


extending and modifying conventional data structures. Furthermore,
the solution of the hybrid fluxes is not unique, and must be chosen
carefully to obtain accurate estimators.

In this paper, asymptotic bounds for outputs of interest of nu
merical solution to the incompressible Stokes problem will be
presented. An estimator that is, in contrast to existing (bounding)
estimators, applicable also to finite element solutions with continuous
pressure approximations will be derived based on local flux free
problems. The use of so called flux free error estimators precludes the
need for solving for the hybrid fluxes, otherwise needed to compute
bounds for the error.

The remainder of the paper is outlined as follows: As point of
departure, in Sections 2 and 3, we establish the error equation for the
pertinent mixed FE approximation of the Stokes problem. In Section 4
we introduce a split of the error into two parts; a computable part,
which satisfies the error equation in terms of the incompressibility
requirement, and a divergence free part, which can be controlled in
terms of the velocity energy norm.

In Section 5 we describe the procedure for computing the first part
of the error in terms of local Dirichlet problems. Depending on the
nature of the (FE) pressure approximation, two alternatives are
presented. In Section 5.1, local problems are formulated element wise
for the case of discontinuous pressure approximations. In fact, this is
much similar to the incompressible projection introduced by Machiels
et al. [29]. For the case of continuous pressure approximations, the
local Dirichlet problems are formulated patch wise on “stars”
surrounding one node, cf. Section 5.2.

Next, we target the remaining error equation for the divergence
free part of the error as derived in Section 4. Due to the construction of
the Dirichlet problems, the velocity energy norm of this part of the
error can be shown to be bounded from above by a solution composed
by solutions to local flux free problems formulated on “stars”. The
formulation of these problems is shown in Section 6 and is a straight
forward extension of the work presented in [20].

In order to obtain also lower bounds for the velocity energy norm
of the divergence free error, we may construct a second, uncon
strained version of the local Dirichlet problems, cf. Section 5. The
solution to these problems, subtracted by the previously mentioned
computable part of the error, constructs an approximation of the
divergence free error which is continuous and divergence free. We
stress that these local problems are not necessary for bounding the
error, but may be used to obtain sharper bounds.

The a posteriori error bound for the velocity energy norm of the
total error is presented in Section 7, both by use of and without the
solution of the unconstrained Dirichlet problems. The resulting
estimators bound the velocity energy norm of the total error from
above and below.

In Section 8, we introduce an error estimator for arbitrary linear
output functionals of the solution. The estimator is obtained by fol
lowing the ideas of, e.g. [4], and constructing a dual problem pertinent
to the output functional describing a quantity of interest. By use of the
bounding properties derived in the previous sections, we derive upper
and lower bounds for the output functionals.

The paper is concluded in Section 9 by a few numerical examples
illustrating the performance of the estimators.

2. Problem formulation

Consider the spatial domain Ω⊂Rd, with d=2 or 3, with boundary
Γ =
—
ΓN∪ΓD . We now formulate the Stokes problem as

−σ⋅∇ = b in Ω; ð1Þ

∇·u = 0 in Ω; ð2Þ

u = uD on ΓD; ð3Þ

σ⋅n = t onΓN; ð4Þ

where u is the sought velocity field, σ is the Cauchy stress tensor, b is
the given body force, and uD and t are prescribed velocity and traction,
respectively, on the boundary. In order to close the set of equations,
we introduce the constitutive relation for the Cauchy stress. Here we
assume the linear (isotropic) Stokes' law,

σ = 2μ u⊗∇ð Þsym − Ip; ð5Þ

where μ is the viscosity coefficient and we introduced a new unknown
in terms of the pressure p. The full problem in strong form thus reads
to find the velocity u and pressure p such that Eqs. (1) (5) hold.

The weak form of the problem reads as follows: Find u, paU ×Q
such that

a u;wð Þ + b p;wð Þ = lu wð Þ ∀w∈ V; ð6Þ

b q;uð Þ = 0 ∀q∈Q; ð7Þ

where we define the spaces

U = w∈ H1 Ωð Þ
h id

: w = uD on ΓD

� �
; ð8Þ

V = w∈ H1ðΩÞ
h id

: w = 0 on ΓD

� �
; ð9Þ

Q = q∈ L2 Ωð Þf g: ð10Þ

The introduced forms are defined as

a v;wð Þ : = ∫
Ω

w⊗∇ð Þsym : 2μ v⊗∇ð ÞsymdΩ; ð11Þ

b q;wð Þ : = −∫
Ω
q ∇⋅wð ÞdΩ; ð12Þ

lu wð Þ : = ∫
Ω
w⋅bdΩ + ∫ΓN

w⋅tdΓ; ð13Þ

for v, wa [H1 (Ω)]d and qaL2 (Ω).

Remark. For the case of solely prescribing the velocities on the
boundaries, i.e. Γ=ΓD, adding a constant pressure will not affect the
result and Q must be replaced by a reduced space Q′ in order for the
problem to be solvable, i.e. in order for the pressure to be unique. For
instance, the reduction can be introduced as

Q′ = q∈L2 Ωð Þ; ∫
Ω
qdω = 0

n o
: ð14Þ

Note that the velocity field is unique even in the case where the
pressure is not. □

3. Finite element approximation and error equations

First, we consider the (element) partitioning of the domain into
NEL elements as

Ω = ∪
NEL

e 1
Ωe : ð15Þ

Furthermore, we shall introduce the notation ∂Ωe for the boundary
of a specific element and denote a single boundary Γk where

∪
NEL

e 1
∂Ωe = ∪

NB

k 1
Γk ð16Þ

where NB denotes the total number of boundaries.
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We shall now solve Eqs. (6) and (7) approximately by introducing
discrete trial and test spaces for the velocity and pressure. It has been
shown how to obtain bounds for output functionals to FE solutions
computed using C R elements, cf. [29,30]. However, in this paper, we
aim at presenting bounds for output functionals using a mixed
variational FE discretization with continuous pressure approxima
tions. The FE problem is thus stated as follows: Find uH, pHaUH×QH

such that

aðuH;wÞ + bðpH;wÞ = luðwÞ ∀w∈ VH; ð17Þ

bðq;uHÞ = 0 ∀q∈QH; ð18Þ

where UH⊂U , VH⊂V and QH⊂Q are the pertinent FE spaces. It is
important to use the suitable combination of spaces for velocities and
pressure such that the LBB condition is fulfilled in order to obtain a
stabile solution.

We shall only consider continuous FE approximation of the
velocities, whereby the trial and test space can be stated as follows:

UH = w ∈ H1 Ωð Þ
h id

: w jΩk
∈ T u Ωkð Þ; w = uD on ΓD

� �
; ð19Þ

VH = w ∈ H1 Ωð Þ
h id

: w jΩe
∈ T u Ωkð Þ; w = 0 on ΓD

� �
; ð20Þ

where T (Ωk) defines the approximation on element k. Turning to the
pressure part, we shall consider two special classes of elements, those
with (element wise) discontinuous pressure approximations and
those with continuous pressure approximations. The finite element
spaces can be stated as follows for a discretization using piecewise
discontinuous pressure approximation:

QH = Q̂H : = q∈ L2 Ωð Þ : q jΩk
∈ T p Ωkð Þ

n o
; ð21Þ

where T p (Ωk) denotes the local approximation space for the pressure
on element k. For the case of continuous pressure approximation, we
replace the expression QH by

QH = QH : = q∈H1 Ωð Þ : q jΩk
∈ T p Ωkð Þ

n o
: ð22Þ

In particular, we shall investigate 4 simple elements that satisfy
the LBB condition, cf. [27]. The lowest order stable element with
piecewise discontinuous pressure approximation is the P2P0 element,
defined by

T u Ωð Þ = ℙ2 Ωð Þ½ �d; ð23Þ

QH = Q̂H; T p Ωð Þ = ℙ0 Ωð Þ; ð24Þ

where Pm denotes the set of polynomials of degree ≤m. This element
has linear convergence properties. An element with piecewise
discontinuous pressure and quadratic convergence is the Crouzeix
Raviart element defined by

T u Ωð Þ = ℙ2 Ωð Þ½ �d + Bd
3; ð25Þ

QH = Q̂H; T p Ωð Þ = ℙ1 Ωð Þ; ð26Þ

where B3
d denotes the space of one cubic bubble enriching the

polynomial approximation of the velocity. Turning to elements with
continuous pressure approximation, we have the lowest order stable
element, the Mini element, defined by

T u Ωð Þ = ℙ1 Ωð Þ½ �d + Bd
3; ð27Þ

QH = QH; T p Ωð Þ = ℙ1 Ωð Þ; ð28Þ

which has linear convergence properties. Quadratic convergence is
obtained for the Taylor Hood element, defined by

T u Ωð Þ = ℙ2 Ωð Þ½ �d; ð29Þ

QH = QH; T p Ωð Þ = ℙ1 Ωð Þ; ð30Þ

which provides quadratic convergence properties.

Remark. Here, we have presented triangular/tetrahedral elements.
The same quantities are obtained using the quadrilateral/hexagonal
counterparts. □

Defining the error for the finite element solution as

e : = u−uH; g : = p−pH; ð31Þ

we establish the error equation in terms of the problem of finding
(e, g)aV ×Q such that

a e;wð Þ + b g;wð Þ = Ru wð Þ ∀w∈ V; ð32Þ

b q; eð Þ = Rp qð Þ ∀q∈Q: ð33Þ

The residuals are defined as

Ru wð Þ : = lu wð Þ−a uH;wð Þ−b pH ;wð Þ; ð34Þ

Rp qð Þ : = −b q;uHð Þ: ð35Þ

The important Galerkin orthogonality

Ru wð Þ = a e;wð Þ + b g;wð Þ = 0 ∀w∈ VH; ð36Þ

Rp qð Þ = b q; eð Þ = 0 ∀q∈QH; ð37Þ

follows the properties of the FE solution Eqs. (17) and (18).

4. Divergence-split of the error

We shall now proceed by bounding the error (e, g) using local
solutions. In order to do that, we follow the idea by Machiels et al. [29]
and introduce the intermediate solution (udiv, pdiv) which is an
approximation that fulfills the continuity equation exactly, i.e.

b q;udivð Þ = 0 ∀q∈Q: ð38Þ

Consequently, we introduce the split of the errors as

e = ediv + e0; ediv : = udiv−uH; e0 : = u−udiv; ð39Þ

g = gdiv + g0; gdiv : = pdiv−pH; g0 : = p−pdiv; ð40Þ

where •div denotes the computable part of the error capturing the
error of the divergence exactly and •0 denotes the divergence free
error. For this split, we note that

b q; edivð Þ = Rp qð Þ ∀q∈Q; ð41Þ

b q; e0ð Þ = 0 ∀q∈Q: ð42Þ

Indeed, as will be shown in the following sections, the divergence
capturing error (ediv, gdiv) is computable.
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For the computed values of (ediv, gdiv), we may define the divergence
free residuals

Ru;div wð Þ : = Ru wð Þ−a ediv;wð Þ−b gdiv;wð Þ; ð43Þ

Rp;div qð Þ : = Rp qð Þ−b q; edivð Þ = 0; ð44Þ

and the corresponding error equation for the remaining part as

a e0;wð Þ + b g0;wð Þ = Ru;div wð Þ ∀w∈ V; ð45Þ

b q; e0ð Þ = 0 ∀q∈Q ð46Þ

where the solution (e0, q0)aV ×Q.

5. Local Dirichlet problems for the divergence-capturing error

We shall now construct the computable part of the error that
equilibrates the divergence residual. Recall that we require that

b q; edivð Þ = Rp qð Þ ∀q∈Q ð47Þ

holds exactly. There are infinitely many solutions ediv that satisfy this
requirement and thus, our split e=ediv+e0 is not unique. Since the
latter term is non computable, we wish for ediv≈e since this would
result in a small e0, and thereby sharp bounds. However, we stress
that the only requirement so far on ediv is that stated in Eq. (47).

In order to construct the best possible approximation of the error,
we shall start by computing localized approximations ēdiv, ḡdiv that
aim at being the best possible approximation of (e, g). The solution ed̄iv

and the test space V will be chosen such that the problem can be
solved locally. Since the test space Q is infinite or at least much larger
than QH, this is an imperative feature. For the case of using the flux
free error estimator, we further require that the lowest FE order
Galerkin orthogonality holds for the updated residual,

Ru;div wð Þ : = Ru wð Þ−a ediv;wð Þ−b gdiv;wð Þ = 0 ∀w∈ VH;1: ð48Þ

Here, the space VH,1⊂VH denotes the space of linear basis functions
assumed to be part of the FE space, i.e.,

VH;1 = w∈ VH : w jΩk
∈ ℙ1 Ωkð Þ

h id� �
: ð49Þ

In the following, we present the procedure of computing (ediv, gdiv)
satisfying Eqs. (47) and (48) for the two important special cases of
discontinuous and continuous pressure approximations in the FE
formulation.

5.1. Computation of the divergence capturing error for discontinuous
pressure approximations

Using elements with discontinuous pressure approximations, and
thereby the element piecewise constant part of the test space, we
ensure that the average divergence on an element is that of the
prescribed one. Hence we can find a divergence controlled solution
locally on Ωe, udiv=uH+ediv, where ediv |Ωk

a [H1 (Ωk)]d satisfies

bk q; edivð Þ = Rp;k qð Þ ∀q∈ L2 Ωkð Þ; ediv = 0 on ∂Ωk: ð50Þ

where bk and Rp,k denote the restriction of the forms to Ωk.
Following the ideas presented in [29], we adopt the apparent way

of fulfilling this condition by solving local Dirichlet problems. On each
element k=1, …, NEL we thus seek to find (e ̄div,k, ḡdiv,k)aV0,k×Q0,k

such that

ak ediv;k; δw
� �

+ bk gdiv;k; δw
� �

= Ru;k δwð Þ ∀δw∈ V0;k; ð51Þ

bk δq; ediv;k

� �
= Rp;k δqð Þ ∀δq∈Q0;k; ð52Þ

where ak, bk, Ru,k and Rp,k denote the restriction of the forms to Ωk.
Here, we introduced the local trial and test spaces

V0;k : = w∈ H1 Ωkð Þ
h id

: w = 0 on ∂Ωk

� �
; ð53Þ

Q0;k : = q∈ L2 Ωð Þ : ∫
Ωk
qdΩ = 0

n o
: ð54Þ

Note that here we have to restrict the trial and test spaces for the
pressure in order for it to be unique since pure Dirichlet boundary
conditions are prescribed for the velocities. This equals removing the
piecewise constant from the test space. Hence, it is crucial that the
boundary conditions are such that the conditions hold for a piecewise
constant which, indeed, is the case when using discontinuous
pressure approximation for (uH, pH). Since the piecewise constant
on Ωk is part of QH, we have that

0 = −b 1 jΩk
;uH

� �
= Rp 1 jΩk

� �
= Rp;k 1ð Þ = 0: ð55Þ

We now define the new solutions as the sum of the local solutions

udiv = uH + ediv; ediv jΩk
= ediv;k; ð56Þ

pdiv = pH + gdiv; gdiv jΩk
= gdiv;k: ð57Þ

which define an approximation that fulfills the equation of continuity
Eq. (47) exactly.

For the case of using the flux free error estimator in Section 6, we
require Galerkin orthogonality for the updated residual. In order to
accommodate Eqs. (47) and (48), we formulate the expanded
problem, of finding ediv;k; gdiv;k; fk ∈ V0;k × Q0;k × VH;1;k such that

ak ediv;k;w
� �

+ bk gdiv;k;w
� �

+ ak fk;wð Þ = Ru;k wð Þ ∀w∈ V0;k; ð58Þ

bk q; ediv;k

� �
= Rp;k qð Þ ∀q∈Q0;k; ð59Þ

ak ediv;k;wH

� �
= 0 ∀wH ∈ VH;1;k; ð60Þ

where we introduce quotient space resulting of suppressing the rigid
body modes (the kernel of the bilinear form ak) from the standard
interpolation space VH,1,k, namely

VH;1;k : = VH;1;k = kernel akð Þ ð61Þ

where the restriction of the (low order) FE space and the kernel of ak
(•, •) are defined as

VH;1;k : = w∈ ℙ1 Ωkð Þ
h id

: w = 0 on ∂Ωk∩ΓD

� �
; ð62Þ

kernel akð Þ : = w∈ H1 Ωkð Þ
h id

: akðw;wÞ = 0
� �

: ð63Þ

Note that, by definition of kernel(ak),

ak ediv;k;wH

� �
= 0 ∀wH ∈ kernel akð Þ: ð64Þ

Furthermore, due to the restriction of the pressure space, we note
that

b q;wð Þ = − w·∇ð Þ∫
Ωk
qdΩ = 0 ð65Þ
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for any wa [P1 (Ωk)]d⊂VH,1,k (with ∇·w=constant) and qaQ0,k.
Hence, the solution to the problem above satisfies

ak ediv;k;wH

� �
+ bk gdiv;k;wH

� �
= 0 ∀wH∈VH;1;k: ð66Þ

Similarly as for the initial approximations, we now define the new
solutions as the union of the local solutions

udiv = uH + ediv; ediv jΩk
= ediv;k; ð67Þ

pdiv = pH + gdiv; gdiv jΩk
= gdiv;k: ð68Þ

which define an approximation that fulfills the equation of continuity
Eq. (47) exactly. Clearly, since wH|Ωk

aVH,1,k for any wHaVH,1, we have
that

Ru;div wð Þ = Ru wð Þ−a ediv;wð Þ−b gdiv;wð Þ

= Ru wð Þ−∑
NEL

k 1
a ediv;k;w jΩk

� �
+ b gdiv;k;w jΩk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

2
66664

3
77775

= Ru wð Þ = 0 ∀w∈ VH;1;

ð69Þ

whereby also Eq. (48) is enforced.

5.2. Computation of the divergence capturing error for continuous
pressure approximations

We shall now present a strategy for computing a divergence exact
velocity field in the case of using piecewise continuous approximation
for the pressure. This is the case, for instance, using the conventional
Mini or Taylor Hood class of mixed elements. The approach
presented by [29,30] can only be used in the case of discontinuous
pressure approximation, cf. previous subsection, since the FE solution
using continuous pressure approximation would not yield proper
boundary conditions for local Dirichlet problems on element level.

We shall now proceed along the lines of [20], solving “flux free”
problems on “stars”ωi, defined by the support for the linear, Lagrange,
basis function Φi with a node in vertex xi. Using the partition of unity
approach and homogeneous Dirichlet boundary conditions, we may
define the solution spaces on each star as

Vi
0 : = w∈ H1 ωið Þ

h id
: w = 0 on ∂ωi

� �
; ð70Þ

Qi
0 : = q∈ L2 ωið Þ : ∫

ωi
qdΩ = 0

n o
; ð71Þ

and solve the localized problems as that of finding (ed̄iv
i , ḡdiv

i )aV0
i ×Q0

i

such that

ai eidiv;w
� �

+ bi gidiv;w
� �

= Riu Φiwð Þ ∀w∈ Vi
0 ð72Þ

bi q; eidiv

� �
= Rip Φiqð Þ ∀q∈Qi

0; ð73Þ

where ai, bi, Ru
i and Rp

i denote the restriction of the forms to ωi. We
now construct the global approximations as follows:

udiv = uH + ediv; ediv = ∑
i
eidiv; ð74Þ

pdiv = pH + gdiv; gdiv = ∑
i
gidiv: ð75Þ

From its construction, it is clear that ed̄iv (and thereby ūdiv)aV.
Furthermore, ediv fulfills

b q; edivð Þ = ∑
i
b q; eidiv

� �
= ∑

i
Rip Φiqð Þ = Rp qð Þ ∀q∈Q ð76Þ

exactly. Since the constant q is removed from Qi, it is required that Rpi

(Φi1)=0. Indeed, this is ensured, since Rq,i (Φi)=0 due to the
Galerkin orthogonality when ΦiaQH.

Turning to the momentum equation, we note that ēdiv and ḡdiv do
not fulfill Eq. (32) exactly since functions in V i cannot add up to any
functions in V. Similarly as for the case of piecewise constant pressure
approximation, we now expand the system in order to accommodate
for the constraint on the equilibrium pertinent to the flux free error
estimator. Hence, we solve the expanded problem of finding
eidiv; g̃

i
div; f

i ∈ V i
0 × Qi

0 × Vi
H;1 such that

ai eidiv;w
� �

+ bi g̃idiv;w
� �

+ ai f i;w
� �

= Riu Φiwð Þ ∀w∈ Vi
0; ð77Þ

bi q; eidiv

� �
= Rip Φiqð Þ ∀q∈Qi

0; ð78Þ

ai eidiv;wH

� �
= 0 ∀wH ∈ V i

H;1; ð79Þ

where we introduced the space of linear FE interpolations with zero
rigid body mode content, analogously to Eq. (61)

Vi
H;1 : = V i

H;1 = kernel ai
� �

ð80Þ

on star i. The restriction of the low order FE approximations and the
kernel of ai (•, •) are defined as

V i
H;1 : w∈ H1 ωið Þ

h id
: w jΩk

∈ ℙ1 Ωkð Þ
h id

∀k : ωi∩Ωk≠K; w 0 on ∂ωi∩ΓD
� �

;

ð81Þ

kernel ai
� �

: = w∈ H1 ωið Þ
h id

: ai w;wð Þ = 0
� �

: ð82Þ

In order to ensure the lowest FE order Galerkin orthogonality
Eq. (48), two alternatives of tackling the pressure term are found. One
is to proceed by using Grahm Schmidt's orthogonalization method,

gidiv = g̃idiv− ∑
k jΩk∩ωi≠K

g̃idiv;1
� �

k

1;1ð Þk
1 jΩk

; ð83Þ

which readily can be shown to yield

bi gidiv;w
� �

= 0 ∀w∈ Vi
H;1; ð84Þ

since

w∈ VH;1 ⇒ ∇·wð Þ∈ q∈ L2 Ωð Þ : q jΩk
∈ ℙ0 Ωkð Þ

n o
: ð85Þ

Alternatively, we set gdiv=0 which fulfills Eq. (84) trivially.

Remark. The orthogonalization procedure Eq. (83) constructs a gdiv

which is discontinuous. In the case of comparison with a reference
mesh, i.e. V, Q≈Vh, Qh, this implies gdiv∉Qh. Setting gdiv =0
circumvents the problem. □

Constructing the global approximations,

udiv = uH + ediv; ediv = ∑
i

eidiv; ð86Þ
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pdiv = pH + gdiv; gdiv = ∑
i
gidiv ð87Þ

we see that, as for the case of the approximations (ēdiv
i , ḡdiv

i ), ediv

fulfills the continuity condition Eq. (47) exactly. Furthermore, since
VH,1∋wH|ωi

∈VH,1
i , we have that

Ru;div wð Þ = Ru wð Þ−a ediv;wð Þ−b gdiv;wð Þ

= Ru wð Þ−∑i ai eidiv;w jωi

� �
+ bi gidiv;w jωi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

2
664

3
775

= Ru wð Þ = 0 ∀w∈ VH;1;

ð88Þ

whereby also Eq. (48) is enforced.

6. A flux-free error estimator

6.1. Computation of a broken solution of the divergence free error

Turning to the error (e0, g0), in order to compute subsequent error
bounds, we first introduced the broken space, relaxing the continuity
of the velocities,

V̂ : = w∈ Ĥ
1
H Ωð Þ

h id
: w = 0 on ΓD

� �
; ð89Þ

where the broken Sobolev space is defined as

Ĥ
1
H Ωð Þ : = w∈ L2 Ωð Þ : w jΩe

∈H1 Ωeð Þ
n o

: ð90Þ

Hence, we note that [H1 (Ω)]d, U , V⊂ [ĤH
1 (Ω)]d and, in particular,

V⊂V̂.
In order to be consequent, we redefine our forms a, b and lu in

order to act on the broken space,

a : Ĥ
1
H Ωð Þ

h id
× Ĥ

1
H Ωð Þ

h id
→ℝ : a v;wð Þ : = ∑

NEL

k
ak v jΩk

;w jΩk

� �
; ð91Þ

b : L2 Ωð Þ × Ĥ
1
H Ωð Þ

h id
→ℝ : b q;wð Þ : = ∑

NEL

k
bk q jΩk

;w jΩk

� �
; ð92Þ

lu : Ĥ
1
H Ωð Þ

h id
→ℝ : lu wð Þ : = ∑

NEL

k
lu;k w jΩk

� �
ð93Þ

where

ak v;wð Þ : = ∫
Ωk

w⊗∇ð Þsym : 2μ v⊗∇ð ÞsymdΩ; ð94Þ

bk q;wð Þ : = −∫
Ωk
q ∇·wð ÞdΩ; ð95Þ

lu;k wð Þ : = ∫
Ωk
w·bdΩ + ∫

ΓN∩∂Ωk
w·tdΓ: ð96Þ

Note that for any functions w, vaU ×V and qaQ, these definitions
are identical to the previous ones.

Following the ideas in [20], we now proceed by using the partition
of unity approach. We assume that each vertex xi in the mesh is
related to a (linear) shape function Φi (x) and a “star” ωi=sup Φi.
Choosing the conventional Lagrange shape functions, we note that
∑iΦi=1.

We are now in the position to state the local problems as
follows: For each star i, find êi; ĝi

� �
∈ V̄ i × Qi such that

ai êi;w
� �

+ bi ĝi;w
� �

= Riu;div Φi w− πH;1w
� �� �

∀w∈ Vi
; ð97Þ

bi q; êi
� �

= 0 ∀q∈Qi
; ð98Þ

where ai, bi and Ru,div
i denote the restriction of the forms to ωi. The trial

and test spaces for the broken problems are the following:

Vi : = Vi
= kernel ai

� �
ð99Þ

Qi : = L2 ωið Þ: ð100Þ

where the restriction of the test space and the kernel of ai (•, •) are
defined as

Vi : = w∈ H1 ωið Þ
h id

jw = 0 on ∂ωi∩ΓD

� �
; ð101Þ

kernel ai
� �

: = w∈ H1 ωið Þ
h id

: ai w;wð Þ = 0
� �

: ð102Þ

The operator πH,1 denotes the (nodal) interpolation onto the FE
space of piecewise linear velocity approximation VH,1. Clearly, since
any function w∈V i∖V̄ i lies in V i∩kernel(ai)⊂VH,1

i given in Eq. (81),
which embodies all linear velocity fields on ωi, w−πH,1 w≡0.
Hence, Eq. (97) holds for any restriction w|Ωk

aVi of any test
function waV.

We now state the global solution as

ê : = ∑
i

êi; ĝ = ∑
i
ĝi ð103Þ

that satisfies the error equation,

a ê;w
� �

+ b ĝ;w
� �

= ∑i a
i êi;w
� �

+ bi ĝi;w
� �

= ∑i R
i
u;div Φi w−πH;1w

� �� �
= Ru;div w−πH;1w

� �
= Ru;div wð Þ ∀w∈ V ;

ð104Þ

due to the Galerkin orthogonality in Ru,div (•), and for which

b q; ê
� �

= ∑
i
bi q; êi
� �

= 0 ∀q∈Q: ð105Þ

Remark. Note that we here use the fact the Galerkin orthogonality
holds for Ru,div. Hence, it is crucial that we use the fully equilibrated
local solution ediv. □

6.2. Estimation of the error in the velocity energy norm

We shall now consider the velocity energy norm of the error ∥e∥,
where

‖w‖ : = a w;wð Þ
p

: ð106Þ

Note that for the space {waV: b (q, w)=0∀qaQ}, ∥e∥ is the energy
norm of the problem. Furthermore, we note that ∥•∥ constitutes a norm
on V.
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Since both ê and e0 are divergence free and satisfy the error equation,
we maybound the difference between the representations of the error as
follows:

‖e0− ê‖2 = ‖e0‖
2 + ‖ ê‖2−2a e0; ê

� �
= ‖e0‖

2 + ‖ ê‖2−2 Ru;div e0ð Þ− b ĝ; e0
� �|fflfflfflffl{zfflfflfflffl}

0

2
64

3
75

= ‖e0‖
2 + ‖ ê‖2−2 a e0; e0ð Þ + b g0; e0ð Þ|fflfflfflfflffl{zfflfflfflfflffl}

0

2
64

3
75

= ‖ ê‖2−‖e0‖
2
;

ð107Þ

whereby

‖e0‖≤ ‖ ê ‖ = : ‖ e0‖UB: ð108Þ

Furthermore, in order to bound ∥e0∥ from below, we shall consider the
proper minimization problem pertinent to Eqs. (45) and (46), as follows:

‖e0‖
2 = a e0; e0ð Þ = −2 inf

w ∈ V

1
2
a w;wð Þ−Ru;div wð Þ

s:t: b q;wð Þ = 0 ∀q∈Q
= sup

w∈V
2Ru;div wð Þ−a w;wð Þ

s:t: b q;wð Þ = 0 ∀q∈Q
≥ 2Ru;div φð Þ−a φ;φð Þ;

ð109Þ

for any φaV that is divergence free,

b q;φð Þ = 0 ∀q∈Q: ð110Þ

Note that, due to the equilibration of ediv, we expect ēdiv to be a
better approximation of the error than ediv. Hence, we may use the
lower bound estimate

φ = ediv − ediv = : e ð111Þ

which is in V and is divergence free, since

b q; eð Þ = b q; edivð Þ−b q; edivð Þ = Rp qð Þ−Rp qð Þ = 0 ∀q∈Q: ð112Þ

Furthermore, since V is a linear space and

b q;αeð Þ = αb q; eð Þ = 0 ∀q;α∈Q × ℝ; ð113Þ

we may chose any φ=αē as the argument. Hence, we may define the
lower bound by

‖e0‖
2 ≥ ‖e0‖

2
LB; ð114Þ

where

‖e0‖
2
LB = max

α
2Ru;div αeð Þ−‖αe ‖2

= max
α

2Ru;div eð Þα−‖e‖2α2

=
Ru;div eð Þ

� �2

‖e‖2 ;

ð115Þ

for any computed solution ē≠0. As an alternative, directly inserting
φ=0 as the argument, we obtain the result, which is also apparent
from the norm property of ∥ •∥. Without computing an additional local
solution, this yields a lower bound.

Remark. For the case that we use discontinuous pressure approxi
mation in QH, the dimension of the maximization problem is increased
to that of the number of elements in VH since

φ = ∑
NEL

k 1
αkek = ∑

NEL

k 1
αk ediv;k− ediv;k

� �
ð116Þ

are admissible candidates a V satisfying Eq. (110). This larger maxi
mization problem results in the sharper bound

‖e0‖
2
LB = ∑

NEL

k 1

Ru;div;k eð Þ
� �2

‖ek‖Ωk2
: ð117Þ

In summary, we have presented bounds for e0 that can be stated as

‖e0‖
2
LB ≤ ‖e0‖

2 ≤ ‖e0‖
2
UB: ð118Þ

7. Bounding the error using the triangle inequality

In the previous section, upper and lower bounds for the velocity
energy norm of the divergence free error were presented. We conclude
that ∥ ê∥ is simply the upper bound of the energy norm error of the
improved solution udiv, pdiv. In this section, we shall derive bounds for
the velocity energy norm of the total error for thefinite element solution.
Such bounds can be obtained using the triangle inequality together with
the fact that one part of the error, the divergence capturing part ediv, is
computed. The straight forward, naive, application gives the bounds

‖ediv‖−‖e0‖UB≤‖e‖≤‖ediv‖ + ‖e0‖UB: ð119Þ

However, it turns out that these bounds can be tightened using
further computed solutions. Below, we present bounds optimized in
terms of minimum bound gap.

7.1. Optimized triangle inequality bounds, without improved solution

In order to improve the triangle inequality above, we shall use the
triangle inequality after adding and subtracting an arbitrary constant
times the broken solution e ̂ computed in order to establish the upper
bound of ∥e0∥, i.e.,

‖e‖ = ‖ediv + e0‖ = ‖ediv + α ê + e0−α ê‖: ð120Þ

Hence, we may construct the generalized triangle inequality
bounds as

‖ediv + α ê‖−‖e0−α ê‖≤‖e‖≤‖ediv + α ê‖−‖e0−α ê‖: ð121Þ

In a generic format, we state the following

E−ΔE
2
≤‖e‖≤E +

ΔE
2

; ð122Þ

where

E = ‖ediv + α ê‖; ð123Þ

and we shall construct ΔE such that

2‖e0−α ê‖≤ΔE: ð124Þ

To this end, we expand the square of the term to be bounded as
follows:

‖e0−α ê‖2 = 1−2αð Þ‖e0‖
2 + α2

‖ ê‖2
: ð125Þ
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Depending on the sign of (1−2α), three different bounds are
given,

‖e0−α ê−βe‖2≤ ΔE
2


 �2
=

1−αð Þ2‖ ê‖2 if αb
1
2

1
4
‖ ê‖2 ifα =

1
2

α2
‖ ê‖2 ifα N

1
2
;

8>>>>><
>>>>>:

ð126Þ

where we made use of the inequalities

0≤ ‖e0‖
2 ≤ ‖ ê‖2

: ð127Þ

Evaluating the variation of these quadratic bounds gives us the
optimal choice of α that minimizes ΔE. There are no stationary points
for αb1/2 or αN1/2. Hence, the optimal value is α=1/2. Hence we
may conclude the optimal bounds as follows:

‖ediv +
1
2
ê‖−1

2
ê‖≤ ‖e‖≤ ‖ediv +

1
2
ê‖ +

1
2
‖ ê‖ ð128Þ

which clearly narrows the bound gap in comparison to the straight
forward use of the triangle inequality.

7.2. Optimized triangle inequality bounds, with improved solution

Generalizing the rough strategy in the previous subsection, we
may utilize the information obtained in terms of the solutions ê and ē
computed in order to assess upper and lower bounds for ∥e0∥,
respectively. Doing so, we add and subtract these solutions inside the
norm expression as follows:

‖e‖ = ‖ediv + e0‖ = ‖ediv + α ê + βe + e0−α ê−βe‖; ð129Þ

where α and β are arbitrary constants that we later shall optimize in
order to sharpen the bound. The triangle inequality may now be used
to compute establish the upper bound

‖e‖≤ ‖ediv + α ê + βe‖ + ‖e0−α ê−βe‖; ð130Þ

and the lower bound

‖e‖≥ ‖ediv + α ê + βe‖−‖e0−α ê−βe‖: ð131Þ

In a generic format, we state the following

E−ΔE
2
≤ ‖e‖≤ E +

ΔE
2

; ð132Þ

where

E = ‖ediv + α ê + βe‖; ð133Þ

and we shall construct ΔE such that

2‖e0−α ê−βe‖≤ΔE: ð134Þ

To this end, we expand the square of the term to be bounded as
follows:

‖e0−α ê−βe‖2 = 1−2αð Þ‖e0‖
2 + α2

‖ ê‖2 + 2 α−1ð Þβa ê; e
� �

+ β2
‖e‖2

:

ð135Þ

Depending on the sign of (1−2α), three different bounds are
given,

‖e0 α ê βe‖2≤ ΔE
2


 �2

=

1 αð Þ2
‖ ê‖2 + 2 α 1ð Þβa ê; e

� �
+ β2

‖e‖2 ifαb
1
2

1
4
‖ ê‖2 βa ê; e

� �
+ β2

‖Pe‖2 ifα =
1
2

α2
‖ ê‖2 + 2 α 1ð Þβa ê; e

� �
+ β2

‖e‖ + 1 2αð Þ
Ru;div eð Þ
h i2

‖e‖2 ifα N
1
2

;

8>>>>>><
>>>>>>:

ð136Þ

where we made use of the inequalities

Ru;div eð Þ
h i2

‖e‖2 ≤ ‖e0‖
2 ≤ ‖ ê‖2

: ð137Þ

Evaluating the variation of these quadratic bounds gives us the
optimal choice of α and β that minimize ΔE. There is no stationary
point for either αb1/2 or αN1/2. The minimizer of ΔE has the
expression

α =
1
2

ð138Þ

β =
a ê; e
� �
2‖e‖2 : ð139Þ

where β was optimized given α = 1
2. Hence we may conclude the

optimal bounds as follows:

E−ΔE
2
≤ ‖e‖≤ E +

ΔE
2

ð140Þ

E = ‖ediv +
1
2
ê +

1
2
Ru;div eð Þ
‖e‖2 e‖ ð141Þ

ΔE = ‖ ê‖2−
Ru;div eð Þ

h i2

‖e‖2

vuut
; ð142Þ

where we made use of the equality a (ê, ē)=Ru,div (e ̄).

8. Goal-oriented error estimationusing theflux-free error estimator

We now consider the case that we want to estimate the error in a
linear output functional of the solution. Assume that the goal of our
computation is to estimate the output functional defined by

s = lu* uð Þ + lp* pð Þ; ð143Þ

where lu⁎ and lp⁎ are linear functionals on U and Q, respectively. From
our FE solution, we thus obtain the approximation

sH = lu* uHð Þ + lp* pHð Þ: ð144Þ

8.1. The dual problem

In order to proceed, we now define the dual problem pertinent to
the chosen output as that of finding (u⁎, p⁎) a V ×Q such that

a w;u*ð Þ + b p*;wð Þ = lu* wð Þ ∀w∈V; ð145Þ

b q;u*ð Þ = lp* qð Þ ∀q∈Q; ð146Þ
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where we note the similarity to the original problem Eqs. (6) and (7),
henceforth denoted the primal problem.

Remark. Here, we assume that lu⁎ acts as a linear functional on V as
well as U , i.e., we assume that

lu* v + wð Þ = lu* vð Þ + lu* wð Þ ∀v;w∈ U × V: ð147Þ

Similarly as for the primal problem, we start off by computing the
approximations (uH⁎, pH⁎)aVH×QH such that

a w;uH*ð Þ + b pH*;wð Þ = lu* wð Þ ∀w∈ VH; ð148Þ

b q;uH*ð Þ = lp* qð Þ ∀q∈QH; ð149Þ

whereby we are in the position to define the dual residuals as

Ru* wð Þ : = lu* wð Þ−a w;uH*ð Þ−b pH*;wð Þ; ð150Þ

Rp* qð Þ : = lp* qð Þ−b q;uH*ð Þ: ð151Þ

We now utilize the split of the error into the divergence part (ediv⁎ ,
gdiv⁎ ) and a divergence free part (e0⁎, g0⁎) as follows:

e* : = u*−uH* = ediv* + e0*; ð152Þ

g* : = p*−pH* = gdiv* + g0*: ð153Þ

Following the steps described in Section 5, we now proceed by
computing the equilibrated and divergence prescribed solution (ediv⁎ ,
gdiv⁎ ) that satisfies the conditions

a w; ediv*ð Þ−b gdiv* ;wð Þ = 0 ∀w∈ VH;1 ð154Þ

b q; ediv*ð Þ = Rp* qð Þ ∀q∈Q; ð155Þ

whereby we introduce the updated, divergence free, dual residuals

Ru;div* wð Þ : = Ru;div* wð Þ−a w; ediv*ð Þ−b gdiv* ;wð Þ; ð156Þ

Rp* qð Þ : = lp* qð Þ−b q;uH*ð Þ: ð157Þ

The pertinent error equation for the divergence free part of the
dual error may now be stated as

a w; e0*ð Þ + b g0*;wð Þ = Ru;div* wð Þ ∀w∈V; ð158Þ

b q; e0*ð Þ = 0 ∀q∈Q; ð159Þ

where (e0⁎, g0⁎)aV ×Q.

8.1.1. Pressure output for constrained domain
In the case of pure Dirichlet boundary conditions, as discussed in

Section 2, we recall that the piecewise constant is removed from the
pressure test and trial space as

Q′ = q∈L2 Ωð Þ; ∫
Ω
qdω = 0

n o
: ð160Þ

Hence, we must require that Eq. (149) holds for a piecewise
constant test function, i.e., we require that

lp* 1ð Þ = 0: ð161Þ

Considering the chosen pressure output l p̂⁎ (q), we can always
construct the pertinent equilibrated output functional as follows:

lp* qð Þ = l̂p* qð Þ−
l̂p* 1ð Þ
Ω

∫
Ω
qdΩ: ð162Þ

The modified output is an identical functional on Q since

lp* qð Þ = l̂p* qð Þ−
l̂p* 1ð Þ
jΩj ∫ΩqdΩ|fflfflfflffl{zfflfflffl}

0

= l̂p* qð Þ ∀q∈Q; ð163Þ

and equilibrated since

lp* 1ð Þ = l̂p* 1ð Þ−
l̂p* 1ð Þ
jΩj ∫Ω1dΩ|fflfflfflffl{zfflffl ffl}

jΩj

≡0: ð164Þ

8.2. Output representation

We are now in the position of stating the representation of the
output as follows:

s = lu* uð Þ + lp* pð Þ = lu* uHð Þ + lp* pHð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
:sH

+ lu* eð Þ + lp* gð Þ ð165Þ

where we used the linearity of lu⁎ and lp⁎ and introduced the split of the
primal solution into its FE part and its error. Furthermore, we
introduced the output of the FE solution, sH. Next, we use the
formulation of the dual problem in Eqs. (145) and (146), together
with the primal Galerkin orthogonality in Eqs. (36) and (37), to obtain

s = sH + a e;u*ð Þ + b p*; eð Þ + b g;u*ð Þ
= sH + a e;uH*ð Þ + b pH* ; eð Þ + b g;uH*ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

+ a e; e*ð Þ + b g*; eð Þ + b g; e*ð Þ

= sH + a e; e*ð Þ + b g*; eð Þ + b g; e*ð Þ;
ð166Þ

where we made use of the split of the dual solution into its FE
approximation and its error. Finally, we introduce the split of the
errors into divergence and divergence free parts to obtain

s = sH + a e0; e0*ð Þ + a ediv; e0*ð Þ + a e0; ediv*ð Þ + a ediv; ediv*ð Þ
+ b g*; e0ð Þ|fflfflfflfflffl{zfflfflfflfflffl}

0

+ b g0*; edivð Þ + b gdiv* ; edivð Þ

+ b g*; e0ð Þ|fflfflfflfflffl{zfflfflfflfflffl}
0

+ b g0; ediv*ð Þ + b gdiv; ediv*ð Þ

= sH + a e0; e0*ð Þ + Ru;div* edivð Þ + Ru;div ediv*ð Þ
+ a ediv; ediv*ð Þ + b gdiv* ; edivð Þ + b gdiv; ediv*ð Þ;

ð167Þ

where we used the fact that e0, e0⁎ are divergence free and identified
the primal and dual error equations for the divergence free errors in
Eqs. (45) and (46) and Eqs. (175) and (176), respectively.

In summary, we have the exact representation of the output as

s = sH + sdiv + s0 ð168Þ

where sH and sdiv are computable,

sH : = lu* uHð Þ + lp* pHð Þ; ð169Þ

sdiv : = Ru;div* edivð Þ + Ru;div ediv*ð Þ

+ a ediv; ediv*ð Þ + b gdiv* ; edivð Þ + b gdiv; ediv*ð Þ;

ð170Þ
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and s0 is the remaining unknown part,

s0 : = a e0; e0*ð Þ: ð171Þ

We shall now use the results obtained earlier for bounding ∥e0∥ to
bound the unknown term s0.

Remark. An alternative format of Eq. (170) is

sdiv = Ru* edivð Þ + Ru ediv*ð Þ−a ediv; ediv*ð Þ; ð172Þ

whereby it is apparent that gdiv and gdiv⁎ do not affect sdiv. □

8.3. Computation of bounds

We shall now compute bounds for the unknown part of the output
in the representation. Using the parallelogram law, we obtain the
following equality:

s0 = a e0; e0*ð Þ = a κe0;
1
κ
e0*


 �
=

1
4
‖zþ0 ‖

2−1
4
‖z0 ‖

2
; ð173Þ

for any κ≠0. Here we introduced

zF0 : = κe0F
1
κ
e0*; ð174Þ

as the combined primal/dual solution. In fact, since the linearity of the
problem gives the pertinent error equation

a w; zF0
� �

+ b yF0 ;w
� �

= RF wð Þ ∀w∈ V; ð175Þ

b q; zF0
� �

= 0 ∀q∈Q; ð176Þ

where we introduced the combined primal/dual residual and error in
pressure as

RF wð Þ : = κRu;div wð ÞF1
κ
Ru;div* wð Þ; yF0 : = κg0F

1
κ
g0*; ð177Þ

we may use the strategy presented in Section 6.2 to bound ∥z0
±∥ from

above and below. Hence, again following from linearity of the
problem, we may add up

ẑF = κ êF
1
κ
ê*; ð178Þ

such that

‖zF0 ‖
2≤‖zF0 ‖

2
UB: ð179Þ

where

‖zF0 ‖
2
UB : = ‖zF0 ‖

2
: ð180Þ

Turning to the lower bound, assuming that we have computed the
solutions ēdev and ēdev⁎ pertinent to un equilibrated local Dirichlet
problems, cf. Section 5, we note that we now have a two dimensional
(linear) set for solutions z ̄±aV that fulfill the incompressibility
condition, namely

P
z F = αFe + α*Fe* ð181Þ

Hence, we formulate the lower bound as

‖zF0 ‖
2 ≥ ‖zF0 ‖

2
LB ð182Þ

where

‖zF0 ‖
2
LB = max

αF ;α�F
2RF

u;div α
Fe + α*Fe*

� �
−‖αFe + α*Fe*‖2

n o
= max

αF ;α�F
f2αFRF

u;div eð Þ + 2α*FRF
u;div e*ð Þ

− αF
� �2

‖e‖2−2αFα*Fa e; e*ð Þ− α*
F� �2

‖e*‖2g:
ð183Þ

We expect α±=κ and α⁎±=±1/κ to be good approximations
(corresponding to the candidates κe ̄±(1/κ) e ̄⁎). However, since we
have full liberty to choose the parameters, we simply maximize the
lower bound. For any case when |a(e ̄, e ̄⁎)|b∥e ̄∥ ∥e ̄⁎∥, thus
corresponding to e ̄ and e ̄⁎ not being linearly dependent, we obtain
the maximizing parameters by solving the linear problem pertinent to
the stationary point for the (quadratic) minimization problem, i.e.,

‖e‖2 a e; e*ð Þ
a e; e*ð Þ ‖e*‖2

" #
αF

α*F

� 

=

RF
u;div eð Þ

RF
u;div e*ð Þ

" #
: ð184Þ

The analytical solution to Eq. (184) can be found independently of
κ such that

‖zF0 ‖
2
LB =

‖e‖2 RF
u;div e*ð Þ

� �2
−2a e; e*ð ÞRF

u;div eð ÞRF
u;div e*ð Þ + ‖e*‖2 RF

u;div eð Þ
� �2

‖e‖2‖e*‖2− a e; e*ð Þð Þ2 :

ð185Þ

Rearranging the terms, we can show that ∥z0
±∥LB is sharper

estimate than the trivial one using that the evaluated residuals are
scalars such that

‖zF0 ‖
2
LB =

a e⋅RF
u;div e*ð Þ−e*⋅RF

u;div eð Þ; e⋅RF
u;div e*ð Þ−e*⋅RF

u;div eð ÞÞ
� �

‖e‖2‖e*‖2− a e; e*ð Þð Þ2

=
‖e·RF

u;div e*ð Þ−e*·RF
u;div eð ÞÞ‖2

‖e‖2‖e*‖2 a e;e*ð Þð Þ2 ≥0:

ð186Þ

Returning to the special case of ē and ē⁎ being linearly dependent,
i.e. that e ̄=αe ̄⁎ for some scalar α, we note that the maximization
problem is one dimensional, whereby we obtain the result

‖zF0 ‖
2
LB =

RF
u;div eð Þ

� �2

‖e‖2 =
RF
u;div e*ð Þ

� �2

‖e*‖2 : ð187Þ

Remark. As for the case of the energy norm evaluation, the lower
bound can be further optimized in the case that the pressure
approximation is discontinuous. In that case the local functions ēk
and ēk⁎ can be varied independently, whereby we obtain the results

‖zF0 ‖
2
LB = ∑

NEL

k
η2
k ð188Þ

where

η2
k =

RF
u;div;k ekð Þ

� �2

‖ek‖
2
Ωk

if ek = βek* for anyβ∈ℝ

‖ek⋅R
F
u;div;k ek*ð Þ−ek*⋅R

F
u;div;k ekð Þ‖2

Ωk

‖ek‖
2
Ωk
‖ek*‖

2
Ωk
− ak ek; ek*

� �� �2 else:

8>>>>>><
>>>>>>:

ð189Þ
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In order to bound s0, we may now use Eqs. (173) and (179) to
obtain

1
4
‖zþ

0 ‖
2
LB−

1
4
‖z0 ‖

2
UB ≤ s0 ≤

1
4
‖zþ

0 ‖
2
UB−

1
4
‖z0 ‖

2
LB; ð190Þ

or, in terms of error bounds,

s−1
2
Δs≤ s≤ s +

1
2
Δs; ð191Þ

where s̄ is the average (expected) value of the output and Δs is the
bound gap,

s : = sH + sdiv +
1
8

‖zþ
0 ‖

2
UB + ‖zþ

0 ‖
2
LB−‖z0 ‖

2
UB−‖z0 ‖

2
LB

� �
; ð192Þ

Δs : =
1
4

‖zþ
0 ‖

2
UB−‖zþ

0 ‖
2
LB + ‖z0 ‖

2
UB−‖z0 ‖

2
LB

� �
: ð193Þ

8.4. Optimization of the bound gap

Finally, we recall that the parameter κ, defining z±, can be chosen
arbitrarily. Hence, we wish to choose κ such that the bound gap Δs is
minimized.

First, we shall expand the upper bound estimates in terms of κ,

‖zF0 ‖
2
UB = a κ êF

1
κ
ê*;κ êF

1
κ
ê*


 �
= κ2

‖ ê‖2F 2a ê; ê*
� �

+
1
κ
‖ ê2

‖:

ð194Þ

Turning to the lower bound, we shall now derive the results for
three special cases below:

8.4.1. Optimized bounds for no improved solutions
For the case that we have not computed ē and e ̄⁎, we use the trivial

bounds

‖zF0 ‖
2
LB = 0; ð195Þ

whereby we can express the bound center and gap as

s = sH + sdiv +
1
2
a ê; ê*
� �

; ð196Þ

Δs =
1
2
κ2
‖ ê‖2 +

1
κ2 ‖ ê*‖2


 �
: ð197Þ

The bound cap can be minimized choosing κ2=∥ê⁎∥/∥ê∥, whereby
we obtain the final result

s : = s−1
2
Δs≤ s≤ s +

1
2
Δs = : sþ; ð198Þ

s = sH + sdiv +
1
2
a ê; ê*
� �

; ð199Þ

Δs = ‖ ê‖ ‖ ê*‖: ð200Þ

8.4.2. Optimized bounds utilizing improved solutions
As shown previously, computation of improved solutions e ̄ and ē⁎

improve the bound. Expanding the lower bounds Eq. (187) in terms of
κ gives

‖zF0 ‖
2
LB = κ2 δ e; e*ð Þ

γ e; e*ð Þ +
1
κ2

δ* e; e*ð Þ
γ e; e*ð Þ

F2
‖e‖2Ru;div e*ð ÞRu;div* e*ð Þ

γ e;e*ð Þ

∓2
a e; e*ð Þ Ru;div eð ÞRu;div* e*ð Þ + Ru;div* eð ÞRu;div e*ð Þ

� �
γ e; e*ð Þ

F2
‖e*‖2Ru;div eð ÞRu;div* eð Þ

γ e;e*ð Þ ;

ð201Þ

where we introduce the abbreviating forms

γ e; e*ð Þ : = ‖e‖2
‖e*‖2− a e; e*ð Þð Þ2

; ð202Þ

δ e; e*ð Þ : = ‖e ‖2 Ru;div e*ð Þ
� �2

+ ‖e*‖2 Ru;div eð Þ
� �2

−2a e; e*ð ÞRu;div eð ÞRu;div e*ð Þ;

ð203Þ

δ* e; e*ð Þ : = ‖e ‖2 Ru;div* e*ð Þ
� �2

+ ‖e*‖2 Ru;div* eð Þ
� �2

−2a e; e*ð ÞRu;div* eð ÞRu;div* e*ð Þ:

ð204Þ

We can thus express the bound center and gap as

s = sH + sdiv +
1
2
a ê; ê*
� �

+
‖e‖2Ru;div e*ð ÞRu;div* e*ð Þ

2γ e; e*ð Þ +
‖e*‖2Ru;div eð ÞRu;div* eð Þ

2γ e; e*ð Þ

−
a e; e*ð Þ Ru;div eð ÞRu;div* e*ð Þ + Ru;div* eð ÞRu;div e*ð Þ

� �
2γ e; e*ð Þ ;

ð205Þ

Δs =
κ2

2
‖ ê‖2− δ e; e*ð Þ

γ e; e*ð Þ


 �
+

1
2κ2 ‖ ê*‖2− δ* e; e*ð Þ

γ e; e*ð Þ


 �
: ð206Þ

Since we know that Δs≥0 for all κ, the two terms pertinent to κ2

and κ−2 must individually be≥0. If one term is 0, this means that s≡ s̄.
For positive terms, the bound cap can be minimized choosing

κ2 =
‖ ê*‖2γ e; e*ð Þ−δ* e; e*ð Þ

q
‖ ê‖2γ e; e*ð Þ−δ e; e*ð Þ

q ; ð207Þ

whereby we obtain the final result

s : = s−1
2
Δs≤ s≤ s +

1
2
Δs = : sþ; ð208Þ

s = sH + sdiv +
1
2
a ê; ê*
� �

+
‖e‖2Ru;div e*ð ÞRu;div* e*ð Þ

2γ e; e*ð Þ +
‖ ê*‖2Ru;div eð ÞRu;div* eð Þ

2γ e; e*ð Þ

−
a e; e*ð Þ Ru;div eð ÞRu;div* e*ð Þ + Ru;div* eð ÞRu;div e*ð Þ

� �
2γ e; e*ð Þ ;

ð209Þ

Δs = ‖ ê‖2− δ e; e*ð Þ
γ e; e*ð Þ

s
‖ ê*‖2− δ* e; e*ð Þ

γ e; e*ð Þ

s
: ð210Þ
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and thus no improved (Accurate) bound can be obtained. In Fig. 3, we
show the exact value as well as the computed upper and lower
bounds for the velocity energy norm of the error obtained by using the
Mini elements. We note that the expected rates of convergence are
obtained, i.e.,

‖e‖∼N r =2∼hr ð213Þ

with r=1 for the Mini and P2P0 elements (1st order) and r=2 for
the Taylor Hood and the Crouxier Raviart elements (2nd order).

9.1.2. Estimation of the goal quantity
We shall now investigate the behavior of the goal oriented error

estimators presented in Section 8. To this end, we first choose the
specified output to be that of the average velocity on the right half of
the unit square, i.e.,

s =
1

0:5
∫
x N :5

u·eydΩ; ð214Þ

where ey is the unit vector aligned with the positive y axis and the
area of the considered region is 0.5×1=0.5. The exact value of the
quantity can easily be computed from Eqs. (211) and (212) to be
s=1/240≈0.00416667. An example of the numerical approximation
of the pertinent dual problem is shown in Fig. 4. In Table 2, we show
the numerical values for the computed upper and lower bounds of the
output using both the Low cost bounds, cf. Eq. (198), and the more
Accurate bounds using the improved Dirichlet problems, cf. Eq. (208).
As for the estimation of velocity energy error, no improved (Accurate)
bounds can be obtained for the discontinuous pressure approximating
elements. In Fig. 5, we show the computed upper and lower bounds
(scaled by the exact value) for chosen goal quantity versus number of
degrees of freedom for the four different element type discretizations
discussed above. In Fig. 6, the convergence of the bound gap, Δs, with
mesh refinement is shown for the same case.

9.1.3. Estimation of local goal quantities
The goal quantity studied in the previous paragraph was defined

on half the domain. Next, we consider the effect of considering a
locally defined goal quantity. To this end we study an output on the
form

s =
1
πr2 ∫jx x0 jb r

u·eydΩ; ð215Þ

measuring the mean velocity in the y direction inside a circular
domain of radius r centered at x0=(0.75, 0.50) where x=(x, y)

Fig. 2. A numerical solution to the example of Stokes' flow on the unit square. Velocities
are shown together with iso-pressure lines. The approximation was obtained by using
Mini-elements and 3683 degrees of freedom.

Table 1
Exact values and computed (relative) bounds for the velocity-energy norm of the error in example of Stokes’ flow on a unit square. Results are shown for both the Low cost method
and the Accurate method, relying on an additional Dirichlet solution. Using N refers to the total number of degrees of freedom.

Element type N ∥e∥ Low cost Accurate

∥e∥LB/∥e∥ ∥e∥UB/∥e∥ ∥e∥LB/∥e∥ ∥e∥UB/∥e∥

Mini 71 0.051322 0.206753439 1.688554616 0.244378629 1.185885195
139 0.048175 0.139728075 1.729050337 0 1.267503892
251 0.026226 0.136700221 1.910699306 0.244242355 1.246015405
499 0.022298 0.120145305 2.106646336 0.023359943 1.501928424
947 0.013478 0.116627096 1.996512836 0.270522333 1.269105208

1891 0.010508 0.108897982 2.261039208 0.105376856 1.556909022
3683 0.0067402 0.059099137 2.130203852 0.463220676 1.472285689

Taylor–Hood 95 0.0142 0.385957746 1.491619718 0.523492958 1.227394366
187 0.0076095 0.564977988 1.142124975 0.535370261 0.984650765
331 0.0047997 0.375856824 1.34837594 0.497843615 1.1471967
659 0.0028179 0.592391497 1.23105859 0.692288584 1.04854679

1235 0.0012486 0.424115009 1.30217844 0.50505366 1.146403972
2467 0.00073723 0.663117345 1.175291293 0.706468809 1.03524002
4771 0.00031457 0.458498903 1.273325492 0.507708936 1.152970722

P2P0 98 0.029008 0.26698497 1.936913955 – –

194 0.02226 0.289748428 2.124887691 – –

354 0.015884 0.307365903 2.101422815 – –

706 0.011621 0.31855262 2.218914035 – –

1346 0.0081729 0.326616011 2.193468659 – –

2690 0.0058778 0.335873966 2.252883732 – –

5250 0.0041627 0.338145915 2.236937565 – –

Crouxier-Raviart 162 0.012448 0 1.120420951 – –

322 0.0078446 0.022045738 1.098258675 – –

610 0.0040865 0.063000122 1.172299033 – –

1218 0.0033238 0.00623443 1.158072086 – –

2370 0.0010602 0.05701943 1.156196944 – –

4738 0.00087651 0.006702605 1.126524512 – –

9346 0.00026688 0.054934802 1.151978417 – –
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denotes the spatial coordinate. The relative bound gap is shown in
Fig. 7 for a fixed discretization of 1024 Mini elements using the low
cost estimator. As illustrated in the figure, the relative bound gap
depends on the chosen goal quantity. Clearly, a more local output is
more challenging for a given mesh, and may thus result in a larger
relative bound gap. Here, we have only considered radii larger than

the smallest element in the mesh. For a discussion on measuring even
more localized quantities, we refer to, e.g., Prudhomme and Oden [31]
or Larsson and Runesson [32].

9.2. Stokes' channel flow past a step obstacle

This study aims at investigating the behavior of the presented
bounds for more involved problems while elaborating on two output
quantities of more local character. The results are limited to the
Taylor Hood element and the convergence of the output bounds is
presented for uniform mesh refinement. The local problems (of
Dirichlet and flux free type) are solved in a manner such that each
element Ωe is subdivided into 25 new elements of the same type.

Following Oden and Prudhomme [7], we study the 2D Stoke's flow
in a channel past a single step obstacle, as illustrated in Fig. 8. The
modeled part of the channel is of size 40×10 units and the step is of
size 1×1 and located the distance 5 units from the inlet, as shown in
the figure. The inlet (to the left hand side in the figure) is subject to a
prescribed parabolic velocity profile with the amplitude 1 unit, whilst
the outlet is modeled as traction free. All other boundaries define no
slip boundary conditions on the flow. The fluid viscosity is chosen as
μ=1. In Fig. 8, a region of interest A, which will be used henceforth for
defining outputs of interest, is shown. The region is located adjacent to
the wall by obstacle on its upstream side and is of size 0.8×0.5 units.

In Fig. 9, the coarsest and finest mesh used in the study is
illustrated. An example of a numerical solution, computed using 1065
degrees of freedom, is illustrated in Fig. 10.

9.2.1. Estimation of the goal quantity
We shall now investigate the behavior of the goal oriented error

estimators presented in Section 8. To this end, we first define two
different outputs of interest for the problem. Firstly, following Oden

Fig. 3. Convergence of the exact value of and the computed bounds for the velocity-energy norm of the error with increasing number of degrees of freedom for the example of Stokes’
flow on the unit square. The approximation was obtained by using Mini-elements (top left), Taylor–Hood elements (top right), P2P0 elements (bottom left) and Crouxier-Raviart
elements (bottom right).

Fig. 4. A numerical solution to the dual problem for the considered output s, the average
vertical velocity in the right half, for the example of Stokes' flow on the unit square. Dual
velocities are shown together with iso-pressure lines. The approximation was obtained
by using Mini-elements and 3683 degrees of freedom.
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Table 2
Computed relative approximation, bounds and bound gaps for the chosen output quantity s in example of Stokes' flow on a unit square. Results are shown for both the Low cost
method and the Accurate method, relying on an additional Dirichlet solution. Using N refers to the total number of degrees of freedom. Note that the exact solution is s=1/240.

Element type N sH/s Low cost Accurate

s /s s+/s Δs/s s /s s+/s Δs/s

Mini 71 0.297024 1.403712 1.258608 2.66232 0.707616 1.124664 0.417048
139 0.296376 0.0967848 1.758792 1.8555768 0.496128 1.726152 1.230024
251 0.797424 0.317136 1.162416 0.84528 0.897048 1.117776 0.220728
499 0.84576 0.637728 1.310328 0.6726 0.923064 1.298904 0.37584
947 0.944232 0.808296 1.055688 0.247392 0.976224 1.040064 0.06384

1891 0.965568 0.893448 1.071696 0.178248 0.986952 1.06692 0.079968
3683 0.985896 0.944808 1.020216 0.075408 0.994368 1.014888 0.02052

Taylor–Hood 95 0.978504 0.840648 1.10784 0.267192 0.981288 1.021344 0.040056
187 0.98112 0.983136 1.011216 0.02808 0.991416 1.006368 0.014952
331 0.995232 0.987168 1.009848 0.02268 0.997272 1.0038 0.006528
659 0.997872 0.99804 1.001328 0.003288 0.999264 1.000656 0.001392

1235 0.999648 0.999192 1.000632 0.00144 0.999768 1.000272 0.000504
2467 0.99984 0.999888 1.00008 0.000192 0.99996 1.000032 7.2E 05
4771 0.999984 0.99996 1.000032 7.2E 05 0.999984 1.000032 4.8E 05

P2P0 98 0.969456 0.356136 1.569432 1.213296 – – –

194 0.988632 0.545448 1.409856 0.864408 – – –

354 0.99732 0.767256 1.220448 0.453192 – – –

706 0.999024 0.862344 1.130904 0.26856 – – –

1346 0.999816 0.933192 1.06584 0.132648 – – –

2690 0.99996 0.963696 1.035816 0.07212 – – –

5250 0.999984 0.982008 1.017912 0.035904 – – –

Crouxier-Raviart 162 0.955368 0.9342 1.027656 0.093456 – – –

322 0.97932 0.971376 1.009536 0.03816 – – –

610 0.994704 0.991224 1.003128 0.011904 – – –

1218 0.996552 0.995064 1.001376 0.006312 – – –

2370 0.999624 0.999312 1.000272 0.00096 – – –

4738 0.999768 0.999648 1.000104 0.000456 – – –

9346 0.999984 0.99996 1.000032 7.2E 05 – – –

Fig. 5. Computed upper and lower bounds of the output of interest, scaled by the exact value, versus number of degrees of freedom for the example of Stokes' flow on the unit square.
The approximation was obtained by using Mini-elements (top left), Taylor–Hood elements (top right), P2P0 elements (bottom left) and Crouxier-Raviart elements (bottom right).
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and Prudhomme [7], we study the circulation around domain A, as
illustrated in Fig. 8,

s1 = ∫
∂A
u·mdΓ = ∫∂Au·ε·ndΓ; ð216Þ

where m denotes the tangent unit vector and we introduced the
transformation tensor1

ε : = −ex⊗ey + ey⊗ex; ð217Þ

where ex and ey denotes the ortho normal unit vectors in x and y
direction, respectively. Using the divergence theorem, we may recast
the quantity into a domain integral as

s1 = ∫Aε : ∇⊗u½ �; ð218Þ

which defines our first output quantity of interest. As the second
output, we choose to study the average pressure in the same
subdomain, i.e.,

s2 =
1
jAj∫ApdΩ = lp*ðpÞ; ð219Þ

where |A| simply denotes the area of the subdomain.

Fig. 6. Convergence of the bound gap, Δs with increasing number of degrees of freedom for the example of Stokes' flow on the unit square. The approximation was obtained by using
Mini-elements (top left), Taylor–Hood elements (top right), P2P0 elements (bottom left) and Crouxier-Raviart elements (bottom right).

Fig. 7. Relative bound gap versus size of domain for the goal-quantity. Here, the goal-quantity is defined as the average velocity on a circular domain of radius r. The approximation
was obtained by using a fixed discretization of 1024 Mini-elements, as illustrated in the left figure together with the largest and smallest considered domains.

1 We note that the transformation tensor used here in 2D corresponds to the vector
product with the third out of plane direction.
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Examples of the numerical approximations to the pertinent dual
problem are shown in Fig. 11. In Table 3, we show the numerical
values for the computed upper and lower bounds of the output using
both the Low cost bounds, cf. Eq. (198), and the more Accurate bounds
using the improved Dirichlet problems, cf. Eq. (208). In Fig. 12, we
show the computed upper and lower bounds for chosen goal quantity
versus number of degrees of freedom. In Fig. 13, the convergence of
the bound gap, Δs, with mesh refinement is shown. Since the exact
solution to this problem is not known, the results in Figs. 12 and 13 are
unscaled. We note that, for coarse discretizations, the bound gap is
rather large in comparison to the value of the goal quantity. Hence,
the outputs studied in this example are more challenging than those
studied in Section 9.1. However, the convergence behavior of the
bound gap with mesh refinement shows the same, expected, result.

9.2.2. Computational cost for the procedure
We now turn to the issue of computational cost. In Fig. 14, the CPU

time required for solving the problem is shown versus number of

elements in the mesh. The single solution of the FE problem is shown
together with the cost of solving the problem and computing the
bounds using the low cost and the more accurate bounds, respectively.
The cost of computing the bounds is almost entirely governed by the
assembly and solution of the local problems. In this example, each
element is split into 9 new elements. For reference, we therefore also
show the approximate cost of solving the problem on the reference
mesh, which is estimated as the cost for solving the global FE problem
on a mesh with nine times the number of elements. The academic test
example has been solved on a single CPU and without optimizing the
practical implementation. Therefore, for coarse meshes, the overhead
cost of computing the bounds are very high. In particular, for 115
elements, the cost of computing the bounds are approximately equal
to the cost of solving the problem on a reference mesh consisting of
9×115=1035 elements. However, for finer meshes, we note that the
relative overhead cost for computing the bounds reduces drastically.
Already for a mesh consisting of 3847 elements, the cost of computing
the bounds requires roughly the same amount of CPU time as that of
solving the global FE problem itself.

10. Conclusions

In this paper we have presented a posteriori error estimation for
the Stokes problem. Upper and lower bounds have been derived for
the global velocity norm as well as for arbitrary (linear) outputs of
interest. The computation of the bounds relies on the solution of local
problems on stars or elements. The key feature of the method is the
split of the error into two parts; one part capturing the error in the
divergence of the solution, which is computable on local Dirichlet
problems and the remaining part which can be bounded using local
flux free sub domain problems on stars. The presented bounds are
guaranteed with respect to a reference solution defined by the mesh
density used in the local problems, i.e., they are asymptotic bounds.

Fig. 8. Illustration of the example problem of Stokes channel flow past a step. The inlet
to the left is subject to a prescribed velocity profile whereas the outlet to the right is
prescribed to be traction free. The region of interest A, defining the outputs of interest.

Fig. 9. Coarsest and finest mesh-triangulation used in the example of Stokes' channel flow past a step obstacle. The initial, coarsest, mesh (top) consists of 177 triangular elements,
while the most refined mesh (bottom) consists of 5611 elements.

Fig. 10. A numerical solution to the example of Stokes' channel flow past a step obstacle. Velocities are shown together with iso-pressure lines. The approximation was obtained by
using Taylor–Hood elements and 5013 degrees of freedom.
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Previous existing bounds for outputs of interest for the Stokes
problem are restricted to elements with discontinuous pressure
approximation, cf. Paraschivoiu, and Patera [30]. The output bounds
that have been presented in this paper expand the capabilities of
asymptotic bounds to discretization schemes with continuous
pressure approximation. Furthermore, pre existing bounds rely on
the solution of hybrid fluxes via an equilibration procedure. In this

paper, output bounds have been derived based on the solution of sub
domain flux free local problems, circumventing the somewhat
cumbersome task of solving for the hybrid fluxes.

Two numerical examples have been presented; one case where the
exact, analytical solution is known, and one problem from the
literature corresponding to an idealized engineering problem. Out
puts of interest both in terms of the velocities and the pressure have

Fig. 11. A numerical solution to the dual problem for the considered outputs s1 (top) and s2 (bottom) for the example of Stokes' channel flow past a step obstacle. Dual velocities are
shown together with iso-pressure lines. The approximation was obtained by using Taylor–Hood elements and 5013 degrees of freedom.

Table 3
Computed relative approximation, bounds and bound gaps for the chosen output quantities in the example of Stokes' channel flow past a step obstacle. Results are shown for both
the Low cost method and the Accurate method (relying on an additional Dirichlet solution). N refers to the total number of degrees of freedom for the finite element approximation.

Estimator N s1,H s1 s1
+ Δs1 s2,H s2 s2

+ Δs2

Low cost 897 0.0072439 0.24965 0.063822 0.313472 3.4839 1.8439 4.7154 2.8715
2113 0.01338 0.070595 0.048322 0.118917 3.4356 2.4214 4.4465 2.0251
5013 0.016462 0.035705 0.01166 0.047365 3.4091 3.0411 3.8372 0.7961

11,453 0.016414 0.027966 0.002217 0.030183 3.4059 3.0945 3.779 0.6845
25,760 0.0163 0.02454 0.0051868 0.0193532 3.4055 3.2024 3.634 0.4316

Accurate 897 0.0072439 0.22301 0.029154 0.252164 3.4839 2.4028 3.9839 1.5811
2113 0.01338 0.049714 0.0085784 0.0582924 3.4356 2.8583 3.9137 1.0554
5013 0.016462 0.026069 0.011154 0.014915 3.4091 3.279 3.4966 0.2176

11,453 0.016414 0.021944 0.012182 0.009762 3.4059 3.3103 3.4827 0.1724
25,760 0.0163 0.01998 0.014196 0.005784 3.4055 3.3425 3.4503 0.1078

Fig. 12. Computed upper and lower bounds of the outputs of interest, s1 (left) and s2 (right), versus number of degrees of freedom for the example of Stokes’ channel flow past a step
obstacle. The approximation was obtained by using Taylor–Hood elements.
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been studied. The presented estimators have been shown to be
accurate and robust for different element formulations; including
both those with continuous and discontinuous pressure approxima
tion. In particular, the sharpness of the bounds has been further
improved at the extra cost of solving an additional local problem.
From the numerical tests, we conclude that the improved bounds are
significantly sharper than the ones obtained at the lower cost.

Due to the saddle point nature of the incompressible Stokes
problem, at least two local problems are required for each patch, as
compared to the single local problem required for an elliptic problem,
cf. Pares et al. [20]. Furthermore, we have advocated the solution of a
third local problem in order to obtain even sharper bounds. The
presented method thus requires some computational effort to
produce bounds; however, the computed bounds are robust, accurate
and guaranteed with respect to a reference solution defined by the
mesh density used in the local problems. Furthermore, we note that
the cost of the local problems will increase at a slower rate than the
solution of the problem itself.

In this paper, we have presented the a posteriori error analysis.
However, the presented output bounds are also well suited for mesh
adaptation. The low cost bounds can easily be transformed into
refinement indicators following the ideas presented by Pares et al.
[20], where the finite element mesh is successively refined in a non

uniform fashion, minimizing the bound gap while using the lowest
possible number of degrees of freedom. For the more involved
expression obtained for the enhanced (accurate) bounds, the refine
ment indicators must be derived using a more general optimization
procedure. This is ongoing work left outside the scope of this paper.

The examples studied in this paper are restricted to the use of
triangular elements in 2D. The straight forward extension to tetrahe
drons in 3D and more elaborate extensions to quadrilateral and
hexagonal elements in 2 and 3 dimensions, respectively, are left
outside the scope of this paper. In particular, we stress that the
situation that occurs when using hanging nodes needs further analysis.

Finally, we remark that the work presented in this paper is
anticipated to serve as a basis for efficient and robust future error
estimators for more involved problems such as that of the solving the
full Navier Stokes equations, incorporating both convection and non
linearities. Furthermore, since the estimator is valid for continuous
pressure approximations, it is anticipated that the proposed strategy
can be adopted to the coupled problem of deformation of a solid with
fluid filled pores.
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