


finite element to an extended set of degrees of freedom, which are again specific to that node. This extended

set includes the released degrees of freedom defined by the joint which is being modelled and the global,

master, degrees of freedom, which are shared by all the other elements which join at that node. For joints

which cannot be defined with respect to a single material point, such an approach is only kinematically
approximate.

By considering, for example, a prismatic joint, which is initially at the position of a node in the middle of

the horizontal beam shown in Fig. 1a, this procedure will invariably result in the direction of the released

degree of freedom in a deformed state being defined by the tangent to the beam at that node. This, as can be

seen from Fig. 1b and c, is clearly a kinematically inconsistent result. This anomaly has already drawn

certain amount of attention in the literature (Bauchau, 2000; Bauchau and Bottasso, 2001), where it has

been rectified by a proper definition of the sliding contact condition using the method of Lagrangian

multipliers. The authors named such a joint (Fig. 2) the sliding joint, and in this paper we will adopt this
terminology to describe what we earlier referred to as the ‘‘kinematically rigorous translational joint’’.

More on the method of Lagrangian multipliers as applied to the problems of multi-body dynamics may also

be found in Garc�ıa de Jal�on and Bayo (1994), G�eradin and Cardona (2001) and von Schwerin (1999),
among many other sources.

Here, we attempt to formulate the sliding joint without resorting to Lagrangian multipliers or the

penalty method. This choice is motivated by the presence of standard complexities associated with these

techniques. In particular, using the Lagrangian multipliers creates an additional degree of freedom (the

multiplier) for each constraint these are the force degrees of freedom and, as such, give rise to the
problems of well-posedness of the system of equations with mixed unknowns. Furthermore, the matrix of

coefficients of the mixed system is not positive definite even in a stable region, which makes the occur-

rence of divergence-type instabilities less obvious. In dynamic problems, we are also left to deal with the

coupled system of differential and algebraic equations, which require specially designed solution proce-

dures. On the other hand, when the constraint condition is enforced through a penalty function there

cannot exist the problems given above since the parameter is not an unknown, but this method leads to a

new problem: the penalty method is inherently approximate, with its accuracy directly related to the

magnitude of the chosen penalty parameter. By modifying this parameter the accuracy can be improved,
but this is done at the expense of incurring the numerical problems due to the increased ill-conditioning
1Deformed configuration Deformed configuration 2Initial configuration

(a) (b) (c)

Fig. 1. Prismatic joint.

Initial configuration 1Deformed configuration Deformed configuration 2

Fig. 2. Sliding joint.
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of the system. The so-called augmented Lagrange method (e.g. G�eradin and Cardona, 2001) combines the
advantages of the two approaches in order to remove the approximate character of the penalty method,

while retaining its advantage of providing a positive definite Hessian at a stable equilibrium for a suitably

chosen penalty parameter. In a similar vein, another constant scaling may be introduced to eliminate the
problem of different orders of magnitude for the unknown degrees of freedom. The augmented

Lagrangian method thus eliminates most of the above problems at the expense of having to deal with the

choice of two sets of problem-dependent constant parameters. The Lagrangian multipliers, however,

always remain the global degrees of freedom to be added to the original set of the kinematic degrees of

freedom.

The master slave method deals with the minimum set of the kinematic degrees of freedom and in this

sense cannot suffer from the difficulties mentioned above. The purpose of this paper is to retain this

principal feature of the method, and at the same time generalise its node-based concepts to allow the
modelling of sliding joints along a deformable surface. A very related approach has recently been under-

taken (Marjam€aki and M€akinen, 2003) in order to analyse the sliding of a spring along a deformable planar
beam.

Although our principal motivation is to obtain a realistic model of the sliding joints in 3D beams, in

Section 2 the theory will first be derived by considering a genuine point-on-surface contact between 3D

continua. It should be noted, however, that here we do not address the implications of the method to

contact mechanics, although we believe that such implications exist. In particular, throughout the paper we

limit our attention to bilateral contacts only, i.e. we do not address the issues of contact detection and we
assume the contact force to be of either direction. In Section 3, we apply the theory to the problem of

sliding joints in 3D beams, where the justification for the assumption of bilateral contact becomes obvious.

Section 4 presents two relevant numerical examples.
2. Point-on-surface sliding contact in 3D elastodynamics

We consider a simple system of two elastic bodies which are in contact with one another through a single
point. The kinematics of the contact is analysed first in order to establish its implications on the nature of

the virtual displacements leading to the governing equations of motion. A suitable finite-element discret-

isation is performed next, which takes account of this contact condition, eventually leading to a system of

equations with the minimum number of degrees of freedom.

The two bodies are denoted as BA and BB and are represented by a smooth and invertible mapping into

the ambient space / : BI ! R3; I ¼ A;B as shown in Fig. 3. Let the surfaces of the bodies oBA and oBB be

Lipshitz-continuous and consist of two parts each: the parts EA
u and EB

u with prescribed kinematics and the

parts EA
p and EB

p with a prescribed surface traction such that
EI
u \ EI

p ¼ ; and EI
u [ EI

p ¼ oBI I ¼ A;B:
The distinction between the mappings that take place at different times will be made by defining the
mapping /t : R

3 � Rþ ! R3. At time t, BI , EI
u and EI

p are mapped into /tðBIÞ 
 R3, /tðEI
uÞ 
 R2 and

/tðEI
pÞ 
 R2, where /tð�Þ is a shorthand notation for /ð�; tÞ. Also, for a given material particle P 2 B, let us

also define the mapping v : B ! R3, and the reference and deformed position vectors at time t as XP ¼ vðPÞ
and xP ¼ /tðP Þ, respectively.
In the deformed configuration, the contact between BA and BB is established at some material points A1

and B1, i.e.
xA1 ¼ xB1 ;
as also shown in Fig. 3.
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Fig. 3. Mappings between the reference configuration and the deformed configuration.
The present formulation is based on the following hypotheses:

H1 The material point A1 on body BA remains in contact with body BB throughout the motion, whereas

material point B1 does not have to stay in contact with BA, i.e. point A1 slides over the surface of B
B.

H2 At time t, body BA exerts a force on point B1 of body BB denoted SB1 , which is taken to be equal in

magnitude and opposite in the direction of the force SA1 , exerted on point A1 of body B
A by body BB,

i.e.
SA1 ¼ SB1 :

This assumption is motivated by Newton’s third law, valid for the contact forces between mass particles.

H3 Only frictionless contact is considered, which implies that the interaction forces between the bodies

point in the negative directions of the normals nA1 and nB1 to the surfaces oB
A and oBB, i.e.
SA1 ¼ kSA1knA1 and SB1 ¼ kSB1knB1 :

Note that the normals are uniquely defined since the surfaces are Lipschitz-continuous.

2.1. Cauchy’s equation of motion and its weak form

The (local) Cauchy’s equation of motion is defined in the deformed configuration as (Marsden and
Hughes, 1994):
divr þ b ¼ q€x ð1Þ

on /tðBA [BBÞ, where r is the Cauchy (true) stress tensor, divr ¼ rrx, b is a distributed loading per unit

volume, q is the current density of the material and here and throughout the paper ð _�Þ and ð€�Þ indicate
material first and second time differentiation. This equation has to be complemented with the natural

boundary conditions
rn s ¼ 0 on /tðEA
p [ EB

p Þ n ðA1 [ B1Þ; ð2Þ

lim
AI1

!0

Z
AI1

rdS nþ SI1 ¼ 0 at I1; I ¼ A;B; ð3Þ
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where n is the outward normal to surface /tðEI
pÞ and s is a distributed loading per unit area of this surface,

while AA1 
 /tðEA
p Þ and AB1 
 /tðEB

p Þ denote the surface areas in the neighbourhoods of A1 and B1
respectively at time t. Furthermore, the essential boundary condition reads
x ¼ x on /tðEI
uÞ I ¼ A;B; ð4Þ
where x is a prescribed displacement field. The weak form of Cauchy’s equation of motion (the virtual

work) is obtained by taking the dot product of Eqs. (1) (3) with the admissible variations dx of the de-
formed configuration (which are therefore required to vanish on /tðEI

uÞ thus satisfying Eq. (4)). Note that
by defining a displacement of a material point as p ¼ xt  x0, the admissible variation dx of the deformed
configuration may be substituted by the virtual displacement dp. By integrating the dot product of Eqs. (1)
(3) with dp over the domain /tðBAÞ [ /tðBBÞ, we obtain the following weak form,
Gðx; dpÞ �
X
I A;B

Z
/tðBI Þ

dp � ðdivr
"

þ b q€xÞdV 
Z

/tðEI
pnI1Þ

dp � ðrn sÞdS

 dpI1 � lim
AI1!0

Z
AI

rdS n
�

þ SI1

�#
¼ 0:
Introducing the identity dp � divr ¼ divðrdpÞ  grad dp : r, where grad dx ¼ rxdx, a colon indicates a
double tensor contraction, and applying the divergence theorem via

R
/tðBÞ divðrdpÞdV ¼

R
o/tðBÞ dp � rndS

and noting
R

/tðEI
uÞ

dp � rndS ¼ 0; I ¼ A;B due to the kinematic admissibility of dp, the previous equation
turns into
Gðx; dpÞ �
X
I A;B

Z
/tðBI Þ

rpdx : r
h(

þ dp � q€x



 b
�i
dV 

Z
/tðEI

pÞ
dp � sdS þ dpI1 � SI1

)
¼ 0; ð5Þ
where we have changed the sign for convenience. In order to express the weak form in (5) as integrals over

the reference domains, we introduce first the Piola transform of r via r ¼ J1PFT with J ¼ detF,
F ¼ GRADx ¼ rXx and P the first Piola Kirchhoff stress tensor (Marsden and Hughes, 1994). By

inserting this transformation, evaluating the tensor contraction via A : B ¼ trðABTÞ and using the identity
ðrxdpÞF ¼ rXdp, the first term in (5) transforms into
Z

/tðBÞ
rpdx : rdV ¼

Z
B

tr½ðrXdpÞPT�dV0 ¼
Z
B

rXdp : PdV0; ð6Þ
where V0 is the volume of B in the reference configuration. By making use of the conservation of mass

qdV ¼ q0 dV0, where q0 is the density in the reference configuration, Nanson’s formula ndS ¼ JFTn0dS0
(Ogden, 1984) and introducing Eq. (6), we finally obtain the following expression for the weak form:
Gðx; dpÞ �
X
I A;B

Z
BI

rXdp : P
h(

þ dp � q0€x



 b0

�i
dV0 

Z
EI
p

dp � s0 dS0 þ dpI1 � SI1

)
¼ 0; ð7Þ
with b0 and s0 being the distributed loads per units of reference volume and area, respectively.
2.2. Infinitesimal kinematic conditions and master slave approach

We will now deduce a relation between the virtual displacements dpA1 and dpB1 at the contact points. Let
us perturb the deformed configuration in Fig. 3 with an infinitesimal variation represented by the vector

field �dp, where � is an arbitrarily small scalar.
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metrising the boundary surface oBB using the coordinate chart Y ¼ fY 1; Y 2g, this vector can be expressed
as
dT ¼ d

d�

����
� 0

XðY 1 þ �dY 1; Y 2 þ �dY 2Þ ¼ oX

oY 1

����
B1

dY 1 þ oX

oY 2

����
B1

dY 2 ¼ FY jB1dY
with dY ¼ fdY 1; dY 2g and FY ¼ rYX. This allows us to write dtB1 as
dtB1 ¼ FB1dY;
where FB1 ¼ FjB1FY jB1 .
Replacing dpA1 ¼ dpðXA1Þ in (7) with the expression in the right-hand side of Eq. (9), and recalling

hypothesis H2 we obtain
Gðx; dpÞ �
X
I A;B

Z
BI

rXdp : P
h(

þ dp � q0€x



 b0

�i
dV0 

Z
EI
p

dp � s0 dS0

)
 dtB1 � SB1 ¼ 0;
which, due to hypothesis H3 (SB1 is normal to surface oB
B at point B1 and dtB1 � nB1 ¼ 0), gives rise to the

standard (and anticipated) result
Gðx; dpÞ �
X
I A;B

Z
BI

rXdp : P
h(

þ dp � q0€x



 b0

�i
dV0 

Z
EI
p

dp � s0 dS0

)
¼ 0: ð10Þ
The resulting weak form is therefore the same as the one obtained by considering the two bodies separately

and without taking into account the sliding condition. This condition, however, remains implicit in the

definition of the virtual displacement dp at the contact point.

2.3. Finite element interpolation of the test functions

Let us spatially discretise the problem by choosing NI nodal points on body BI and approximating the

virtual displacements dp by means of the Lagrangian polynomials IjðXÞ via

dpðXÞ¼: dphðXÞ ¼ I jðXÞdpj j ¼ 1; . . . ;NI ; ð11Þ
where summation over repeated indices is implied and the interpolation functions IjðXÞ satisfy the standard
completeness conditions
IjðXkÞ ¼ djk
XNI

j 1

IjðXÞ ¼ 1
XNI

j 1

I 0jðXÞ ¼ 0;
with djk being the Kronecker symbol.
In the beginning of this section it was assumed that the contact point A1 on BA was permanently in

contact with body BB. Throughout this section we will consider the case in which each body is represented

by a single finite element, denoted as A and B and having NA and NB nodes respectively. In this way, we will

consider first the case where the sliding segment is fully contained within a single element, and only later

analyse the modifications needed in order to include sliding along a set of finite elements.

In order to alleviate the notation in the subsequent sections, we will also assume that the contact node on

element A corresponds to node number NA (the last node according to the local numbering of nodes in the

element).
Keeping these assumptions in mind, and noting the identity
ðrXdp
hÞ : P ¼ tr ðdpj

�
�rXI jÞPT

�
¼ tr ðdpjÞ

�
� ðPrXIjÞ

�
¼ dpj � PrIjðXÞ;
7



the weak form in (10) can now be written in the following approximated form
Ghðx; dphÞ ¼ dpAj � gA;j þ dpBj � gB;j ¼ 0; ð12Þ
where gI ;j ¼ qI;jk þ qI;jd  qI;je is the standard dynamic residual with
qI;jk ¼
Z
BI

PrIjðXÞdV0;

q
I;j
d ¼

Z
BI
I jðXÞq0€xdV0;

qI;je ¼
Z
BI
I jðXÞb0 dV0 þ

Z
EI
p

I jðXÞs0 dS0
as the standard nodal vectors of internal, inertial and external forces at node j of body I , respectively.
The interpolated form of relationship (9) follows from (11) as
dpANA ¼ dtB1 þ I jB1dp
B
j ; ð13Þ
where IjB1 ¼ IjðXB1Þ and dpANA ¼ dpðXA1Þ. Eq. (13) provides the necessary sliding condition to develop the
finite-element formulation using the master slave approach.

In order to put the problem into the required context, we will call the vector dpANA the virtual slave
displacement, and all the vectors dpBj , j ¼ 1; . . . ;NB the virtual master displacements. By calling the infini-

tesimal coordinate changes dY the virtual released displacement, it becomes obvious that (13) gives the slave
virtual displacement (of node NA in this example) as a function of this released displacement and master

virtual displacements (of all the nodes on element B). Such a relationship is fundamental in the master slave
approach (Jeleni�c and Crisfield, 1996; Jeleni�c and Crisfield, 2001), but we emphasise that in contrast to the
results in these references, the present relationship is not confined to a single node. Instead, it involves a set of

master nodes, which reflects the fact that the sliding condition takes into account deformability of the

surface. The same basic approach was used in (Marjam€aki and M€akinen, 2003) in the context of an elastic
bar sliding along a deformable planar beam.

It is useful to collect all the virtual displacements of element A into a vector of virtual slave displacements
dpA. Likewise, stacking the virtual released displacement dY on top of the vector of virtual master dis-
placements (of both elements) gives the vector of virtual released and master displacements dpARm. Note that
in the present terminology, for all the nodes of element A apart from the last one, the master and the slave
virtual displacements are identical. These vectors are given explicitly as
dpA ¼
dpA1
..
.

dpANA

8><>:
9>=>; and dpARm ¼

dY
dpA1
..
.

dpANA

dpB1
..
.

dpBNB

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
:

The two vectors can now be related by means of Eq. (13) as
dpA ¼ NdpARm; ð14Þ
8



with
N ¼

03�2 I . . . 0 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

03�2 0 . . . I 0 0 . . . 0

FB1 0 . . . 0 0 I1B1I . . . INBB1 I

26664
37775: ð15Þ
Eq. (14) provides the essence of the master slave relationship.
2.4. Finite element assembly: definition of the coupling element

Let us recast the discretised weak form in (12) as
Ghðx; dpÞ ¼ dpA � gA þ dpB � gB ¼ 0; ð16Þ
where dpI ¼ fdpI1 . . . dpINIg and g
I ¼ fgI ;1 . . . gI;NIg are the elemental virtual displacement vector and the

elemental residual vector of element I , I ¼ A;B.
It is at this stage that the derived relationship (14) should be utilised. Substituting it into (16) gives
Ghðx; dpÞ ¼ dpARm �NTgA þ dpB � gB ¼ 0; ð17Þ
and we see that the virtual work performed by element A can be expressed as the dot product of a new set of
master and released degrees of freedom, dpARm, and an extended residual work-conjugate to them, which is
given by
gARm ¼ NTgA ¼

FTB1g
A;NA

gA;1

..

.

gA;NA1

0

LTgA;NA

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; ð18Þ
with
L ¼ I1B1I . . . INB
B1 I

h i
:

Let us define a coupling element as the element whose elemental displacement vector is dpRm. Such a cou-
pling element has the following degrees of freedom: displacements of the nodes in element A, the released
displacements of node NA and the degrees of freedom of all the nodes in element B. The extended residual
gARm of the coupling element is assembled into the global residual in accordance with the pattern given by

dpARm. We emphasise that g
A
Rm depends on the residual g

A of element A and the terms FB1 and L which depend
on element B. Eq. (17) can now be solved using the Newton Raphson iterative procedure in a standard
manner.

It is now obvious that if the sliding is not limited to the surface of a single element, we only need to

evaluate F and L at the contact point of a newly contacted element in order to formulate the new coupling

element.

The concepts presented here will now be applied to the mechanics of 3D beams, where additional
complexities exist due to the presence of large 3D rotations. The issue of the dynamically changing coupling

element will also be dealt with in more detail in the context of sliding between 3D beams.
9



3. Sliding joints in 3D beams

In this section we apply the concepts from Section 2 to the geometrically exact Reissner Simo beams

(Reissner, 1972; Simo, 1985). We will first describe the kinematics of two beams in contact, and then derive
the equilibrium equations under the contact condition. The discretised weak form will now include a set of

virtual displacements and virtual rotations. Due to the specific kinematics of the beams, a new contact

condition relating the torques at the contact point will have to be defined.
3.1. Beam kinematics

Let us parametrise the position of any material point P of a beam (a body with one dimension much

larger than the other two) by three parameters fX 1;X 2;X 3g, where X 1 ¼ X is the arc-length coordinate
along the centroid axis of the beam, and X 2 and X 3 are the coordinates of the point on the cross-section
AðX Þ at X 1. We will represent the current position at time t of the point PðX 1;X 2;X 3Þ in the ambient space
by a mapping /tðX iÞ ¼ xðX i; tÞ, where /t is defined as
/t : ½0; L� �AðsÞ � Rþ ! R3:
Let us introduce an inertial frame ei and a moving frame giðX ; tÞ, i ¼ 1; 2; 3, rigidly attached to the cross-
section of the beam. We also assume that the undeformed configuration corresponds to a straight beam,

and define the (undeformed) reference configuration as the mapping v : ½0;L� �AðX Þ ! R3 such that the

point P is represented by XðX iÞ ¼ vðP Þ ¼ X iei (see Fig. 6).

By assuming the undeformability of the cross-section (beam hypothesis) and according to the Reissner

Simo beam theory, the kinematics of the beam at time t will be completely defined by the position of the
points of the centroid axis rðX ; tÞ, and the orientations of the cross-section. The latter is represented by a
proper orthogonal transformation KðX ; tÞ 2 SOð3Þ (detK ¼ þ1 and K1 ¼ KT) such that
giðX ; tÞ ¼ KðX ; tÞei:
The vector r and the rotation matrix K allow to express the position of any point P ðX iÞ of the beam in the
(deformed) current configuration as
x ¼ rðX ; tÞ þ KðX ; tÞZðX 2;X 3Þ;
Fig. 6. Beam kinematics.
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where Z ¼ X 2e2 þ X 3e3 is a vector within the cross-section in the reference configuration. We note that
unless stated explicitly, we will denote with capital letters variables referred to the reference configura-

tion (or material quantities), whereas we will use lower-case letters to denote variables in the current

configuration (or spatial quantities). We also note that any rotation matrix K may be expressed
as K ¼ expðbhÞ where khk is the rotated angle, h=khk is the direction around which the rotation takes
place (Argyris, 1982), and ðb�Þ denotes a skew symmetric matrix such that bvw ¼ v� w, 8 w; v 2 R3.

The beam kinematics is defined in R3 � SOð3Þ and thus the virtual degrees of freedom dp consist of the
virtual displacements and rotations which are now the kinematically admissible variations of the configu-

ration space:
dp ¼ du
d#

�  
; ð19Þ
where uðX ; tÞ ¼ rðX ; tÞ  rðX ; 0Þ, and therefore du ¼ dr. The vector d# represents a virtual rotation vari-
ation which stems from the variation of matrix K (Simo, 1985),
dK ¼ d

d�

����
� 0

expð�cd#ÞK ¼ cd#K:
In order to model the sliding contact between beams, let us consider two beams denoted as BA and BB

which at time t are in contact at the points of the centroid axis A1 and B1 respectively as shown in Fig. 7. In
contrast to the approach followed in Section 2, the contact condition will now relate the displacements and

the rotations of BA and BB, i.e.
rtðXA1Þ ¼ rtðXB1Þ; ð20Þ

KtðXA1Þ ¼ KtðXB1ÞKrel; ð21Þ

where the matrix Krel in (21) relates the orientation of the two beams at the initial configuration:
Krel ¼ K0ðXB1Þ

TK0ðXA1Þ. Fig. 7 illustrates this situation.
In a similar manner to that given in the previous section, we introduce the following equivalent set of

hypotheses consistent with the considered beam model:

h1 At time t, beam BA exerts a force SB1 on point B
1 of beam BB. This force is taken to be equal in mag-

nitude and opposite in direction to force SA1 exerted by beam BB on point A1 of beam BA:
SB1 ¼ SA1 :
Fig. 7. Kinematics of beams BA and BB in contact.
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The beam kinematics, and in particular Eq. (21), make it reasonable to supplement this assumption with

the following additional kinetic hypothesis related to the transmission of contact torques.

h2 At time t, beam BA exerts a torque QB1 on point B
1 of beam BB. This torque is taken to be equal in

magnitude and opposite in direction to torque QA1 exerted by beam BB on point A1 of beam BA:
QB1 ¼ QA1 :
h3 Frictionless bilateral contact is assumed, i.e. the interaction forces between the bodies along the tangent

to the centroid lines of beams BA and BB will be considered equal to zero:
SA1 � r0A1 ¼ 0 and SB1 � r0B1 ¼ 0;
where here and in the rest of the paper, we denote by ð�Þ0 the derivative of ð�Þ with respect to the
parameter X .

3.2. Beam equilibrium equations

We will consider the governing equations for each one of the beams BA and BB separately and deduce

the corresponding weak form of the complete system by introducing the infinitesimal form of the sliding

condition in a manner analogous to that of Section 2.

Denoting by A and q the area of the cross-section and the density of the material, the local equilibrium
equations can be written as (Simo, 1985)
_l
_p

�  
¼ ðKNÞ0 þ sn

ðKMÞ0 þ br 0KNþ sm

( )
; ð22Þ
where l ¼ Aq _u and p ¼ KJW are the specific translational and angular momenta, and W and J are the

(material) angular velocity and the tensor of the mass moments of inertia of a cross-section. The vectors
N ¼ CNc andM ¼ CMj are the (material) stress resultants at the cross-section, CN and CM are the modulus

matrices, c ¼ KTr0 G1 and bj ¼ KTK0 are the translational and rotational strain measures, and sn and sm
are the distributed load and torque per unit of undeformed length applied on X 2 ½0; LI �, I ¼ A;B.
The governing equations must be complemented with the boundary conditions corresponding to the end

loads (for simplicity, no prescribed displacements will be considered),
KN
KM

�  
X I 0

¼  SI0
QI
0

�  
;

KN
KM

�  
X I LI

¼ SIL
QI

L

�  
I ¼ A;B; ð23Þ
where SI0, Q
I
0, S

I
L and Q

I
L are the concentrated loads and torques at the two ends of each beam BI . Also,

there exist the concentrated force and torque due to the bilateral contact
SI1
QI1

�  
¼ lim�!0

R XI1þ�

XI1�

sn
sm

�  
dX I ¼ A;B: ð24Þ
The weak form of the equilibrium equations is obtained by multiplying (22) with the virtual displacements

(or test functions) dp and integrating over the length LI of each beam I ¼ A;B,
Gðr;K; du; d#Þ �
X
I A;B

Z
LI

dp �
_l  ðKNÞ0

_p  br0KN ðKMÞ0

( )
dX 

X
I A;B

Z
LInXI1

dp � sn
sm

�  
dX

"

þ lim
�!0

Z XI1þ�

XI1�

dp � sn
sm

�  
XI1

dX

#
¼ 0:
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In order to simplify this expression, we note first that the last term corresponds to the virtual work done by

the external load fSI1 QI1g:
lim
�!0

Z XI1þ�

XI1�

dp � sn
sm

�  
XI1

dX ¼ dpI1 �
SI1
QI1

�  
I ¼ A;B:
By using this result, integrating by parts the terms with ðKNÞ0 and ðKMÞ0 and substituting the boundary
conditions (23) and (24), the weak form can be expressed as:
Gðr;K; dpÞ �
X
I A;B

ðGI
k þ GI

d  GI
eÞ 

X
I A;B

dpI1 �
SI1
QI1

�  
¼ 0; ð25Þ
where dpI1 are the virtual displacements and rotations evaluated at points I1, and GI
k, G

I
d and GI

e are the

internal, dynamic and external contributions to the weak form, which are given by
GI
k ¼

Z
LI

dp0 �
KN

KM

( )
dX 

Z
LI

dp �
0

br0KN
( )

dX ;

GI
d ¼

Z
LI

dp �
_l

_p

( )
dX ;

GI
e ¼

Z
LI

dp �
sn

sm

( )
dX þ dpIL �

SIL

QI
L

( )
þ dpI0 �

SI0

QI
0

( )
:

ð26Þ
3.3. Infinitesimal kinematic contact conditions

Let the deformed configuration /t be perturbed by a kinematically admissible virtual displacement and

rotation �dp. We will assume that contact point A1 remains in contact with beam BB permanently,

whereas the contact point of beam BB changes during the perturbation (see Fig. 8): in the deformed

configuration, the contact is established at point B1, while in the perturbed configuration it is established
at B2.
Fig. 8. Initial, current and perturbed configuration of beams BA and BB.
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The contact conditions (20) and (21) in the perturbed configuration are given by
r�;tðXA1Þ ¼ r�;tðXB2Þ;
K�;tðXA1Þ ¼ K�;tðXB2ÞKrel:

ð27Þ
which provide the following relationships between virtual quantities:
duA1 �
d

d�

����
� 0

r�;tðXA1Þ ¼
d

d�

����
� 0

rtðXB1½ þ �dX Þ þ �duðXB1 þ �dX Þ� ¼ r0tðXB1ÞdX þ duB1 ;

cd#A1KtðXA1Þ �
d

d�

����
� 0

K�;tðXA1Þ ¼
d

d�

����
� 0

½expð�cd#ðXB1 þ �dXB1ÞÞKtðXB1 þ �dX ÞKrel�

¼ ðbkB1dX þ cd#B1ÞKtðXB1ÞKrel;
where dX is the variation of the contact point on the reference configuration and kB1 ¼ KðXB1ÞjB1 is the

(spatial) curvature of the beam evaluated at XB1 . Using this result along with the contact condition (21)

gives the important relationships
duA1 ¼ r0B1dX þ duB1 ;

d#A1 ¼ kB1dX þ d#B1 ;
ð28Þ
where r0B1 ¼ r0tðXB1Þ. Substituting (28) into (25), and making use of hypotheses h1 h3, provides the following
result:
Gðr;K; dpÞ ¼
X
I A;B

ðGI
k þ GI

d  GI
eÞ  kB1 �QA1dX ¼ 0; ð29Þ
in which the interaction torque between the two beams, QA1 , will be related to the vector of nodal residuals

upon the introduction of the spatial discretisation in Section 3.4.

We will extend Eq. (28)2 to contact conditions with a variable relative rotation between the two beams.

This will allow us to model joints with released rotations like a cylindrical joint sliding along a flexible

beam. The rotational contact condition set in (21) assumes that the relative rotation of beams BA and BB is

maintained constant throughout the motion. In case when this relative rotation is not constant, a new

rotation matrix KR is introduced which then redefines the rotation at point A1 of beam BA to be
KðXA1Þ ¼ KðXB1ÞKRKrel: ð30Þ

The matrix KR measures the released rotation at XA1 with respect to the rotation KðXB1Þ (rotation at point B1
of beam BB), without accounting of the initial relative rotation Krel. We note that we use the released

rotation matrix KR measured in the moving frame gi of beam BB. Eq. (30) is linearised in the standard way

to give
d#A1 ¼ kB1dX þ d#B1 þ KB1d#R ð31Þ

with d#R as the virtual released rotation and KB1 ¼ KðXB1Þ. Instead of using the vector d#R we will rather

use the variation dhR of the rotation vector hR in KR ¼ expchR . This choice is necessitated by the nature of
some kinds of joints, the kinematics of which may not be defined using d#R (Jeleni�c and Crisfield, 2001).
The relation between d# and dh can be deduced by considering the following equation
d

d�

����
� 0

expð�cd#Þ ¼ d

d�

����
� 0

expðh þ �cdhÞ
which gives rise to (see e.g. Cardona and G�eradin, 1988; Ritto-Corrêa and Camotim, 2002; Simo and
Vu-Quoc, 1986)
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d# ¼ T1ðhÞdh; T1ðhÞ ¼ Iþ 1 cos khk
khk2

bh þ 1

�
 sin khkkhk

� bh2
khk2

:

Substituting d#R into (31), we obtain
d#A1 ¼ kB1dX þ KB1T
1
R dhR þ d#B1 ; ð32Þ
where T1
R ¼ T1ðhRÞ. By using relation (32) instead of (28), a new term arises in the weak form (29), which

is given by
Gðr;K; dpÞ �
X
I A;B

GI
k

"
þ GI

d  GI
e

#
 kB1 �QA1dX þ KB1T

1
R dhR �QB1 ¼ 0;
where the last term represents the virtual work done by the contact torque QB1 under a virtual released

rotation d#r ¼ KB1d#R. If no friction is considered at the contact point under a relative rotation, no

reaction torque exist in the direction of the virtual released rotation and therefore this terms vanishes, i.e.

d#r �QB1 ¼ 0. We are in fact assuming an equivalent hypothesis to h3 for the case of rotations.

3.4. Finite element discretisation

Let us discretise the beams BA and BB using NA and NB nodes respectively. The vector dpðX Þ will be
discretised by using the standard Lagrangian polynomials in (11) which now depend exclusively on the

parameter X , i.e.
dphðX Þ ¼ IjðX Þdpj: ð33Þ
By replacing the vector dp in (29) with dph, the discretised weak form Gh is readily obtained as
Ghðr;K; dphÞ �
X
I A;B

dpI � gI  kB1dX �QA1 ¼ 0; ð34Þ
where dpI ¼ fdpI1 . . . dpINI
g is the vector of elemental virtual displacements and rotations and

gI ¼ fgI;1 . . . gI;NIg is the elemental residual vector of element I . Each nodal component of gI is the con-
tribution of the internal, dynamic and external nodal residual vectors qI;jk , q

I ;j
d and qI;je respectively, i.e.

gI ;j ¼ qI;jk þ qI;jd  qI ;je . They are obtained from (26) as
q
I ;j
k ¼

Z
LI
I 0j

KN

KM

�  
dX 

Z
LI
I j

0br0KN
�  

dX ;

qI ;jd ¼
Z
LI
I j

_l

_p

( )
dX ;

qI ;je ¼
Z
LI
I j

sn

sm

�  
dX þ dj1

SI0

QI
0

( )
þ djNI

SIL

QI
L

( )
:

ð35Þ
The master slave relationship (28)1 and (32) may be rewritten as
dpNA ¼
r0B1
kB1

�  
ðduR �G1Þ þ

0

KB1T
1
R dhR

�  
þ IjBdpj; ð36Þ
where duR ¼ fdX 0 0g is the vector of released displacements, and as in the general case of elastodynamics,
we assume that the sliding point on element A corresponds to node NA throughout the motion. As in Section

2.3, we will define the slave and master and released vectors of virtual displacements and rotations as
15



dpA ¼
dpA1
..
.

dpANA

8><>:
9>=>; and dpARm ¼

dpR
dpA1
..
.

dpANA

dpB1
..
.

dpBNB

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
;

where dpR is the vector composed of the virtual released displacement and rotation duR and dhR. Using (36)

we can relate the two vectors as
dpA ¼ N�dpARm; ð37Þ

with
N� ¼

0 I . . . 0 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . I 0 0 . . . 0

R�
B 0 . . . 0 0 I1BI . . . INB

B I

26664
37775; R�

B ¼ r0B1 �G1 0

kB1 �G1 KBT
1
R

$ %
; ð38Þ
and where the matrices 0 and I are the 6· 6 zero and unit matrices.
In order to deal with the term with the contact torque in the weak form Gh, we insert the master slave

relationship (37) into Eq. (34), which leads to
Ghðr;K; dpÞ ¼ dpARm �N�TgA þ dpB � gB  duR � ðG1 � kB1ÞQA1 : ð39Þ
We now note that the discretised weak form Gh in (34) can be split in two weak forms Gh
A and G

h
B given by
Gh
Aðr;K; dpÞ � dpA � gA  dpANA �

SA1

QA1

( )
¼ 0;

Gh
Bðr;K; dpÞ � dpB � gB  IjBdp

B
j �

SB1

QB1

( )
¼ 0

ð40Þ
which correspond to the application of the virtual work principle to each beam separately. The weak form

in (39) is in fact the sum of the two parts: Gh ¼ Gh
A þ Gh

B ¼ 0. Gathering the terms multiplying the virtual
rotations of node NA in Eq. (40)1 we obtain the following identity
gNAm QA1 ¼ 0;
where gNAm is the rotational part of the residual vector gNA . Substituting this equation into (39) and making
use of (38) now gives
Ghðr;K; dpÞ ¼ dpARm �NTgA þ dpB � gB ¼ 0; ð41Þ

with
N ¼

0 I . . . 0 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . I 0 0 . . . 0

RB 0 . . . 0 0 I1BI . . . INB
B I

26664
37775; RB ¼ r0B �G1 0

0 KBT
1
R

$ %
: ð42Þ
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Now we can proceed as in Section 2 by defining the coupling element as an element with 6� ð1þ NA þ NBÞ
degrees of freedom and a dynamic residual vector given by the product NTgA,
gARm ¼ NTgA ¼

RTBg
NA

gA;1

..

.

gA;NA1

0

LTgNA

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; with L ¼ I1BI � � � INBB I

� �
: ð43Þ
This extended residual gARm is analogous to the residual in (18) in the case of elastodynamics and depends

obviously on vector gA and on the kinematics of the contacted element by means of matrix RB and the

values of the interpolating functions IjB.

3.5. Numerical time integration

In order to process the dynamic residual of the coupling element (43) (and indeed the dynamic residuals

of all the other elements in the structure), special attention must be paid to the vector of inertial forces qI ;jd
within the dynamic residual. It is obvious from (35) that this vector contains the time derivatives of the

specific momenta l ¼ Aq _u and p ¼ KJW, i.e.
_l ¼ Aq€u and _p ¼ KðW� JWþ JAÞ;

where A is the vector of (body) angular accelerations of a cross-section. The dynamic residual therefore

forms a set of ordinary second-order differential equations, which need to be integrated in time in order to

provide a numerical solution. There exist many different schemes for the numerical integration of velocities

and accelerations in a mechanical system and, in the recent years, much progress has been made in the

design of problem-dependent time-integration techniques which inherit some of the important properties of

motion from the underlying continuum case. In a companion paper (Mu~noz and Jeleni�c, in preparation),
we will attempt to make a contribution to this topic in relation to the problem of dynamics of flexible beams

with sliding joints, but here we limit our attention to a simple and widely used Newmark’s two-parameter
family of algorithms. In these algorithms, the velocities vnþ1 and accelerations anþ1 at time tnþ1 are defined
using the displacements un, velocities vn and accelerations an at time tn, the displacements unþ1 at time tnþ1
and the parameters b and c as (Newmark, 1959)
vnþ1 ¼
c

bDt
ðunþ1  unÞ þ 1

�
 c

b

�
vn þ Dt 1

�
 c
2b

�
an;

anþ1 ¼
1

bDt2
unþ1

$
 un  Dtvn  Dt2

1

2

�
 b

�
an

%
:

The application of such an integration to angular velocities and accelerations only makes sense if performed

in a body-attached frame, i.e. in the material setting (Simo and Wong, 1991). In this way we obtain
Wnþ1 ¼
c

bDt
H þ 1

�
 c

b

�
Wn þ Dt 1

�
 c
2b

�
An;

Anþ1 ¼
1

bDt2
H

$
 DtWn  Dt2

1

2

�
 b

�
An

%
;

whereWn, An,Wnþ1 and Anþ1 are the material angular velocities and accelerations at times tn and tnþ1 andH
is the material rotational vector between configurations at times tn and tnþ1. This material rotational
vector is related to the spatial incremental rotational vector through H ¼ KT

n h ¼ KT
nþ1h. Performing the
17



time-integration of velocities and accelerations as given here turns all of the contributions to the elemental

dynamic residual into the functions of the unknown configuration only. Naturally, the above time inte-

gration should be performed at the integration points of the inertial vector (35)2.

In linear analysis, choosing b ¼ 1
4
and c ¼ 1

2
provides unconditional stability and second-order accuracy

of the scheme. This scheme is known as the trapezoidal rule and it will be used in the numerical experiments

in the next section. It is important to remember, however, that the unconditional stability in the linear

regime does not extended to non-linear problems and that alternative techniques, which are designed to

preserve some of the properties of motion of the actual physical system, perform better than the trapezoidal

rule (Mu~noz and Jeleni�c, in preparation).
3.6. Newton Raphson solution procedure and update

The virtual work Eq. (41) is tantamount to the non-linear vector equation
g ¼ 0; ð44Þ
where g is the global dynamic residual of the structure. Upon introduction of a suitable interpolation for the

unknown displacement and rotation fields along each element, this equation may be solved using the

Newton Raphson iterative procedure. Within this procedure, the system of linear equations
giþ1 ¼ gi þ KiDp ¼ 0; ð45Þ
where K ¼ rpg is the global tangent operator and Dp is the global vector of the iterative corrections to the
nodal unknowns, needs to be solved, and the nodal unknowns updated repeatedly until a converged
solution is achieved. Note that the rotational field does not have to be interpolated in the same way as the

virtual rotation d# in (33). Indeed, it is not advisable that it is, since such an interpolation would lead to a
loss of strain invariance in the formulation. See Jeleni�c and Crisfield (1999) for details of a strain-invariant
interpolation for the rotational field. In the present approach, it must be borne in mind that the global

residual contains the residual of the coupling element, which will give rise to additional terms in the tangent

operator. Indeed, linearising the residual gARm leads to DgRm ¼ rpRmg
A
Rm � KcpDpRm, where Kcp is the local

tangent operator of the coupling element and may be expressed as
Kcp ¼ NTKAN
�
g þ : ð46Þ
This result, including the matrices N�
g, KRR, KRm and KmR, has been derived in Appendix A. Clearly, this

matrix has some coupling terms between the degrees of freedom of slave element A and those of the master
element B. These terms have to be processed carefully whenever the contact point switches from an element
to another element on the slideline. This is described in more detail in the following subsection.

In order to ensure that the sliding contact condition is preserved exactly, the iterative solution of the
equations must include a consistent update of the kinematics. Once the iterative changes DX ¼ DrR �G1 and
DhR are obtained from the solution of the system of equations (45) and the master and released variables

updated, the slave kinematics ðrNA ;KNAÞ at the new iteration iþ 1 is obtained according to the update
process summarised in Table 1. Note that the matrix KðX iþ1

B Þ depends on the actual interpolation of the
rotational degrees of freedom within the beam finite element used.

With all the nodal slave degrees of freedom in hand, it is now possible to update the kinematics at each

integration point for every element using the adopted interpolation for the displacement and the rotation

field. This in turn enables the update of the elemental contributions to the dynamic residual (35). In order to
update the vector of inertial forces, one needs to perform the velocity and acceleration update described in
18



Table 1

Update of slave node kinematics ðrNA ;KNA Þ
X iþ1
B X i

B þ DX

Translations Rotations

riþ1NA
rðX iþ1

B Þ IjðX iþ1
B Þrj Kiþ1

R expð dT 1DhRÞKi
R

Update KðX iþ1
B Þ

Kiþ1
NA

KðX iþ1
B ÞKiþ1

R Krel
the previous subsection. To update the vector of internal forces, of course, it becomes necessary to update
the values of the translational and rotational strain measures.
3.7. Contact element transition

The present approach enables a straightforward transition of the contact point along a set of elements

forming a slideline. Let us assume that at time t1 the contact point is established between elements A and B
(see Fig. 9), and that elements B and C are adjacent to each other in a string of elements on the slideline.
The contact element can be easily obtained from the value of XR and the lengths of the elements on the

slideline in the reference configuration (see Fig. 9). If the transition of the contact point between elements

occurs during the iterative process, the generic definition of the coupling element allows us to consider a

different contact element by just replacing RB and IjB in g
A
Rm with the corresponding values for the new

element C, i.e. RC and IjC. Of course, special care must be exercised during the assembly of the resulting
stiffness matrix since some terms couple the stiffness of the current contact element on the slideline (master

element) and the sliding element A. When the contact point moves to another element, the topology of the
coupling element still remains the same provided the new element (and, by induction, all the elements on the

slideline) have the same topology. However, the vector LTgNA in the residual and the coupling terms of Kcp

will be posted into different positions in the global residual and the stiffness matrix.

Implementing this facility requires some modification to the standard data structure that should keep

track of the current contact element and provide the relevant terms of the residual vector and the stiffness

matrix for the coupling element. In addition, the kinematics of the current contact element must be
Coupling element
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N B
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1
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Element B Element C

ElementA
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Fig. 9. Coupling element definition and scheme of the contact element transition.
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Fig. 10. Contact element update including contact transition.
retrieved in order to update the variables at the slave node NA (see Table 1). A scheme of the different stages

required for the update and the construction of the coupling element during the iterative process is outlined

in Fig. 10. The transition of the contact point between adjacent elements for the case of 3D elastodynamics

can be performed accordingly.
4. Numerical results

4.1. Free falling mass (Sugiyama et al., 2003)

This example involves two flexible beams connected through a sliding joint with all the rotations released

(i.e. a spherical joint attached to a sliding joint). The initial configuration of the two beams is shown in Fig.
11. The co-ordinates of the beam nodes are also given in this figure, which indicate that the beams have

different lengths. All the other geometrical and material properties, however, are identical for both beams.

A mass of 1 kg is attached to beam BM at point M and submitted to the gravitational field.

This example was originally run by Sugiyama et al. (2003) using their absolute nodal formulation in

conjunction with a single finite element per beam. The trajectories of point M in the XZ and YZ planes are
read from Sugiyama et al. (2003) and shown in Fig. 12 using a dashed line. The authors did not give details

of the time-integration scheme used.
Fig. 11. Free falling mass example.
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(a) (b)

Fig. 12. Mass trajectory in the XZ and YZ planes for the model given in Sugiyama et al. (2003).
Using the formulation presented in the earlier sections in conjunction with the strain-invariant geo-

metrically exact beam elements given in Jeleni�c and Crisfield (1999), we have run this problem using one

quadratic element per beam. The Newmark implicit scheme with b ¼ 0:25 and c ¼ 0:5 (the trapezoidal rule)
has been used for the time integration of the equations of motion with a constant time-step of magnitude

Dt ¼ 0:001. The analysis has been terminated once the sliding beam reaches end A of beam AB, which
occurs at time t ¼ 1:5911. The projections of the trajectory of point M onto co-ordinate planes XZ and YZ
are plotted in Fig. 12 using a solid line. Comparing these results with those obtained in Sugiyama et al.

(2003) shows that while the qualitative behaviour of the structure is comparable in the two approaches, our
results provide considerably larger displacements. It should be noted that the absolute nodal formulation

(Sugiyama et al., 2003) uses a finite element which involves the derivatives of all the displacements at a node

as the additional nodal variables, which provides a more sophisticated approximation of the axial strain.

This in turn may be beneficial in systems like the present one, in which the axial straining makes a dominant

contribution to the strain energy. The elements we use are, in contrast, based around the isoparametric

Lagrangian interpolation of displacements and rotations as separate variables and are not expected to be

competitive in problems with such a large aspect ratio between the axial and the bending strain energy.

Nevertheless, this example has been chosen here in order to demonstrate the capabilites of the present
formulation to deal with large displacements and a sliding joint along a single element.
4.2. Flexible cylindrical manipulator (Krishnamurthy, 1989)

In this example, a horizontal flexible beam with a tip mass at one of the ends is linked to a rigid hub

through a sliding joint with no released rotations. The hub can rotate and move along the vertical axis as

shown in Fig. 13, where the material and geometrical properties of the whole manipulator are also given.
The system is subject to three time-dependent loads: force Fz, which lowers the hub, moment Mz, which

rotates the hub, and follower force Fr, which pulls the flexible beam through the hub. These loads vary in
time in such a manner as to move the manipulator from the position ðr; z; hÞ ¼ ð0:5588; 0:5334; 0Þ at t ¼ 0 to
the position ðr; z; hÞ ¼ ð0:254; 0:2286; 1:5708Þ at t ¼ 1:5, where the degrees of freedom r, z and h are shown
in Fig. 13.

This problem was solved by Krishnamurthy (1989) by considering the vibration of a beam using the

engineering beam theory to be superimposed onto the three rigid-body modes. The resulting set of partial

differential equations was reduced to a system of ordinary non-linear differential equations by assuming the
local displacements fields for the beam to be linear combinations of the modes of vibration for a cantilever
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Fig. 13. Scheme and finite element models of the flexible cylindrical manipulator.
beam. No details were provided for time integration of the resulting system of differential equations. The

results for the time histories of the two components of the local lateral displacement (with respect to the

straight line passing through the hub opening) for both ends of the beam have been scanned from

the original reference and given in Fig. 14.
Fig. 14. Tip displacements of the manipulator given by Krishnamurthy (1989).
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Both analyses have been run using the Newmark trapezoidal rule with a time-step Dt ¼ 0:001. The time
step this small is required not as much for convergence reasons but rather to capture the progressively

increasing frequencies of vibration of the flexible arm with the point mass as that arm becomes shorter. The

resulting histories for the displacements r and z and the rotation h using the two finite-element meshes are
given in Fig. 16. These results are comparable to those given in Fig. 3 of Krishnamurthy (1989), but they do

not correspond exactly to the expected final configuration with ðr; z; hÞ ¼ ð0:254; 0:2286; 1:5708Þ at t ¼ 1:5.
It should be noted again that the loading histories in Fig. 15 where read manually from a graph in

Krishnamurthy (1989).

The relative displacements v1;w1; v2 and w2 of the two ends of the flexible beam for meshes M1 and M2
are plotted in Figs. 17 and 18, respectively. These displacements are measured with respect to a straight line

that rotates rigidly with the hub and are comparable to the original results given in Fig. 14 (Krishnamurthy,

1989). The amplitudes of v1 and w1 increase whereas the amplitudes and the periods of vibration of v2 and
w2 decrease, which is what intuitively we would expect for the given loading history which tends to lengthen
the arm with the tip point 1 and shorten the arm with the point mass (tip point 2). While this observation is

valid for both meshes, it should be noted that the coarse mesh M1 exhibits only a modest increase in the
frequency of vibration of the tip mass in time (see Fig. 17).

This frequency increase is more pronounced with the finer mesh M2, and it is expected that further
refinement would lead to even closer agreement with the reference result (Fig. 14d). It should also be noted

that this mesh manages to capture the behaviour of the vertical vibration of tip point 1 qualitatively, as can
(a) (b)

(c)

Fig. 16. Time history of the displacements r, z and rotation h.
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mesh. We note, however, that these results can hardly be taken as a converged solution for such a highly

elastic problem. For the flexible cylindrical manipulator, we have been able to provide a much better

agreement with the reference results. This example has emphasised the need for the dynamically changing

coupling element, in which case it has been possible to provide a much finer finite-element mesh, which has
provided improved agreement with the reference results.

Throughout the paper, the emphasis has been placed on the rigorous definition of the contact kine-

matics. We believe that the performance of the method can be improved further by providing a more

sophisticate time-integration technique than the presently adopted Newmark’s trapezoidal rule. In par-

ticular, in a forthcoming work, we aim to investigate the performance of the time integrators which are

specifically designed to preserve some of the constants of motion of the underlying system (Mu~noz and
Jeleni�c, in preparation). We also believe that the present master slave approach is worthy of further
investigation in the context of general 3D contact elastodynamics.
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Appendix A. Linearisation of the coupling element residual gARm

We first note that the linearisation of the residual gARm ¼ NTgA can be split in the following two terms:
DðNTgAÞ ¼ NTDgA þ ðDNTÞgA: ðA:1Þ

The first one can be expressed by using the elemental stiffness matrix of the sliding element A, denoted by
KA:
DgA ¼ KADp
A:
The vector DpA can be related to the vector of iterative changes of released and master variables DpRm by
using Eq. (37):
DpA ¼ N�DpARm:
However, if a strain-objective interpolation is desired, local rotations and generalised shape functions IjgB
for the interpolation of the iterative rotations D#B must be employed:
D#B ¼ IjgBD#j; ðA:2Þ
as demonstrated in Jeleni�c and Crisfield (1999) where the explicit expression of the generalised shape
functions can be found. Replacing the functions I jB in matrix N

� by the strain-invariant shape functions IjgB,

we obtain the transformation matrix N�
g relating the vectors DpA and DpARm:
DpA ¼ N�
gDp

A
Rm
with
N�
g ¼

0 I . . . 0 0 06�6NB

..

. ..
. . .

. ..
. ..

. ..
.

0 0 . . . I 0 06�6NB
R�
B 0 . . . 0 0 Lg

26664
37775; Lg ¼

I1BI 0 . . . INBB I 0

0 I1gB . . . 0 INB
gB

$ %
: ðA:3Þ
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Thus, making use of the elemental stiffness matrix KA and matrix N
�
g, the term DgA in (A.1) reads
DgA ¼ KADps ¼ KAN
�
gDpRm: ðA:4Þ
In order to obtain an explicit form for the second term in (A.1) with N given in (42) the following pre-

liminary results are deduced:
Dr0B ¼ DðI 0jB rjÞ ¼ I 0jBDrj þ I 00jB rjDXC ¼ I 0jBDrj þ r00B �G1DrR;

DKB ¼dD#KB þ DXB
bkBKB ¼ dD#


þ ðDrR �G1ÞbkB�KB;
ðA:5Þ
where kB ¼ KBjB is the (spatial) curvature.

The linearisation of the transformation matrix TT can be written as (see Ritto-Corrêa and Camotim,

2002)
DðTðhÞTÞa ¼ Dðh; aÞDh; ðA:6Þ
where the matrix Dðh; aÞ is given by
Dðh; aÞ ¼ c1ba þ c2ðbabh  2bhbaÞ  c3bha� h þ c4bh2a� h
and
c1 ¼
1 cos h

h2
c2 ¼

1

h2
1

�
 sin h

h

�
c3 ¼

h sin h  2ð1 cos hÞ
h4

c4 ¼
3 sin h  hð2þ cos hÞ

h5
:

Making use of (A.5) and (A.6), the computation of ðDNTÞgA becomes
ðDNTÞgA ¼

G1 � Dr0B1g
NA
n

DðTT
R KT

B1
ÞgNA

m

06NA
DðI1BÞgNA

..

.

DðINB
B ÞgNA

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

G1 � gNAn ðI jB0Drj þ r00B �G1DrRÞ
DðhR;KT

Bg
NA
m ÞDhR  TT

R KT
B
bkgNAm DXB þ TT

R KT
BbgNAm D#B

06NA
I1B

0gNADXB

..

.

INAB
0gNADXB

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ DpRm; ðA:7Þ
where
KRR ¼
r00B � gNAn G1 �G1 0

TT
R KT

BbgNAm kB �G1 DðhR;KT
Bg

NA
m Þ

" #
;

KRm ¼
G1 � gNAn 0

0 TT
R KT

BbgNAm
$ %

I1B
0I 0 . . . INBB

0I 0

0 I1gB . . . 0 INBgB

" #
;

KmR ¼

I1B
0I

..

.

INAB
0I

2664
3775gNA �G1:

ðA:8Þ
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