K

i K

i K

i K

i K

PN P

A

B

PA PN SL A AM

PB PN SL A BM PA A SM

A AM SL AL SM

SL s

AL a

SM s

AM a

BM b

  




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  
  
  
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a

b

a l a s

n s a

s l

a l

s m

a m

b m

(29)

Following a similar approach, the velocity potential at a given point J due to a unit constant 

strength on panel K, given by Eq. (20), is computed by 



13

1,
iJK JK

i n

B B


  (30)

being the contribution of each panel side si

1
i iJK JKB A GL PN C    (31)

where A1 and PN are given in (29), the doublet side contribution
iJKC in Eq. (27) and

1
log

A B s
GL

s A B s

 


 
(32)

with is  s .

If the point J is far from panel K, far-field approximations are employed for computing the 

influence coefficients in order to reduce computational cost. In such a case, the distributed 

singularity on panel K is treated as if it was a point singularity and the influence coefficients 

result [5]

3
,K K

JK JK
JK JK

PN A A
C B

P P


  (33)

where JK JKP  P is the distance between the control point K and point J, AK denotes the 

surface area of panel K and PN is given in (29). These approximations reduce the 

computational cost considerably when computing the influence coefficients without affecting 

solution accuracy. In this work, far-field approximations are used when 1JK KP c h , being c1 a 

constant parameter (typically 5) and hK a characteristic length, computed at each panel as the 

maximum of the distances between the control point and the sides’ mid-point.

4.1.2 Velocity vector influence coefficients

The velocity induced at a given point J due to a unit doublet distribution on panel K is given 

by Eq. (24). Similarly to the velocity potential, this integral can be computed by [5]

1,

1

4JK JK i
i n

  

 V V (34)

being each panel side contribution

( )

( )JK i

i i

i i

A B

A B A B
  


    

V
a b

a b
(35)

where all the variables involved have been defined in (29). Note that a finite-core model can 

be applied to avoid singularities in Eq. (35) when it is evaluated on panel’s sides [1, 5].
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The velocity induced at point J by a unit constant source distribution on panel K results

1,

1

4JK JK i
i n

  

 V V (36)

being the side contribution

ˆ ˆ ˆ( )
JK ii

K K JK KGL SM SL C       V l m n (37)

where GL is given by Eq. (32), 
iJKC  by Eq. (27) and the rest of variables are defined in (29).

Similarly to the perturbation potentials, if the point of interest J is located far from panel K the 

induced velocities can be approximated by far-field formulae resulting in

 2
5

3

ˆ3
JK

JK

K
JK JK K

JK

K
JK

JK

A
PN P

P

A

P





     

 

V

V

P n

P

(38)

being AK the surface area of panel K. 

4.2 Time-marching wake development procedure

The unsteady solution of the discrete governing equations (18) and (21) along with Eq. (6) is 

carried out in a series of time steps. It is considered that the body is initially at rest for 

0 0t t   and the velocity of the body origin 0( )tV  and the orientation angles ( )t (or the 

rates of rotation ( )t ) are known for 0t t . Then, the solution proceeds as follows.

At the first time step, the simulation time is increased by a prescribed time increment t . In 

consequence, the body is displaced from its original position according to the flight path and a 

first row of wake panels is shed into the wake from specified shedding lines on the body 

(trailing edges, tips, etc.). Notice that we will refer to any shedding line as a trailing edge. 

Then, the strengths of the shed panels are written in terms of the body doublets by enforcing 

the Kutta condition (15), and the linear system resulting from applying Eqs. (18) and (21) at 

the body’s control points can be solved for the unknown body doublets (see [1] for 

implementation details). Once the body doublicity is known, the velocity field and the 

aerodynamic loads acting on the body at time 1t t  can be computed. Note that in case an 

impulsively start of the body is required, the solution at time 0t  (for which no wake exists) is 

computed prior to setting the body into motion. As stated in Section 3.1, once a wake panel is 

shed, it must remain parallel to the local streamlines of the flow. As the inertial frame is 
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defined to be at rest, the only velocities acting on a shed panel are those induced by the body 

and wake panels. Therefore, in order to align a wake panel with the local flow (wake rollup),

the total induced velocity acting on the panel’s corner points is computed in the inertial frame

and the coordinates of these points are translated according to ( , , ) ( , , )indx y z u v w t     .

The total induced velocity at each point is obtained by adding all the doublet and source panel 

contributions given by Eqs. (34) and (36).

Afterwards, the time step is increased and 2 1t t t   . The body is moved again and a new 

row of wake panels is shed into the wake, linking the panels at the body’s trailing edge with 

those previously convected at time 1t t . Then, the doublet distribution for the new row of 

wake panels is related to the body doublicity by applying the Kutta condition at the trailing 

edges. In addition, as the doublicity of the panels shed before into the wake (at time 1t t )

must remain constant, their contributions to Eqs. (18) and (21) are already known and can be 

translated to the right hand side. Next, the equations system is solved for the body doublet 

distribution at time 2t t , the velocity field and the loads acting on the body are computed 

and the wake rollup procedure is performed for all the wake panels. These basic steps are 

carried out at each time step until the final simulation time is reached.

4.3 Further implementation remarks

The body panels influence coefficients are constant unless the body geometry changes in the 

fixed frame. As a result, these terms can be computed once, at the first time step, and stored in 

such a way that only the wake contributions are updated in the following time steps.

The linear system resulting from satisfying Eqs. (18) and (21) at the body’s control points is 

solved by using a Bi-Conjugate Gradient method (BiCG). As the system solution at each time 

step is started with the doublet distribution computed at the previous time step, only a few 

solver iterations are needed for updating the unknowns, which keeps the computational cost 

low. Due to the fact that the system matrix is full, there are no advantages concerning storage. 

This is an important drawback that limits the number of panels to be employed according to 

the physical memory available and computer memory management issues. In order to 

overcome this restriction, simple-precision data storage can be adopted. In addition, the 

application of matrix lumping techniques (see for instance [7] ) seems to be an attractive 

solution, although its feasibility in the present context should be investigated further.
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Most of the computational effort in panel techniques is involved in the calculation of the 

influence coefficients and this is a task which can be safely executed in parallel, given the fact 

that these coefficients are completely independent from each other. Consequently, large

speedups can be expected to be achieved.

5. AERODYNAMIC LOADS

The solution of Eqs. (18) and (21) provides the unknown doublet distribution on the body. As 

the doublet strength is related to jumps in the velocity potential across the boundaries, the 

velocity field on the body can be computed by numerical differentiation of the doublet 

distribution. Then, the pressure distribution can be determined from the velocity field by 

applying Bernoulli’s equation, after which the calculation of the aerodynamic loads acting on 

the body is straightforward.

5.1 The unsteady Bernoulli’s equation

The unsteady Bernoulli’s equation results from integrating the momentum conservation

equations in space. For an incompressible, inviscid and irrotational flow this yields [1]

2V
( )

2

p
C t

t 


  


(39)

where V, p and  denote, respectively, the magnitude of the local velocity, the pressure and

the density; C(t) is a time-dependent constant and body forces have been omitted. Next, Eq. 

(39) can be evaluated for the same time instant t at both, an arbitrary and a reference far-field 

point. Equating the resulting expressions it is possible to obtain

2 2V V

2 2

p p

t




 



 
  


(40)

where      and  =  (incompressible fluid). As can be observed, Eq. (40) enables the 

computation of the pressure at any arbitrary point in the fluid in terms of the velocity. 

Therefore, the coefficient of pressure (Cp) can be calculated at any point as  

2

22

V 2
1

1 V VV2

p p
Cp

t






  

  
      

(41)

and this equation is applied for computing the aerodynamic loads acting on thick and thin

body surface panels.
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In the following, we consider the velocity vector to act on the panel’s control point, the 

pressure to be constant on each panel and the resultant aerodynamic force also to be applied at 

the panel’s control point. V is defined as the magnitude of the total velocity at the control 

point (kinematic + perturbation) and V is the magnitude of a reference freestream velocity.

According to the problem to be solved, the latter can be assumed to be equal to the body 

translation velocity
0V  or equal to the local kinematic velocity (Eq. (5)). The reference 

pressure p and density  correspond to known far-field boundary conditions.

5.2 Thick body panels treatment

For a surface panel K belonging to thick boundaries, the perturbation velocity potential

coincides with the panel’s doublet strength and the components of the perturbation velocity

vector can be evaluated by taking the gradient of  in panel coordinates. Hence, the tangential 

components of the perturbation velocity vector result

,
ˆ ˆl mq q
  

 
 ml

(42)

and the normal component of the velocity is given by

nq  (43)

being  the panel’s source strength (12). The total velocity on panel K is obtained by adding 

the perturbation velocity to the instantaneous local kinematic velocity, i.e.

 0
ˆ ˆ ˆ

l m n relq q q         V V vl m n r (44)

In spite of the fact that the evaluation of Eqs. (42) can be easily performed on structured 

discretizations by using finite difference approximations [2, 5], arbitrary body discretizations 

demand a more general approach. In this work the derivatives are evaluated at each panel

using the value of the doublet strength at the panel’s corner points i. These a-priori unknown 

values are approximated at each corner point i by means of a smoothing procedure

1,

1,

i

i

J J
j nsi

J
j ns

A

A


 







(45)

where AJ and J are the surface area and doublet strength of a panel J respectively and the 

summation is performed for the nsi panels surrounding a corner point i. It should be noticed

that discontinuities in the doublet strength distribution must be avoided when computing Eq. 
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(45). This is likely to occur when the point lies on a shedding line. In that case, a criterion 

based on the surface normal vectors is applied to determine which panels are included in the 

summation and which are not. Once the doublet strengths at the panel’s corner points are

determined, the derivatives (42) are evaluated (in panel coordinates) by using a standard finite

element approximation.

Once the total velocity vector (Eq. (44)) is known, the elemental aerodynamic force acting on 

each panel can be determined by 

ˆ
K K K KCp A q     F n (46)

where AK and ˆ
Kn  are the surface area and unit normal vector of panel K respectively, CpK is 

the pressure coefficient (computed according to Eq. (41) with 

/ / ( ) /t t tt t t             ) and q is a reference freestream dynamic pressure. Then,

the elemental aerodynamic moment coefficient is calculated as

K K K  M Fr (47)

being ( , , )K x y zr  the vector distance between the panel’s control point and the reference point 

about the same the aerodynamic moment is desired. The total aerodynamic force and moment 

coefficient for the analysis configuration are computed by adding elemental panel 

contributions
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

F

M

F

M

(48)

where Sref and Lref (reference surface area and length) are specified according to the problem 

under study.

5.3 Thin body panels treatment

The doublet strength on thin boundaries is related to the jump in velocity potential across the 

sheet by U L     and the source strength becomes zero in order to satisfy continuity in 

the normal velocity component. Hence, the gradient of the doublet strength provides the jump 

in the tangential velocity across the panel, i.e.

t
U L
t t   V V V  (49)
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The tangential components of the total velocity can be obtained by

1
2

1
2

t

t

U
t a

L
t a

  

  

V V V

V V V
(50)

being Va an averaged tangential velocity at the panel’s control point (kinematic + 

perturbation) that omits the panel contribution on itself. Therefore, the net pressure acting on 

the panel can be computed by replacing Eqs. (50) with (49) in Eq. (41). This leads to

2

2

V
t

U L
aCp Cp Cp

t





         
V V (51)

and the elemental aerodynamic force and moment contributions are obtained by Eqs. (46) and

(47). Like in the thick panels procedure, the elemental contributions are added in Eqs. (48) to

obtain force and moment coefficients acting on the body.

It must be noticed that the smoothing procedure given by Eq. (45) may render not enough-

accurate representations of the nodal doublicity near leading edges and tips belonging to thin 

surfaces, causing an underestimation of the gradient at these panels. In those cases, an 

improved recovery of the nodal doublicity must be applied. In this work, with the aim of 

keeping the computations as general as possible, avoiding additional verifications of panels 

ordering and other geometrical features, an alternative procedure is adopted. Hence, the jump 

in the tangential velocity across a thin panel k (Eq. (49)) is approximated by

1 ˆ
2tk k k  V n  (52)

where k represents an averaged panel circulation computed as

1
k i i

ikA
  s (53)

being si, i=1,n a panel side vector (see Figure 3) and i the circulation along that side. The 

latter is obtained as the difference of the circulations (doublet strengths) of neighbouring 

panels sharing the side si. This procedure also facilitates the computation of the tangential 

force components acting on a thin panel by applying the Kutta-Joukowsky theorem along its 

sides. To this end, the total velocity is evaluated at each control point and assumed to be 

constant along the panel. This simplification reduces the computational effort without 

degrading the accuracy of the results.
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6. APPLICATION EXAMPLES

In this section three test cases are presented with the aim of assessing the performance of the 

present methodology. The first example is an unsteady analysis concerning the impulsive set 

into motion of a rectangular low aspect ratio wing. The second one involves a stationary flow 

around a NACA wing-body configuration and the third test case focuses again on another

unsteady computation regarding a hovering two-blades rotor. The computed solutions are

compared with experimental and numerical reference results reported in the literature.

6.1 Impulsive movement of a rectangular wing

This example analyzes the behaviour of a rectangular wing, originally at rest, which is

spontaneously set into movement. The wing has a NACA 0012 airfoil constant along the span 

and an aspect ratio A = 4. The discretization consists of 25 quadrilateral panels in the 

chordwise direction and other 35 along the span (1750 panels). In order to perform the

simulation, an initial non-dimensional time increment / 0.025t U t c
    and an angle of 

attack  = 5º are adopted. With the aim of getting a faster convergence to the stationary 

solution of the problem, the time increment is gradually increased some time units after the 

wing is set into motion. Figure 4 depicts the unsteady wake developed behind the wing, as it 

moves in the stationary air, for different instant times during the simulation. The wing starting 

vortex can be observed.

Figure 4. Wing and wake snapshots at different instant times after the wing is impulsively set into motion. Cp 

results are displayed (A=4 and =5º).

The unsteady lift coefficient of the wing (CL) is computed and the results are plotted in Figure 

5 together with some discrete points taken from [1]. A good agreement can be observed

between the results, although the stationary lift coefficient obtained in our computation seems 

to be slightly lower than that obtained in [1]. However, it should be noticed that in that 

reference an unsteady vortex lattice method is employed and the wing is discretized with 4 
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panels along the chord and 30 equally spaced panels in the spanwise direction. This could be 

a possible reason accounting for slight differences between the results.  

Figure 5. Unsteady lift coefficient for a rectangular wing impulsively set into motion (A=4 and =5º).

6.2 Steady analysis of a NACA wing-body configuration

The flow around a symmetric NACA wing-body is solved in this example and the numerical 

results are compared with experimental measurements reported in [8]. The wing has a 

sweepback 1/4 = 45º, an aspect ratio A = 4, a taper ratio  = 0.6 and it has no geometrical 

twist. The wing-section is a NACA 65A006 airfoil constant along the wing span. The fuselage 

has a circular cross-section and its rear part is attached to a sting which supports the model in 

the wind tunnel test section. The problem discretization, shown in Figure 6, consists of a 

structure distribution of 3200 quadrilateral panels (only quadrilateral panels are employed as 

they offer a better performance than triangular panels). The wing is discretized by 45 panels 

in the chordwise direction, 40 panels along the span and no matching panels are used in the 

wing-fuselage junction to avoid unnecessary refinement of the discretization on the fuselage 

side. The body has approximately 45 panels along its length and 24 panels in the 

circumferential direction. The rear-sting support is also modeled to achieve a better 

replication of the experimental test conditions. The wake is extended approximately 20 chords 

behind the wing and its movements are relaxed in order to prevent intersections between wake 

and body panels during the computations. Moreover, for an accurate prediction of the lift 

carried out by the fuselage, the shedding lines, prescribed at the wing trailing edges, are 

necessarily extended downstream along the aft part of the body and the sting.
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Figure 6. Discretization of the NACA wing-body configuration.

The problem is solved for an angle of attack  = 4º and the Cp distributions, computed at two 

spanwise stations  = 2y/b = 0.2 and  = 0.6 on the wing, are compared in Figure 7 with 

experimental measurements reported in [8]. Although those results were obtained for a 

freestream Mach number M = 0.6, discrepancies with respect to the incompressible 

computations presented here are not relevant for the adopted angle of attack.

Figure 7. Comparison of computed and experimental Cp distribution along two spanwise wing stations  = 0.2

and  = 0.6. NACA wing-body,  = 4.0º.

Figure 8 shows the Cp distribution computed along the fuselage symmetry plane, where a 

quite satisfactory agreement as well as some minor discrepancies with the experimental 

results can be seen. Besides, the suction peak seems to be smeared in the numerical solution; 

however, this effect seems to be caused by the adopted flow model rather than by 

implementation issues, as a similar behaviour is also observed in [2]. Regarding the numerical 
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oscillations observed around the body nose, these can be attributed to discretization issues,

although possible effects from the body doublicity differentiation should not be ruled out.

Figure 8. Comparison of computed and experimental Cp distributions along the fuselage symmetry plane. 

NACA wing-body,  = 4.0º.

The normal force and pitching moment coefficients (CN and CMy), computed for angles of 

attack ranging between -4º and 4º, are plotted in Figure 9 together with force test 

measurements presented in [8] for M = 0.6 (note that the moment coefficient is computed 

about the 25-percent position of the wing mean aerodynamic chord). It is possible to observe 

that our computations have a very good correlation with the experimental results. Finally, the 

Cp distribution computed over the model is shown in Figure 10.  

Figure 9. Normal force and pitching moment variation with the angle of attack. NACA wing-body,  = 4.0º.
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Figure 10: Cp distribution computed on the NACA wing-body,  = 4.0º.

6.3 Unsteady analysis of a helicopter rotor in hover flight

The two-blade rotor studied experimentally in [9] is computed in the example presented next. 

The rotor blades have an aspect ratio A = 6, a taper ratio  = 1.0 and they do not present

neither geometrical twist nor sweep. The airfoil section is a NACA 0012 constant along the 

span. A rotor radius R = 6, unit chord and a clearance distance between blades equal to 2 

chords are adopted in our model. The centre of rotation is located at 25-percent of the chord.

Figure 11 shows the discretized rotor geometry composed by a structured distribution of 4000 

quadrilateral panels (40 along the span and 25 in the chordwise direction). 

Figure 11. Rotor blades discretization (4000 quadrilateral panels).
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Cp distributions are computed on different sections along the blade for collective pitch angles 

c = 5º and 8º and the results are compared with experimental measurements reported in [9].

In order to minimize the compressible effects that may affect the comparisons, a rotor speed 

650 rpmz  ( 0.225tipM  ) is selected according to the lowest angular velocity tested in the 

study taken as reference. The time increment t is selected in such a way that 10 time steps 

are computed per rotation cycle and the kinematic velocity at each control point (Eq.(5)) is 

adopted as the reference velocity when computing the coefficient of pressure in Eq. (41). It 

should be noticed that, as commented in the previous example, the wake movements are 

limited to avoid body and wake panels intersections, which often lead to numerical 

misbehaviours during computations.

Figure 12 shows a comparison of Cp distributions at sections r/R = 0.5, 0.8 and 0.96 along the

semispan for collective pitch angles c = 5º and 8º. A good correlation can be observed 

between numerical and experimental results despite the fact that the wake modeling 

performed in the present case could be further improved. Some snapshots of the problem 

discretization computed at several instant times during the first rotation cycle are shown in 

Figure 13 for a collective pitch angle c = 8º. Finally, Figure 14 presents the Cp distribution 

computed for the same collective pitch angle after several rotation cycles are performed.

Figure 12. Comparisons of numerical and experimental Cp distributions at different sections along a blade.
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Figure 13. Snapshots of the discrete model computed at different instant times during the first rotation cycle

(abcd). Collective pitch angle c = 8º. 

Figure 14. Cp distribution computed over blades for a collective pitch angle c = 8º.

7. CONCLUSIONS

An unsteady low-order panel method for three-dimensional subsonic analyses has been 

presented. The focus of this work has been placed on achieving a simulation tool for dealing 

with arbitrary moving or deforming aerodynamic bodies with minimum discretization efforts 
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and the lowest computational cost. The three numerical examples presented in this work 

reinforce the good quality performance of panel techniques reported in the literature.

As a matter of fact, panel techniques reduce drastically the computational cost with respect to 

other standard volume-based methods. In addition, due to the fact that the most time-

consuming computations in panel techniques (such as the evaluation of velocity and potential 

influence coefficients) can be performed in a completely independent manner, the 

computational costs can be even more reduced by implementing parallel computing strategies. 

In spite of the fact that the current computational code is prepared to run in parallel 

environments using shared memory, it was shown that further efforts are needed in order to 

obtain a fully parallel code capable of take the most of these advantages. The solution of the 

aerodynamic influence coefficients system also presents challenging problems from the point 

of view of parallel execution and storage requirements. As long as storage in concerned, 

certain alternative techniques, such as matrix lumping, seem to be attractive in order to reduce 

memory requirements. However, the feasibility of implementing these techniques in the 

present context should be further investigated.
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