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SUMMARY

Several explicit high-resolution schemes for transient compressible flows with moving shocks are combined
in such a way so as to achieve the highest possible speed without compromising accuracy. The main
algorithmic changes considered comprise the following:

• replacing limiting and approximate Riemann solvers by simpler schemes during the initial stages of
Runge–Kutta solvers, and only using limiting and approximate Riemann solvers for the last stage;

• automatically switching to simpler schemes for smooth flow regions;
• automatic deactivation of quiescent regions; and
• unstructured grids with cartesian cores or embedded cartesian grids.

The results from several examples demonstrate that speedup factors of 1:4 are attainable without compro-
mising the accuracy of the traditional FCT schemes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many transient compressible flow problems are computed efficiently using explicit solvers. This is
particularly the case for blast–structure interaction problems, where the fast propagation of shock
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waves dominates the physics. Over the last two decades, the authors have developed and applied
FCT and TVD solvers using unstructured grids to perform shock–object interaction simulations
for complex geometries [1–8]. Of these, the FCT solvers seemed to offer the best accuracy/CPU
performance. This paper summarizes the findings of a recent re-assessment of schemes. In view
of some new ideas, such as automatic scheme switching, automatic deactivation and cartesian
embedded grids, some interesting results appeared, which are the focus of this paper.

The Euler equations describing compressible flow as a system of conservation laws are given by

u,t +∇ ·F=0 (1a)

u=(�;�vi ;�e) (1b)

F j =(�v j ;�viv j + p�i j ;v j (�e+ p)) (1c)

where u,F,�,vi ,e, p denote, respectively, the unknowns, fluxes, density, velocities, energy and
pressure. Any finite volume or finite element discretization will yield a discrete system of the form

M·u,t =r(u) (2)

or, in index notation

Mi j û j
,t =Ci jFi j =r i (3)

Here,M, û j ,Ci j ,Fi j denote the mass matrix, vector of unknowns, edge coefficients for fluxes and
edge fluxes, respectively. This system is integrated in time using an explicit k-step Runge–Kutta
scheme of the form

M(un+i −un)=�i�tr(un+i−1) (4)

The coefficients �i are chosen according to desired properties, such as damping and temporal order
of accuracy, e.g.

�i = 1

k−i+1
(5)

2. TVD AND FCT SCHEMES

Let us first consider the traditional TVD approach. For the standard Galerkin approximation, we
have

Fi j = fi +f j (6)

i.e. an equal weighting of fluxes at the end point of an edge. This (high-order) combination of
fluxes is known to lead to an unstable discretization, and must be augmented by stabilizing terms
to achieve a stable, low-order scheme. In what follows, we enumerate the most commonly used
options in order to compare them.
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2.1. Limiting before flux evaluation

If we assume that the flow variables are constant in the vicinity of the edge endpoints i, j , a
discontinuity will occur at the edge midpoint. The evolution in time of this local flowfield was
first obtained analytically by Riemann [9], and consists of a shock, a contact discontinuity and
an expansion wave. More importantly, the flux at the discontinuity remains constant in time. One
can therefore replace the average flux of the Galerkin approximation by this so-called Riemann
flux. This stable scheme, which uses the flux obtained from an exact Riemann solver, was first
proposed by Godunov [10]. The flux is given by

Fi j =2 f (uRi j ) (7)

where uRi j is the local exact solution of the Riemann problem to the Euler equations, expressed as

uR
lr =Rie(ul ,ur ) (8)

where

ur =ui , ul =u j (9)

This scheme represents what one may call the ‘ultimate first-order scheme’. All waves are taken
into account, and the basic underlying physics are well reproduced. In order to achieve a higher-
order scheme, the amount of inherent dissipation must be reduced. This implies reducing the
magnitude of the difference ui −u j by ‘guessing’ a smaller difference of the unknowns at the
location where the Riemann flux is evaluated (i.e. the middle of the edge). The assumption is
made that the function behaves smoothly in the vicinity of the edge. This allows the construction
or ‘reconstruction’ of alternate values for the unknowns at the middle of the edge. The additional
information required to achieve a scheme of higher order via these improved values at the middle
of the edge can be obtained in a variety of ways:

• through continuation and interpolation from neighboring elements [11];
• via extension along the most aligned edge [12]; or
• by evaluation of gradients [13, 14].

The last option is the one most commonly used, but carries a considerable computational overhead:
15 gradients for the unknowns in 3-D can account for a large percentage of CPU time.

The inescapable fact stated in Godunov’s theorem that no linear scheme of an order higher than
one is free of oscillations implies that with these higher-order extensions, some form of limiting
will be required. For a review of these, see [15]. It is important to note that this form of limiting is
done before flux evaluation, and that, strictly speaking, it should be performed with characteristic
variables. A typical Godunov-based scheme therefore has five main cost components:

• gradient-based reconstruction of higher-order approximations to the left and right states;
• transformation from conservative to characteristic variables;
• limiting;
• transformation from characteristic to conservative variables; and
• solution of the exact Riemann problem.

In the sequel, we will enumerate possible simplifications to each of these cost components, thereby
deriving a whole spectrum of commonly used schemes.
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The solution of the (nonlinear) Riemann problem requires an iterative procedure which is
expensive. Therefore, a considerable amount of effort has been devoted to obtain faster ‘approximate
Riemann solvers’ that still retain as much of the physics as the basic Riemann problem [16–19].
These may be written abstractly as

uARlr = ARie(ul ,ur ) (10)

A widely used solver of this class is the one derived by Roe [17], given by

Fi j = fi +f j −|Ai j |(ui −u j ) (11)

where |Ai j | denotes the standard Roe matrix evaluated in the direction l j i =x j −xi , and xi ,x j are
the coordinates of the end points i, j of the edge. Note that, as before, reducing the magnitude of
the difference ui −u j via reconstruction and limiting leads to schemes of higher order.

A further possible simplification can be made by replacing the Roe matrix by its spectral radius.
This leads to a numerical flux function of the form

Fi j = fi +f j −|�i j |(ui −u j ) (12)

where

|�i j |=|vki j ·Si jk |+ci j (13)

and vki j and ci j denote edge values, computed as nodal averages, of the fluid velocity and speed

of sound, respectively, and Si jk is the unit normal vector associated with the edge (i.e. in 3-D
the unit normal of the finite volume surface associated with the edge). This can be considered
as a centered difference scheme plus a second-order dissipation operator, leading to a first order,
monotone scheme. Note that this scheme does not require any gradients, and, although of first
order, is almost as inexpensive as the Galerkin/central scheme. In the sequel, we will denote this
scheme as ‘central/2’. A higher-order scheme can be obtained by a better approximation to the
‘right’ and ‘left’ states of the ‘Riemann problem’. Given that for smooth problems through the use
of limiters the second-order dissipation |ui −u j | reverts to the fourth-order dissipation [20, 21],
and that limiting requires a considerable number of operations, the next possible simplification is
to replace the limiting procedure by a pressure sensor function. A scheme of this type may be
written as

Fi j = fi +f j −|�i j |
[
ui −u j + �

2
l j i ·(∇ui +∇u j )

]
(14)

where 0<�<1 denotes a pressure sensor function of the form [22]

�=1− |pi − p j +0.5l j i ·(∇ pi +∇ p j )|
|pi − p j |+|0.5l j i ·(∇ pi +∇ p j )| (15)

For �=0,1, second- and fourth-order damping operators are obtained, respectively. Several forms
are possible for the sensor function � [23]. Although this discretization of the Euler fluxes looks
like a blend of second- and fourth-order dissipation, it has no adjustable parameters. In the sequel,
we will denote this scheme as ‘central/2/4’. The scalar dissipation operator presented above still
requires the evaluation of gradients. This can be quite costly for Euler simulations: for a typical
multistage scheme, more than 40% of the CPU time is spent in gradient operations, even if a new
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dissipation operator is only required at every other stage. The reason lies in the very large number
of gradients required: 15 for the unknowns in 3-D, and an additional three for the pressure. An
alternative would be to simplify the combination of second- and fourth-order damping operators
by writing out explicitly these operators:

d2=�i j (1−�)[ui −u j ], d4=�i j�

[
ui −u j + l j i

2
·(∇ui +∇u j )

]
(16)

Performing a Taylor series expansion in the direction of the edge, we have

ui −u j + l j i
2

·(∇ui +∇u j )≈
l2j i
4

⎡
⎣ �2u

�l2

∣∣∣∣∣
j

− �2u
�l2

∣∣∣∣∣
i

⎤
⎦ (17)

This suggests the following simplification, which neglects the off-diagonal terms of the tensor of
second derivatives:

l2

4

⎡
⎣ �2u

�l2

∣∣∣∣∣
j

− �2u
�l2

∣∣∣∣∣
i

⎤
⎦ ≈ l2

4
[∇2u j −∇2ui ] (18)

and leads to the familiar blend of second- and fourth-order damping operators [24, 25]:

Fi j = fi +f j −|�i j |(1−�)[ui −u j ]−|�i j |� l
2

4
[∇2u j −∇2ui ] (19)

2.2. Lax–Wendroff/Taylor–Galerkin

The essential feature of Lax–Wendroff/Taylor–Galerkin schemes is the combination of time and
space discretizations, leading to second-order accuracy in both time and space. An edge-based
two-step Taylor–Galerkin scheme can readily be obtained by setting the numerical flux to

Fi j =2f(un+1/2
i j ) (20)

where

un+1/2
i j = 1

2
(ui +u j )− �t

2

�f j

�x j

∣∣∣∣
i j

(21)

and �f j/�x j |i j is computed on each edge and given by either

�f j

�x j

∣∣∣∣
i j

≈ li j
l2i j

·(Fi −F j ),
�f j

�x j

∣∣∣∣
i j

≈ Di j

D2
i j

·(Fi −F j ) (22)

where Di j denotes the edge coefficients for the advective terms obtained from the Galerkin
approximation. The major advantage of this scheme lies in its speed, since there is no requirement
of gradient computations, as well as limiting procedures for smooth flows. An explicit numerical
dissipation (e.g. in the form of a Lapidus viscosity [26]) is needed to model flows with discon-
tinuities. Taylor–Galerkin schemes by themselves are of little practical use for problems with
strong shocks or other discontinuities. However, they provide high-order schemes with the best
cost/performance ratio for the flux-corrected transport schemes presented below.
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2.3. Limiting after flux evaluation

Limiting after flux evaluation is the key idea inherent to all FCT schemes [1, 2, 27–29]. If we focus
on high-order schemes of the Lax–Wendroff/Taylor–Galerkin family, the high-order increment
may be written as

Ml�uh=r+(Ml−Mc)�uh (23)

Here Ml denotes the diagonal, lumped mass matrix, and Mc the consistent finite element mass
matrix. The low-order scheme is simply given by

Ml�ul=r+cd(Mc−Ml)un (24)

i.e. lumped mass matrix plus sufficient diffusion (cd=O(1)) to keep the solution monotonic.
Subtracting these two equations yields the antidiffusive edge contributions

(�uh−�ul)=M−1
l (Ml−Mc)(cdun+�uh) (25)

Note that no physical fluxes appear in the antidiffusive edge contributions. This may also be inter-
preted as advancing the physical fluxes with extra diffusion, thus assuring transport, conservation,
etc. Thereafter, perform the antidiffusive step to enhance the solution as much as possible without
violating monotonicity principles. The simplicity of the antidiffusive edge contributions for this
class of scheme makes it both fast and very general, and has been one of the main reasons why
this scheme has served the CFD community for more than 15 years without major alterations, in
particular for the shock–object interaction problems considered here.

Table I summarizes the main ingredients of high-resolution schemes, indirectly comparing the
cost of most current flow solvers.

Table I. Solvers and their algorithmic ingredients.

Solver Riemann Gradient Char. Transf. Limiting

Classic Godunov Yes Yes Yes Yes
Consvar Godunov Yes Yes No Yes
Consvar Roe/HLLC Approx. Yes No Yes
Central/2/lim No Yes No Yes
Central/2/4 No Yes No No
Central/2/4/lap No No No No
Central/2 No No No No
Central No No No No
Taylor–Galerkin No No No No
TG-FCT No No No Yes

Figure 1. (a, b) Sod shock tube: density and mesh in plane.
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Figure 2. (a) Blast problem. (b,c) Blast problem: typical solution, mesh in symmetry plane. (d,e) Blast
problem: embedded cartesian solution, mesh in symmetry plane.
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3. THE TEST CASES

We consider three cases. The first one is the well-known Sod shock tube problem [30], with
initial states (�,u,v,w, p)1=(1.0,0.0,0.0,0.0,1.0) and (�,u,v,w, p)1=(0.1,0.0,0.0,0.0,0.1).
Even though this case is a 1-D case, it is run in 3-D for comparison purposes.

The tube has a square cross-section, and the mesh chosen for comparison purposes had 34Kpts,
173Kels and 217Kedgs. A typical solution for the density in plane through the center of the
domain is shown in Figure 1(a). The corresponding triangulation, shown in Figure 1(b), gives an
impression of the overall mesh used.

The second is a typical blast–structure interaction case. The geometry is depicted in Figure 2(a),
and a typical solution in Figure 2(b). The initialization is taken from a detailed axisymmetric run
that models the physics of TNT detonations. The TNT equivalent for this case is of 200 kg. This
grid employed has 431Kpts, 2468Kels and 2924Kedgs. A cut through the mesh in the plane of
symmetry is shown in Figure 2(c). For comparison purposes, this case was also run with a mesh of
3.3Mpts, 19.6Mels and 23.05Medgs. Figure 2(a) also shows the locations of eight stations where
pressure time history data were recorded.

The third case is the same geometry and initialization as the second case, but run using the
embedded option [31]. A cartesian mesh was generated for the box encompassing the domain.
This mesh was adaptively refined to conform to the mesh size specifications of the previous case.
A typical solution is shown in Figure 2(d), and a cut through the mesh in the plane of symmetry is
shown in Figure 2(e). The cartesian nature of the mesh is clearly visible. This case has 462Kpts,
2687Kels and 3175Kedgs.

All cases were run on a Dell 64-bit Intel-based PC with a clockspeed of 3.4GHz and 4Gb of
RAM, using the Intel compiler under the Suse Linux OS. The only exception was the fine reference
mesh, which as run on an SGI Altix with 32Gb of RAM. Tables II and III list the subroutines
that require the most amount of CPU resources for both the usual two-step Runge–Kutta HLLC
approximate Riemann solver with van Albada limiting on conserved variables, as well as the
usual FCT solver. These timings were taken for the second problem. Note that the FCT solver is
marginally faster.

The first observation one can make by looking at Table II is that, as expected, the most expensive
parts of the RK-HLLC solver are the limiting, approximate Riemann solver and gradient evaluation.
This suggests replacing, as much as possible, this expensive solver by a cheaper solver. This can
be done by modifying the the basic Runge–Kutta update, the flux evaluation, and by deactivating
quiescent regions of the flow. These three concepts are treated in the following.

Table II. RK, two-stage, nriem=4, nlimi=2, C=0.6.

% Time Seconds Seconds Name Function

33.63 8466.40 8466.40 limitra2 van Albada limiter
21.30 13827.94 5361.54 hllceualef HLLC approx. Riemann solver
10.79 16543.37 2715.43 gradupd Gradient evaluation
7.50 18432.47 1889.10 laploe1 Lapidus art visc

Total 25175.98
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Table III. FCT: nlimi=6 and C=0.4.

% Time Seconds Seconds Name Function

12.69 2623.15 2623.15 gtadid Anti-diff flux
8.88 4459.08 1835.93 tgeeuid Taylor–Galerkin fluxes
5.79 5654.64 1195.56 laploed Lapidus art visc
5.36 6761.68 1107.03 rhcomad Consistent mass matrix
4.96 7786.85 1025.17 delupos Possible in/decrement
4.90 8799.53 1012.68 rhspli rhs of limited fluxes
4.13 9652.05 852.52 delupos Possible in/decrement
4.07 10493.58 841.53 fluadta Anti-diff flux added/taken

Total 20664.53

4. MODIFIED FLUXES FOR RUNGE–KUTTA STEPS

Given that any Runge–Kutta solver for first-order hyperbolic equations allows for larger Courant
numbers with increasing stages, an interesting alternative is to evaluate stages 1 :k−1 in a k-stage
scheme using inexpensive (albeit inaccurate) fluxes, and only employ the expensive, accurate flux
evaluation for the last stage. Simple schemes that allow inexpensive flux evaluations are given
by Equation (6) (central), Equation (12) (central/2) and Equations (20)–(22) (Taylor–Galerkin).
Schemes of this kind have been used successfully in the past [16, 32, 33] for the class of shock
propagation problems considered here. In the majority of cases two-stage Runge–Kutta schemes
were considered (i.e. k=2). Using a purely central scheme (Equation (6)) for the first stage implies
the risk of overshoots. Using the ‘central/2’ scheme (Equation (12)) for the first stage implies the
risk of more dissipation in the solution.

5. MODIFIED FLUXES IN SMOOTH FLOW REGIONS

An observation made for many flowfields is that the regions of shocks and contact discontinuities
only constitute a small fraction of the overall computational domain. It is in this relatively small
region that the sophisticated, accurate and expensive schemes are required. In smooth flow regions,
one could use less expensive second-order schemes such as those given by Equation (14). This
idea has been used repeatedly, particularly for the more elaborate (and expensive) solvers for
compressible transient flows [34, 35]. In a first step, the smoothness of the flow is determined. We
have found the following indicator to be reliable for the class of problems considered here:

�=1−max(�1,�2) (26)

where

�1= |�i −� j +0.5l j i ·(∇�i +∇� j )|
|�i −� j |+|0.5l j i ·(∇�i +∇� j )|+cn(�i +� j )

(27)

�2= |l j i ·(∇�i −∇� j )|
|l j i ·∇�i |+|l j i ·∇� j |+cn(�i +� j )

(28)
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Here cn is a noise factor, which is typically taken as cn=O(0.01). For �>0.95, the flow is
considered smooth. Note that the gradients are available, as they are required for both the limited
approximate Riemann solver, as well as the ‘central/2/4 dissipation’ (Equation (12)) fluxes. This
also implies that there is little gain in going to the Laplacian form of the ‘central/2/4 dissipation’
(Equation (19)), which is less precise: the main difference in cost between these two options is
the calculations of the gradients, a cost that has already been incurred.

6. DEACTIVATION IN QUIESCENT REGIONS

For many blast problems, many points remain in quiescent regions during a considerable portion
of the run. This is especially true for point blasts. At the beginning, when high pressures and
densities are present, the time steps are accordingly very small. This implies that during many
time steps, regions away from the blast origin do not need to be updated. As the code processes
groups of edges renumbered to avoid memory contention and avoid dirty cache lines [21], before
each timestep all edge groups with all edges in quiescent regions are switched off. From this set
of edges, the points that should not be updated are also marked. Quiescent regions are detected by
evaluating the edge differences of density, momenta and energy. If any of these exceeds a preset
tolerance, the edge is marked as active.

7. CARTESIAN GRIDS

For embedded CSD applications, an interesting option is to generate a regular, cartesian grid for
the overall domain. This mesh is then subdivided into tetrahedra that are subsequently adaptively
refined in order to conform to the specified spatial element size distribution. One can then proceed
to remove the diagonal edges in most of the domain, ending up with schemes that resemble
the usual cartesian finite difference methods, but also allow body-conforming elements close to
boundaries, as well as adaptive mesh refinement within an unstructured solver [36]. The gains in
CPU performance achievable by this approach have been shown to be considerable, and stem from
several sources:

(a) The number of elements is typically smaller, as one considers as element size the side of a
cubic cell.

(b) The removal of diagonal edges almost halves the number of edges that need to be processed.
(c) As the mesh is composed of nearly perfect elements, the allowable timestep is typically

larger than for an equivalent unstructured mesh.
(d) Using bin-based point and edge renumbering, a large percentage of edges can be processed

either without any or with partial indirect addressing.

8. RESULTS AND TIMINGS

8.1. Shock tube (Problem 1)

The 1-D plots obtained at the centerline of the domain using the different schemes are compared
in Figure 3. Note that for this reference problem, all schemes yield very similar results.
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Figure 3. Shock tube problem: comparison of line-dumps.

Table IV. Timings for problem 1 (34Kpts, 217Kedgs).

Scheme nstag scaldi switch deac coura ntime CPU

FCT 1 OFF OFF OFF 0.4 469 178
FCT 1 OFF OFF ON 0.4 469 134
RK 2 OFF OFF OFF 0.6 312 184
RK 2 OFF OFF ON 0.6 312 100
RK 2 ON ON OFF 0.6 312 84
RK 2 ON ON ON 0.6 312 55
RK 3 ON ON ON 1.2 236 38

The FCT results are a bit sharper than the equivalent RK/HLLC results. The difference between
the usual (expensive) RK2/HLLC and the modified RK2/3 schemes (i.e. low-order central/2 for
stages 1 :k−1, scheme switching based on local flow properties for stage k) is barely noticeable.
The timings for the different options have been compiled in Table IV. In this and subsequent tables
the following abbreviations have been employed: nstag denotes the number of stages (nstag=1
for Taylor–Galerkin/FCT, nstag>1 for RK/TVD), scaldi the activation of simpler schemes
for the k−1 initial stages of a k-stage RK scheme, switch the switch to simpler schemes for
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Figure 4. Blast problem: station time histories for (a) body fitted solutions (1–4)
and (b) body fitted solutions (5–8).
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Table V. Timings for Problem 2 (430Kpts, 2923Kedgs).

Scheme nstag scaldi switch deac coura ntime CPU

FCT 1 OFF OFF OFF 0.4 698 2272
FCT 1 OFF OFF ON 0.4 698 1995
RK 2 OFF OFF OFF 0.6 472 2463
RK 2 OFF OFF ON 0.6 472 2043
RK 2 OFF ON ON 0.6 471 1726
RK 2 ON ON ON 0.6 471 1135
RK 3 ON ON ON 1.2 236 890

the smooth regions of the flow, deac the deactivation of any update in the quiescent regions of
the flow, coura the Courant number used, ntime the number of timesteps required to reach the
physical time specified by the user and CPU the time required to complete the run. By the very
nature of the physics and the resulting flowfields (with large deactive regions and large regions of
constant flow), this first example shows considerable gains for all the options outlined above.

8.2. Blast on wall, body fitted (Problem 2)

The station time history data obtained for eight stations on the front wall using the different
schemes are compared in Figure 4. Stations 1–8 (see Figure 2(a)) go from left to right, top to
bottom, i.e. stations 1, 2 in the top row, then stations 3, 4 below, etc. The caption is coded as
follows: (P,I) stands for pressure or impulse, BF for body fitted, FCT or RKn denote FCT or
n-step Runge–Kutta schemes, and the number that follows denotes the time in seconds required
for the run. The ‘superfine’ mesh solution (SFIN) is provided as a reference. Note that the FCT
results give higher, sharper pressure peaks, but that for most stations the impulse (which is often
used to assess wall damage) is very similar for all schemes. The times recorded have been listed
in Table V. Deactivation yields a modest 10% gain in speed. However, in comparison with the
original FCT scheme, the three-stage Runge–Kutta scheme with central/2 fluxes for the first
two stages, automatic switch from HLLC to central/2/4, as well as automatic deactivation is
approximately 2.5 times faster.

8.3. Blast on wall, embedded (Problem 3)

The station time history data obtained for eight stations on the front wall using the different
schemes are compared in Figure 5. For reference, we include for each station the results obtained
for the body-fitted approach on a mesh of similar size. One can notice that, as before, the FCT
results give higher pressure peaks, but for most stations the impulse is very similar for all schemes.
The times recorded have been listed in Table VI. Although the overall mesh has 3175Kedgs, the
number of active edges is only 1415Kedgs, which accounts for the speedup of 2:1 as compared
with the previous, unstructured, body-fitted case. Also note that in comparison with the original
FCT scheme, the two-stage Runge–Kutta scheme with central/2 fluxes for the first stage, automatic
switch from HLLC to central/2/4, as well as automatic deactivation is approximately 2.0 times
faster. Overall, this scheme is approximately 4.0 times faster than the original FCT scheme for a
body-fitted unstructured grid.
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Figure 5. Blast problem: station time histories for (a) embedded solutions (1–4)
and (b) embedded solutions (5–8).
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Table VI. Timings for Problem 3 (461Kpts, 3174Kedgs).

Scheme nstag scaldi switch deac coura ntime CPU

FCT 1 OFF OFF OFF 0.4 490 1159
FCT+deac 1 OFF OFF ON 0.4 490 1064
RK 4/2/2 2 OFF OFF OFF 0.6 344 1046
RK 4/2/2+deac 2 OFF OFF ON 0.6 344 808
RK 24/12/2 2 ON ON OFF 0.6 355 648
RK 24/12/2 2 ON ON ON 0.6 347 571

9. CONCLUSIONS AND OUTLOOK

Several explicit high-resolution schemes for transient compressible flow have been combined in
such a way so as to achieve the highest possible speed without compromising accuracy. The main
algorithmic changes comprise the following:

• replacing limiting and approximate Riemann solvers by simpler schemes during the initial
stages of Runge–Kutta solvers, and only using limiting and approximate Riemann solvers for
the last stage;

• automatically switching to simpler schemes for smooth flow regions;
• automatic deactivation of quiescent regions; and
• unstructured grids with cartesian cores or embedded cartesian grids.

The results shown, as well as others obtained for the class of shock–object interaction prob-
lems considered here, demonstrate that speedup factors of 1:4 are attainable without significantly
compromising the accuracy of the traditional FCT schemes. Thus, they pose an attractive alterna-
tive for shock–structure interaction calculations where impulses are sought. If, on the other hand,
peak pressures are also required, the traditional FCT schemes offer a better quality result. Future
work will center on improving limiting for the TVD schemes employed, in order to circumvent
this shortcoming.
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4. Baum JD, Luo H, Löhner R. Numerical simulation of blast in the World Trade Center. AIAA-95-0085, 1995.
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26. Löhner R, Morgan K, Peraire J. A simple extension to multidimensional problems of the artificial viscosity due

to Lapidus. Communications in Applied Numerical Methods 1985; 1:141–147.
27. Kuzmin D, Turek S. Flux correction tools for finite elements. Journal of Computational Physics 2002; 175:

525–558.
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