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One of the possible approaches to the reduction of computational 
costs in finite element analysis is the selection of 'optimal grids', 
which produce the "best" answers, in the sense of minimizing a 
discretization error measure, for a fixed level of computational effort. 
The grid optimization problem is studied in the case of grids of 
similar topology having a fixed number of degrees of freedom per 
node. A general formulation based on weighted-residual error 
measures is specialized to field problems associated with a positive- 
definite energy functional, the minimization of which, with respect to 
variable node locations, is adopted as a grid optimality criterion. The 
problem is then embedded in the framework of the general non- 
linear programming problem, and desirable computational features of 
candidate search algorithms are described. 

Introduction 

The problem of reducing the cost of analysing a 
continuous problem through a finite element 
discretization technique can be at tacked from three 
different angles: (M) model selection--choose an 
appropriate variational or quasi-variational principle 
associated with the governing field equations, and 
select finite element base functions that  produce 'best'  
answers in the sense of minimizing a discretization 
error measure em for a fixed level of computational  
effort; (G) grid optimization--assume that (M) has been 
resolved in favour of a specific formulation and finite 
element model. Then select a grid* that minimizes a 
discretization error  measure e G (which often coincides 
with era) for a fixed level of computat ional  effort; (S) 
solution technique selection--assume that (M) and (G) 
have been resolved in favour of a specific model and 
grid, respectively. Then select a solution algorithm that 
minimizes the number  of operations required to 
process the discrete system of equations. 

None of the preceding aspects of the cost reduction 
problem has been solved to date. The level and quantity 
of research, however, varies substantially according to 

*The term ~grid' is used to signify the set of node points associated 
with a discrete finite element model, and the system of degrees of 
freedom selected at the node points. The term "mesh' refers to the 
partition of a domain into elementary subdomains by lines or 
surfaces defined by the node set. 

the particular area considered. 
Approach (M) pertains to basic finite element 

technology. There has been virtually no effort devoted 
to tackle the model-selection problem from the stated 
viewpoint, as the number of optimization var.;ab!es is 
enormous. Moreover, there is little agreement on how 
to characterize 'best answers', and on uniform 
procedures for systematic evaluation of the 
computational effort. 

Approach (G) pertains to the field of automated 
grid selection techniques. There has been little research 
in this area, but a general plan of attack on the 
problem is beginning to emerge. 

Much of the ongoing research is devoted to 
approach (S), which pertains to the 'sparse matrix 
technology' branch of numerical analysis. New sparse 
equation-solving strategies under study promise to 
reduce substantially the computational effort in certain 
classes of problems, such as three-dimensional 
continua, but implementation in a production scale 
will probably have to wait several years. 

This paper is concerned with a restricted form of 
approach (G), in which the number of degrees of 
freedom per node and the grid topology remain 
in,~ariant during the grid selection process. Under 
those assumptions, the computational effort remains 
constant if the number of nodes is fixed, and grid 
optimization reduces to the more manageable problem 
of optimal node distribution. 
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Formulation of  the node distribution problem 

A fruitful approach to the problem of automated 
selection of optimal finite element grids of specified 
topology is based on the idea of minimizing a 
discretization error measure with respect to the node 
locations. This idea is presented in this section in a 
formal context so as to provide a general foundation 
to future investigations: the approach is later 
specialized to a class of field problems and an energy- 
norm measure. 

Consider a bounded spatial domain D with 
boundary B in the real m-dimensional space R", over 
which a static field problem is posed: 

Lu = ! (1) 

where L is a linear or non-linear operator, .] is a 
prescribed forcing function, and u is the unknown 
solution. The problem (1) is complemented by suitable 
boundary conditions (BC) on B. 

The solution of problem (1) is approximated by a 
trial- or base-function expansion: 

u(x) ~ v(x) = q*(x)r q (2) 

where column vector • collects the Nq base functions 
q~(X) and vector q the associated generalized 
coordinates or degrees of freedom q j; x denotes the 
array of spatial coordinates (xl . . . .  %,) and superscript 
T denotes matrix transposition. The determination of 
the coefficients qj can be examined within the general 
framework of weighted-residual methods 1 : 

ew(u) = (r, w) = (Lu - 11 w) = 0 (3) 

where w is a prescribed weight function, r = Lu - .1 is the 
residual associated with problem (1), and the inner- 
product notation (...) stands for the domain integral: 

(u,v) = f uvdR m (4) 

Specific choices of the weight function produce the 
Galerkin, least-square, collocation, subdomain, and 
adjoint formulations 2"3. 

In a finite element discretization technique, the 
domain D is replaced by the union of finite element 
subdomains, over which the base functions ~bi are 
defined in piecewise fashion. The degrees of freedom qi 
are selected as values of u, and perhaps their 
derivatives, at an appropriate set of N nodes. Insertion 
of that assumption into equation (3) leads to an 
algebraic system of the form: 

Aq = b (5) 

which is complemented by suitable discrete counterparts 
of the continuous BC. 

Let q* denote a solution of(5) and v* = v(q*) = @rq ,  
the finite element solution (2) over D. Define an a 
posteriori weighted error measure 

e,*,.(v) = (Lv* - .l, w*) (6) 

where the weighting function w* is often (but not 
necessarily) identical to the weight function w in 
equation (3). If the number of degrees of freedom per 
node No/N is fixed, an optimal grid will be 
characterized by the following condition: 

an optimal n-node grid minimizes [e*[ .lor a.fixed N 

The characterization of an optimal grid is seen to 
depend on three factors: (a) the field problem being 
solved, i.e., equation (1). Different forcing functions .! 
would in general lead to different optimal node 
placements. Moreover, if the problem is time- 
dependent, the optimal spatial grid can be expected to 
be a function of time; (b) the selection of the quasi- 
variational principle (3) to produce the discrete system 
(5); (c) the selection of the discretization error measure 
(6), which quantifies the accuracy of the approximate 
solution. 

The user of a finite element programme is generally 
expected to provide an initial grid Go. A computational 
procedure by which the programme can 'move' nodes 
of the initial grid to generate a sequence of ' improved' 
grids G1, G~, . . . ,  which have progressively smaller 
discretization errors, is called a node distribution 
procedure. The displacement of the nodes to new 
locations may be viewed as a pseudo-dynamical 
process. The motion of the nodes is subject to certain 
kinematic constraints discussed later; once those 
constraints are adjoined in terms of appropriate 
equality and/or inequality conditions, the node 
distribution problem can be formally expressed as a 
non-linear programming problem. 

Historical background 

The selection of 'adequate' finite element idealizations 
has attracted the attention of many investigators since 
the method gained widespread acceptance in the early 
sixties. There is presently abundant literature on 
procedures for setting up finite element models, 
although much of the material is buried in relatively 
inaccessible user's manuals. Most of that literature is 
concerned with computerized procedures for generating 
regular grids, usually complemented by empirical 
mesh-layout principles such as ~use a finer grid in 
regions of'expected high solution gradients'. 

Empirical guidelines intend to convey, in 
engineering-oriented terms, the importance of judicious 
selection of weight functions in the error expression (6), 
but are of little help to the average user facing the task 
of preparing a complex two- or three-dimensional 
discrete model. There are many problems in which 
optimal mesh-layout rules cannot be invoked with any 
certainty until a fairly accurate solution is available; 
however, critical design features such as stress 
concentrations may be masked by a poor  choice of the 
initial model. Analysis flowtime restrictions and high 
computational costs may also preclude extensive 
modifications of the original model. 

The general approach to mesh optimization has 
received scant attention in the technical literature. The 
prevalent feeling among programme developers is that 
the cost of obtaining an optimal grid by computer- 
directed search techniques would far exceed the cost of 
re-analysing the problem with manually improved 
models. That objection is certainly valid if the mesh 
optimization problem is attacked in exzenso. There are 
two important computational difficulties associated 
with the approach based on the minimization of the 
error expression (6): (1) the calculation of the residual 
integrals may be extremely difficult if the trial 
functions 4~j are not in the domain of the operator L, 

94 Appl. Math. Modelling, 1976, Vol 1, September 



Optimizat ion of f inite element grids by direct energy search." C. A. Fe/ippa 

as is often the case in finite element analysis'~; (2) a 
very small error norm e*, may be produced by 
fortuitous cancellation of the weighted residual integral 
despite the fact that t,* is a poor approximation to u. 
This possibility can only be avoided by selecting a 
weight function w* that renders equation (6) non- 
negative in the residual (as in the least-square method, 
where w* = 8v(v)/Sq). 

Jensen 4 has studied the optimal placement of nodes 
in two-dimensional domains within the framework of 
both classical and variational finite-difference 
formulations. Nodes are distributed according to a 
nodal density JUnction, which is initially specified by the 
user (e.g., through direct CRT input in interactive 
work), and recalculated by the programme on the basis 
of estimates of the local discretization error. 

Oliveira 5 proposed that nodes pertaining to a 
compatible (energy-bounding) finite element 
discretization of a linear structural system be 
distributed so as to minimize the total potential energy 
of the discrete system, and showed that nodes of such 
'energy-optimized' grids would fall along iso-energetic 
contours, i.e., lines or surfaces of equal energy density: 
however, no computational  procedures for generating 
such grids were discussed. The total energy 
minimization (TEM)  optimality criterion is restricted 
to a class of self-adjoint field problems and a Special 
type of finite elements, but it has significant 
computational advantages when applicable, as both of 
the numerical difficulties noted for the general 
approach are avoided. 

McNeice and Marcal 6 applied the T E M  criterion to 
the manual improvement of one- and two-dimensional 
finite element grids involving a small number  of free 
optimization variables. 

Gr~d opt imizat ion by energy minimization 

We restrict our attention in the sequel to the case in 
which the operator L in equation (I) is linear, positive 
definite, and self-adjoint, as is the case in elastic 
structural analysis. The selection of the weight function 
w = ~Szt in equation (2) leads to the Galerkin form++: 

(Lu - J .  bu) = 0 (7) 

which is equivalent to the variational statement: 

rain E(u) = rain (½Lu - [i u) (8) 

The functional E(u) will be called the total energy, 
because it possesses such meaning in the applications. 
The integrand of equation (8): 

d(u) = ½uLu - . l u  = d~(u) - de(u) (9) 

represents the energy density, whose components  d~ and 
d E are the internal and external energy density, 
respectively. 

A finite discretization of equation (1) is said to be 
compatible, conlorming or energy-bounding, if the 
assumed finite element base functions satisfy minimal 
continuity requirements associated with the admissible 
solutions of the equivalent variational problem (8). The 

fDelta and dipole functions then appear at interelement boundaries 
if L is a differential operator. 
{Also called the "principle of virtual work' in structural analysis. 

total energy E,,(v) associated with any admissible 
discrete solution (2) satisfies the energy inequalityT: 

E,,(v) >~ min E(u) = Emi,, (10) 

The discretizatlon error in the energy norm (8) is: 

e E ( V  ) = Ev(1) ) - E,nin ) 0 (l  l)  

Note that equation (11) is a very convenient global 
error measure on account of the following advantages: 
(a) it is non-negative definite, therefore precluding the 
possibility of fortuitous error cancellation ; (b) E,, can 
be calculated directly from the discrete solution vector 
q (cf. equation (14)); local-residual manipulations are 
then avoided: (c) convergence of eclv) to zero is 
sufficient to guarantee mean-square convergence of the 
approximate solution ~:' to u, as the following bound 
holds s : 

] I v -  ul[~ = (z~- ", z ' -  tO ~< ,;~mi~ eE(t') (12) 

where 2,,,in denotes the smaller eigenvalue of Lu = ,;~u 
(which is real and positive on account of the positive- 
definiteness assumption on L). 

Optimal node placement 

Let X denote the vector of node location coordinates: 

X = ( x l  ), for i =  1 . . . .  N and j =  1 . . . .  m(13) 

The set X defines the geometry of the finite element 
grid G(X) over D. The total energy E,, of the discrete 
problem can be considered to be a function of both q 
(the degree-of-fi'eedom vector) and X: 

E,,(q, X) = ½qr A( X)q - b( XlW q (14) 

Minimization of E,, with respect to q while keeping X 
(the grid) constant yields the (linear) Ritz-Galerkin 
system (5) whose solution q* is A tb. Substitution of 
q* into equation (14) gives the total energy as a 
function of X alone: 

* = b ,  X )  = - ½q*(X)b(JO E~, (X) E~,(A - a 
= - l b ' r ( X ) A  - x(X)b(X ) 

(15) 

The grid optimization process based on the 
discretization error measure (11) can now be stated as 
follows: minimize E*(X) with respect to the node 
location set X, subject to certain geometric constraints 
in X.t 

Note  that the actual calculation of e* is not 
required. Given two grids G(Xa) and G(Xz), the latter is 
considered to better if E*(X2) < E*(X~ ), a test that 
does not require knowledge of E,m,,. The fact that an 
estimate of the exact solution is not required is an 
important  computational advantage of the T E M  
criterion. 

Grid optimization as a non-linear programming 
problem 

A grid optimization procedure based on the direct 
minimization of E*(X) can be conveniently 
implemented within the framework of the general non- 

~The concept of qeast-energy grid' can be easily extended to 
eigenvalue problems. 
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linear programming problem~: as follows: 

1. The total energy function E*(X) becomes the 
object function. 

2. The entries of X (nodal coordinates) become the 
optimization variables. 

3. Equality constraints of the form hj{X) = 0 
correspond to kinematic restrictions on the 
motion of the grid, namely: (a) nodes located on 
smooth boundary lines or physical interfaces 
must remain there; (b) nodes located at domain 
corners are fixed ; (c) the analyst may specify 
additional constraints on node motions in order 
to reduce the number of optimization variables. 

4. Inequality constraints of the form gj(X) >1 0 result 
from conditions restricting the maximum local 
mesh distortion. This can be achieved by 
monitoring the Jacobian of the elemental volume 
(area, length) used in the numerical integration 
over the finite element subdomains while 
computing the entries of A and b. The 
determinant of that Jacobian must remain 
positive everywhere to guard against loss of the 
one-to-one mapping between element and global 
coordinates. A grid that violates this constraint is 
said to be infeasible. 

Minimization algorithm 
The key computational features of the grid 
optimization scheme that govern the choice of 
minimization algorithm are: (I) the calculation of 
analytic derivatives of the energy function E*(X) with 
respect to the X variables is a hopeless task in the case 
of arbitrary two- and three-dimensional grids; (II) the 
optimization problem is usually of high dimensionality 
(more than 10 optimization variables is considered a 
high-dimensionality problem in the field of non-linear 
programming); (III) equality constraints on node 
motions can be trivially implemented by simple 
exclusion of optimization variables in many practical 
problems provided that the local coordinate axes are 
appropriately oriented at those node locations. 

Property (I) forces the selection of a derivative-free 

:~The reader is reminded that non-linear programming is a branch of 
applied mathematics concerned with the minimization of a general 
multivariate function I'the object or merit function) under arbitrary 
constraint conditions. Most applications of non-linear programming 
fall in the area of optimization problems. References 9-11 can be 
recommended as modern introductory treatments to the subject. 

minimization method, or at most a gradient method 
with finite-difference estimation of object function 
derivatives. Property (II) favours methods whose 
performance does not degrade drastically as the 
number of optimization variables'increases. Finally, 
property (III) suggests that an unconstrained 
minimization technique with simple modifications to 
account for node motion and mesh distortion 
constraints could be used to assess the feasibility of the 
energy minimization technique in a series of test 
problems. (Unconstrained minimization algorithms .are 
simpler to implement, check out and problem-adapt 
than methods developed to handle very general 
constraints.) 

A later paper will report on a series of numerical 
experiments carried out with a non-linear 
programming implementation, discuss the implications 
of automated grid optimization in the synthesis of 
mesh-layout rules in sub-structures, and describe 
current research in simplified mesh optimality criteria 
based on a local (element-level) energy distribution 
rather tlaan on a total-energy criterion. The latter topic 
is closely related to similar work in structural 
optimization. 
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