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Abstract

Two main ingredients are needed for adaptive �nite element computa-

tions. First, the error of a given solution must be assessed, by means of

either error estimators or error indicators. After that, a new spatial dis-

cretization must be de�ned via h, p or r-adaptivity. In principle, any of

the approaches for error assessment may be combined with any of the pro-

cedures for adapting the discretization. However, some combinations are

clearly preferable. The advantages and limitations of the various alterna-

tives are discussed. The most adequate strategies are illustrated by means

of several applications in solid mechanics.

Keywords: adaptivity; error estimators; error indicators; nonlinear �nite

element analysis
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1 Introduction

Adaptive strategies are nowadays considered a standard tool in practical

�nite element computations. For any problem, adaptivity is an essential

tool to obtain numerical solutions with a controlled accuracy. For some

problems (typically in the nonlinear domain), adaptive strategies are even

more fundamental: without them, a �nite element solution simply cannot be

computed. This is the case, for instance, with problems in nonlinear solid

mechanics involving large strains or localization.

The two main ingredients of an adaptive procedure are 1) a tool for

assessing the error of the solution computed with a given mesh and 2) an

algorithm to de�ne a new spatial discretization.

Two di�erent approaches may be used for assessing the error: error esti-

mators or error indicators. Error estimators approximate a measure of the

actual error in a given norm. In this paper, the term error estimator means

that the estimated error can be arbitrarily close to the true error. Other

de�nitions are also standard; in some works [1, 2, 3], error estimators are

required to behave as equivalent norms of the actual error. Error indicators,

on the other hand, are based on heuristic considerations [4]. For each partic-

ular application, a readily available quantity is chosen, in an ad-hoc manner,

as an indicator of error.

The second ingredient of an adaptive procedure is the de�nition of a new

spatial discretization. The goal is to increase or decrease the richness of the

interpolation according to the output of the error assessment. Three main

types of strategies may be used: h-adaptivity, p-adaptivity and r-adaptivity.

h-adaptivity [5, 6, 7, 8, 9, 10] consists on changing the size of the �nite

elements. In p-adaptivity, the degree of the interpolating polynomials is

increased [11, 12, 13]. r-adaptivity consists on relocating the nodes, without

changing the mesh connectivity [14, 15].

Various adaptive strategies can be devised by combining these ingredi-

ents. Consider, for instance, the necking test of Figure 1. This is a classical

benchmark test in nonlinear computational mechanics [16]. A cylindrical bar

is subjected to uniaxial extension. A slight geometric imperfection induces

necking in the central part of the bar. If a coarse �xed mesh (i.e., no adap-

tivity) is employed, the result of Figure 1(a) is obtained (only one-fourth of

the piece is shown). The elements in the neck zone become very distorted,

following the large material deformation. As a consequence, a poor de�ni-

tion of the deformed shape of the piece is obtained. Two di�erent adaptive

strategies have been used to remedy this situation: r-adaptivity based on an

error indicator and h-adaptivity based on an error estimator.

Figure 1(b) has been obtained by combining an r-adaptive technique (the
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arbitrary Lagrangian-Eulerian formulation) with a very simple error indica-

tor: the element aspect ratio [17]. The nodes of the original coarse mesh

are relocated to reduce the element distortion, and this enables a proper

description of neck. Figure 1(c), on the other hand, is obtained by com-

bining h-adaptivity and an error estimator [18]. A global accuracy of 2%

is prescribed. This simple example illustrates the main features of the two

strategies employed: the �rst one is simple and inexpensive, but there is no

objective control on the accuracy; the second one is much more computa-

tionally involved, but a solution with a prescribed accuracy is obtained.

The goal of this paper is to discuss the advantages and limitations of vari-

ous adaptive strategies, see section 2. The discussion focuses on the pros and

cons of the various combinations of error assessment (indicators, estimators)

and new spatial discretization (h, p, r-adaptivity). The capabilities of adap-

tive strategies are illustrated in section 3 (r-adaptivity with error indicators)

and section 4 (h-adaptivity with error estimation). Finally some concluding

remarks are made in section 5.

2 Error assessment and adaptivity

2.1 Assessing the error

As mentioned previously, either error estimators or error indicators may be

used to assess the error.

Error estimators may be classi�ed into two groups: 
ux projection (ZZ-

like) estimators [6, 7] and residual type estimators [19, 20, 21, 22]. Most

estimators are well de�ned for linear problems but not for nonlinear prob-

lems. For instance, the popular ZZ error estimator for linear problems is only

an error indicator for nonlinear problems, because it is based on supercon-

vergence properties that cannot be automatically extended to the nonlinear

regime.

Here the estimator presented in detail in reference [23, 24, 25] is employed.

This estimator has a sound theoretical basis for both linear and nonlinear

applications [18].

Various choices of an error indicator can be found in the literature. From

a geometrical point of view, for instance, the element aspect ratio or, more

generally, the distortion can be used [26]. In nonlinear solid mechanics,

some common choices are the equivalent plastic (or, more generally, inelastic)

strain or its gradient [4].

The advantages and limitations of error estimators and error indicators

are summarized in Table 1. Error indicators are attractive because of their
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simplicity: they are based on very simple intuitive considerations (geometri-

cal, mechanical, etc.) and can be computed easily and e�ciently. Quantities

used as error indicators are always readily available in the �nite element

computation, so the overhead cost is minimum. The drawback is that they

are heuristic: the judgement of the user for de�ning a proper error indicator

for a given problem is critical. Of course, error indicators are very speci�c

of each particular application, and they must be calibrated (with the help

of either analytical solutions in simple tests or error estimators). Moreover,

error indicators only give relative information. Since the error is not quan-

ti�ed, an error indicator only tells where the spatial discretization must be

richer, but not how much richer should it be.

Error estimators, on the other hand, must be based on �rm mathematical

foundations and are usually more expensive to evaluate than error indicators.

In exchange for that, they have a major advantage: they provide an objective

and quantitative information about the error. Moreover, the range of appli-

cability of a certain error estimator is larger than for a given error indicator.

The error estimator presented in reference [24, 18], for instance, is valid for

any linear or nonlinear elliptic problem.

Indicator

Advantages

. based on intuitive considerations

. computed easily and e�ciently

Limitations

. heuristic relative information (error not quanti�ed)

. problem-dependent (must be calibrated)

Estimator

Advantages

. objective measure of the actual error

. wide range of applications

Limitations

. need mathematical basis

. usually more expensive to evaluate

Table 1: Comparison of error estimators and error indicators

2.2 Adapting the spatial discretization

Three strategies may be used to adapt the spatial discretization according to

the error assessment: h, p and r-adaptivity. h-adaptivity consists of build-
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ing a new mesh, using the same type of elements, and adapting the ele-

ment size to the requirements of the solution. That is, reducing their size

where the interpolation must be enriched (i.e. more accuracy is needed)

and enlarging the elements where it is already accurate enough. The idea

of p-adaptivity is to increase the order of the polynomials where a richer

interpolation is needed, and maintain polynomials of low order where it is

already rich enough. r-adaptivity consists on relocating the nodes to adapt

the mesh to the requirements of the solution. The number of nodes and the

mesh connectivity remain constant. Nodes are concentrated in zones where

they are most needed. The mesh is allowed to coarsen in other parts of the

domain, where a poorer interpolation su�ces.

The merits and drawbacks of these three approaches are summarized in

Table 2. r-adaptivity is easy to implement and inexpensive, because only the

initial mesh is needed. Simple algorithms may be used to relocate the nodes.

The transport of the information from the old mesh to the new mesh can be

performed in a very natural way (by solving a convection equation), because

these two meshes have the same connectivity. This intrinsic simplicity is

also the cause of the limitations of r-adaptivity. The accuracy which can

be achieved with an r-adaptive strategy is limited, because the number of

degrees of freedom and the mesh topology are �xed from the beginning, when

the initial, and only, mesh is built. In fact, the initial mesh heavily in
uences

the adaptive computation. Once the node location is \optimal" (according

to the error assessment), a more accurate solution can only be achieved by

increasing the number of degrees of freedom (i.e. via h or p-adaptivity).

h-adaptivity is also a conceptually simple strategy, which basically relies

on the mesh generator. The computational cost is considerably higher than

for r-adaptivity, because a new mesh must be generated at each step. After

that, there are two alternatives: either restart the computation from scratch

or project all the information from the old mesh to the new mesh. This trans-

port is quite more involved than for r-adaptivity, because the two meshes may

have very di�erent topologies and numbers of elements. In exchange for this

high cost, h-adaptivity is a very general approach: the number of degrees of

freedom can change arbitrarily to meet a prescribed accuracy, and the initial

mesh does not drastically in
uence the adaptive process, because a new mesh

is rebuilt at each step.

From a theoretical standpoint, p-adaptivity has the advantage that it

provides the fastest rate of convergence as the number of degrees of freedom

increases. Moreover, it is the only strategy that can reach very high accu-

racies. However, the implementation is tedious: special care is needed to

match two adjacent elements of di�erent order. Moreover, this strategy is

heavily dependent on the initial mesh. In practice, p-adaptivity is typically
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combined with h-adaptivity [12, 27].

r-adaptivity

Advantages

. easy to implement

. inexpensive (only one mesh is needed)

. information transported in a natural way

Limitations

. number of degrees of freedom is �xed

. depends on initial mesh (topology of mesh cannot change)

h-adaptivity

Advantages

. easy to implement

. number of degrees of freedom can change

. general applicability (initial mesh easily adapted)

Limitations

. expensive (must generate a new mesh each time)

. must project all information onto the new mesh

p-adaptivity

Advantages

. number of degrees of freedom can change

. faster rate of convergence

Limitations

. tedious implementation

. expensive

. depends on initial mesh (must be implemented with h-adaptivity)

Table 2: Comparison of r, h and p-adaptivity

2.3 Adaptive strategies based on error assessment

In principle, any of the approaches for error assessment (Table 1) can be

combined with any of the procedures for adapting the spatial discretization

(Table 2) to produce an adaptive strategy for �nite element computations.

However, some combinations are clearly to be preferred, as illustrated in

Table 3.

Combining r-adaptivity and an error indicator provides a very simple

adaptive strategy. As mentioned previously, an error indicator only gives

relative information about the error. This is clearly a disadvantage of error
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indicators with respect to error estimators. However, relative information

(i.e. where the error is larger and where it is smaller) is exactly what is

needed for relocating the nodes. Since no new degrees of freedom can be

added in r-adaptivity, the error indicator is used to decide where to put the

available nodes. By doing so, an \optimal" use is made of the given mesh.

Of course, the global accuracy of the solution cannot be prescribed a priori,

because the number of degrees of freedom is �xed.

The conjunction of h=p-adaptivity and error estimation is also a valid

strategy. In fact, it is the only approach that allows to obtain a solution

with an (objective) accuracy prescribed a priori. The price to pay is a high

computational cost. Note however that an extra ingredient is needed: an

optimality criterion that relates the error at each point of the domain with

the new element size or degree of the polynomial [28].

The combination of r-adaptivity and error estimation is clearly not an

adequate strategy. All the e�ort in estimating the error in a quantitative

and objective manner is wasted, because the information obtained cannot

be fully exploited. In fact, using an error estimator to relocate the nodes

overkills the problem, because only relative information can be accounted for

when deciding the new nodal position.

Finally, h=p-adaptivity based on error indicators is a common choice in

the literature [4]. However, it has one important drawback: an expensive

adaptive procedure (h, p or h-p) is based on heuristic information about the

error. Moreover, extra information is required: the size of the smallest ele-

ment in h-adaptivity, or the maximum degree of the interpolating polynomial

in p-adaptivity. In consequence, this approach can only be recommended if

the error indicator can be properly calibrated for the given application.

error indicator error estimator

r-adaptivity (ALE) 
�̂ 
�_

h/p-adaptivity 
�� 
�̂

Table 3: A global rating of adaptive strategies

In conclusion, the two best approaches consist on combining either simple

ingredients (r-adaptivity and error indicators) or more sophisticated ingre-

dients (h=p-adaptivity and error estimators). The capabilities of these two
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strategies will be highlighted in the rest of the paper by means of some numer-

ical examples. With the other two combinations, there is a clear unbalance

between the tool used for assessing the error and the tool for adapting the

spatial discretization.

3 r-adaptivity based on error indicators

r-adaptivity based on error indicators is employed here for the prediction

of yield line patterns in plates [29, 30]. Figure 2 shows a simply supported

rectangular plate, with an eccentric hole and 5 cm thickness. The plate is

subjected to a uniform load of 125 kN/m2. A bilinear elastoplastic behaviour

is assumed, with Young's modulus E = 2�108 kN/m2, Poisson's ratio � = 0:2,

initial yield stress �0 = 2 � 105 kN/m2, and hardening modulus h = E=200.

If a �nite element analysis is performed on a �xed mesh, the results of

Figure 3(a) are obtained. Due to the coarseness of the mesh, the spatial

discretization is too poor and the yield line pattern (unknown a priori) is not

properly captured. Of course, the solution can be improved by using a much

�ner mesh, see Figure 3(b). However, the computational cost is too high,

because small elements are used everywhere (and not only in the yield lines,

where they are really needed).

The arbitrary Lagrangian-Eulerian (ALE) formulation [14, 31, 32, 33] has

been chosen as the r-adaptive technique. The nodes of the coarse mesh of

Figure 3(a) are relocated during the computation in order to concentrate

them along the yield lines. An error indicator is used for selecting the new

nodal position.

For this particular application, the level of plasti�cation provides a good

indication of error [29, 30]. The level of plasti�cation is proportional to 1)

the ratio of equivalent stress to the initial yield stress in elastic zones and to

2) the current yield stress in plastic zones. With this de�nition of the error

indicator, the mesh is adapted in zones where yielding is taking place, and

in zones that are about to yield.

It is important to note that this error indicator has the advantages and

limitations stated in Table 1. It is based on a very intuitive assumption (error

is larger where the nonlinearity {that is, plasti�cation{ is more important)

and is simple to compute (because yield stresses are already computed in an

analysis with a �xed mesh). However, the actual error of the solution is not

quanti�ed, and the indicator cannot be extended to other applications in a

straightforward manner.

After the error indicator is computed, a criterion is needed for node re-

location. Element size times the error indicator is prescribed to be constant
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for all the elements. This means that small elements are needed where the

error indicator is large, and vice versa. With this criterion, new nodal coor-

dinates are obtained by solving a di�usion equation [34]. When the nodes

are relocated, the information must be transported from the old mesh to the

new mesh. Since the two meshes share the same topology, this can be done

by solving a convection equation. Here a Godunov-like technique is chosen

[35, 17].

With the adaptive strategy just discussed, the solution of Figure 3(c) is

obtained. The same coarse mesh of Figure 3(a) is chosen at the beginning of

the analysis. Instead of keeping it �xed, however, the mesh is continuously

adapted during the computation, by relocating the nodes after each load step.

This enables a correct description of the yield line pattern (cf. Figures 3(b)

and 3(c)).

A more quantitative comparison of the three solutions (coarse and �ne

�xed meshes, coarse adaptive mesh) is o�ered by Figure 4. Thanks to the

node relocation, the pro�le of the equivalent plastic strain along the yield

line with the coarse adaptive mesh is properly described. With the coarse

�xed mesh, on the contrary, it is signi�cantly underestimated.

4 h-adaptivity based on error estimation

As previously said, h-remeshing strategies allow to enrich the discretization

as much as needed and attain any prescribed accuracy, provided that the

problem is well-posed. Once the accuracy is prescribed, the adaptive proce-

dure must indicate not only where the elements must be concentrated but

also how many elements are required. That is, the zones where the mesh

must be re�ned have to be identi�ed, and the required size of the mesh in

every zone of the domain must be speci�ed. Consequently, error estimators

are required to obtain reliable information concerning the quantity of error

and not only about its relative distribution.

The h-adaptivity processes consist on an iterative loop. For some mesh,

the approximate solution is computed and the error is estimated. If the error

is too large, the solution is considered unacceptable and the error distribu-

tion is used to de�ne the element size for a new mesh in every zone of the

domain. The new mesh is built up verifying the size prescriptions and the

computations are re-started using this new mesh.

Two basic ingredients of h-adaptive procedures are the acceptability cri-

terion and the remeshing strategy. The acceptability criterion is used as an

stopping criterion for the iterative procedure. The remeshing strategy is the

tool that allows to compute the prescribed element size from the estimated
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error distribution. Although the goal of the remeshing strategy is to pro-

vide a mesh that gives a solution verifying the acceptability criterion, the

derivation of the remeshing strategies requires some additional assumptions,

see [28]. These additional assumptions are called optimality criteria because

they state the optimality properties of a �nite element mesh by prescribing

some uniformity of the error. Di�erent optimality criteria lead to di�erent

remeshing strategies even if the acceptability criterion is the same.

The following examples of application of h-adaptivity to �nite element

computations are presented to illustrate three di�erent topics.

1. The example introduced in section 4.1 shows the crucial role of the

remeshing strategies in the resulting optimal mesh: under the same

acceptability criterion but using remeshing strategies with di�erent un-

derlying optimality criteria, the adaptive process yields very di�erent

meshes.

2. The example introduced in section 4.2 stresses the importance of using

a suitable error estimation tool. The error assessment must be able to

account for all the sources of error. This is especially important in the

case of shell problems where the discretization errors a�ect both the

approximation of the geometry and the functional approximation.

3. Section 4.3 shows that in some problems even the general aspect of the

mesh cannot be predicted a priori. The example analyzes the behavior

of a plane strain compression specimen exhibiting strain localization. In

this case the collapse mechanism is quite surprising. Consequently, the

obtained solution is not intuitive and the optimal mesh is not trivial.

The collapse mechanism is captured by a re�ned mesh but it cannot

be predicted by a �rst guess of a mesh.

In all the examples the error is estimated using the technique introduced

in [18, 24, 25] and the quadrilateral meshes are generated following [36].

4.1 Comparison of di�erent remeshing strategies

A 2-D plane strain analysis of a dam is presented, see Figure 5. This example

is a benchmark test since it was introduced by Zienkiewicz and Zhu, see [6, 7].

In the adapted meshes, elements are concentrated around the corners of the

semi-circular cavity, where the solution is singular. However, the number of

elements and the mesh density are very di�erent from one remeshing strategy

to another.

Here three remeshing strategies found in the literature are used.
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1. The underlying optimality criterion used in the Li and Bettess (LB)

remeshing strategy [37, 38] states that, in the optimal mesh, elementary

errors are equal. The LB remeshing strategy has been proved to be

optimal in the sense that yields meshes that minimize the number of

elements for a given acceptability criterion.

2. The Zienkiewicz and Zhu (ZZ) remeshing strategy introduced in [6]

is based in a simpli�cation of the optimality criterion used by Li and

Bettess.

3. The O~nate and Bugeda (OB) remeshing strategy is introduced in [39]

and implements an optimality criterion based on engineering consid-

erations. The mesh is assumed to be optimal if the density of error

(ratio of the squared error norm over every element and its measure)

is constant over the whole mesh.

For each one of these remeshing strategies an adaptive computation is

carried out. The �nal meshes yielding acceptable solutions are shown in

Figure 5. The number of required remeshing steps, the number of elements in

the �nal mesh and the attained error are shown in Table 4. The distribution

of elements in the �nal meshes yield by the LB and ZZ remeshing strategies

are similar because the underlying optimality criteria are inspired by the

same idea. On the other hand, the OB remeshing strategy leads to a very

dense mesh (with more than �ve times the number of elements of the LB

or ZZ strategies). This reveals that the condition imposed in the optimality

criterion used in the OB strategy is much more demanding.

Remeshing strategy num. steps num. elts. % error

original mesh | 193 11.48%

LB 2 685 4.62%

ZZ 4 602 4.93%

OB 3 3885 4.55%

Table 4: Summary of the results for the plane strain dam

4.2 h-adaptivity for shell problems

The semispherical dome of Figure 6 is computed using thin shell elements.

The structure is loaded by a vertical force uniformly distributed in the upper

11



ring. The supports are distributed in the base as shown in Figure 6. This

example is presented in reference [40]. The mechanical behavior is described

by the deformed shape ampli�ed 5 � 104 times, see Figure 7 and the Von

Mises stresses distribution shown in Figure 8. In this example and in the

remainder, the LB remeshing strategy is used because of its optimality from

the viewpoint of computational economy. The sequence of meshes leading to

a solution with a 5% of error is shown in Figure 9. Notice that, as expected

and found by other authors [40], the elements are concentrated in the zones

of the boundaries.

In standard plane or 3-D elasticity the discretization of the geometry

a�ects only the boundary. On the contrary, in shell problems, this a�ects the

whole domain. In fact for the �rst mesh (mesh 0 in Figure 9) the in
uence of

the actual geometry in the error estimation is signi�cant: the error estimate

varies in the order of 10% depending on whether the actual geometry is

accounted for or not. This source of errors may also be assessed if residual

type error estimators are used. Flux projection error estimators are based

on the analysis of discontinuities in the �nite element approximate solution

and, consequently, they do not use any information on the actual geometry.

That means that, in shell analysis, standard 
ux projection error estimators

are not able to take into account the e�ects of the geometry discretization in

the computational error.

4.3 Simulation of strain localization via adaptive

remeshing

This example is used to show the ability of adaptive strategies to capture

unexpected solutions (complex failure mechanisms) [41, 42]. The example

reproduces the compression of a plane strain rectangular specimen. The test

is driven by imposing the velocity at the top of the specimen. In order to

induce the strain localization, circular openings are introduced, playing the

role of imperfections. In this case, the specimen has two circular openings

symmetric with respect to the center. That allows to study only one half of

the domain, see Figure 10.

Figure 11 shows the sequence of meshes in this case. It is worth noting

that, in the �nal mesh, according to the concentration of elements, two bands

are developed. In fact, the resulting bands are not aligned with the imper-

fections, as it could be expected, but have an opposite inclination. Meshes 0

and 1 are not able to reproduce the behaviour of the actual (�nal) solution

because the elements in the zone of the second band (which develops in a

further stage of the loading process) are too large and, consequently, the dis-
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cretization is too sti�. Then, the size of the elements in this zone does not

allow the inception of softening. However, the error estimator indicates that

the elements must be reduced in the zone of the second band. Thus, once the

remeshing process introduces small enough elements along the second band,

in meshes 2 to 5, a second mechanism can also be captured. Figure 11 shows

also the distribution of the error along the remeshing process, which tends

to be uniform, as expected. In the �rst meshes, the error is larger along the

bands and, consequently, the successive discretizations concentrate elements

in these zones. Notice that the elements are, in fact, concentrated along the

edges of the bands, where the gradients of the displacements are large.

The evolution of the meshes in the remeshing sequence of Figure 11 sug-

gest that the actual complex failure mechanism is ignored by the �rst dis-

cretizations and can only be captured using the adapted meshes. This is

con�rmed comparing the deformation patterns and the force-displacement

curves obtained with di�erent meshes.

Figure 12 shows how the computed equivalent inelastic strain and the

deformation evolve along the remeshing process. Only after two remeshing

steps the mesh captures two bands. In the previous meshes the discretiza-

tion is not accurate enough and only one band is completely developed. Since

large deformations are considered, once the �rst band evolves enough, the

kinematic mechanism associated with this band locks. Then a second band

appears as a new deformation mode with less energy. Figure 12 shows also

how the force-displacement curves for meshes 0 and 1 are qualitatively di�er-

ent from those of meshes 2 to 5. In fact the shapes of the force-displacement

curves for meshes 2, 3, 4 and 5 are practically identical and have two in-


ections in the descending branch. The solution given by the last mesh is

obviously more accurate than the original one because the energy of defor-

mation (area under the force-displacement curve) is lower. In fact, since the

error is controlled in energy norm, one can be sure that the actual curve,

associated with the exact solution, is not too far from the obtained curve

(the error in energy norm is less than 1.5% and, consequently the di�erence

of the area under the curves is less than 1.5%).

Thus, this example demonstrates that adaptivity based on error estima-

tion is an essential tool for the determination of a priori unpredictable �nal

solutions. Without this adaptive strategy, the initial mesh (mesh 0 in Fig-

ure 11) and the resulting solution could be regarded as correct, and the

second mechanism would not be detected.
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5 Concluding remarks

The merits and limitations of various adaptive �nite element strategies have

been discussed. First, the two basic ingredients {namely, a tool for error

assessment and a procedure for adapting the spatial discretization{ have been

analyzed separately. After that, various combinations of these techniques

have been assessed.

The best approaches consist on combining ingredients of similar com-

plexity. If r-adaptivity is combined with error indicators, a very simple and

computationally e�cient adaptive strategy is obtained. The conjunction of

h=p-adaptivity and error estimators, on the other hand, results in a more

sophisticated and costly strategy, which allows to obtain a solution with a

prescribed accuracy.

The other two combinations (r-adaptivity with error estimators, or h=p-

adaptivity with error indicators) are less attractive, because there is a clear

unbalance between the tools combined.

The two adequate strategies have been illustrated by means of several

numerical examples in linear and nonlinear solid mechanics.
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Figure 1: Necking test: (a) coarse �xed mesh, (b) r-adaptivity based on an

error indicator, (c) h-adaptivity based on error estimation
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Figure 2: Rectangular plate with square hole
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Figure 3: Equivalent plastic strain: (a) coarse �xed mesh, (b) �ne �xed mesh,

(c) adaptive coarse mesh
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Figure 4: Pro�les of equivalent plastic strain along y = x + 3. Fine �xed

mesh (black), coarse �xed mesh (blue) and adaptive coarse mesh (red).
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Figure 5: Plane strain dam example: �nal mesh of the adaptive procedure

using di�erent remeshing strategies
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Figure 6: Semispherical dome: description of the geometry and the loading

conditions
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Figure 7: Semispherical dome: deformed shape
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Figure 8: Semispherical dome: Von Mises stress distribution
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Figure 9: Semispherical dome: sequence of meshes
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Figure 10: Rectangular specimen with two symmetric imperfections
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Mesh 0; 462 elements; global accuracy: 4.99%
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Figure 11: Remeshing process using Li-Bettess for a prescribed accuracy of

1.5%: sequence of meshes and estimated error distributions
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Mesh 0; two shear bands completely developed
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Figure 12: Numerical bifurcation in the �rst meshes: mesh deformation am-

pli�ed 40 times and equivalent inelastic strain contours
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