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Abstract In this chapter we present recent advances in the Discrete Element Method (DEM) and in the
coupling of the DEM with the Finite Element Method (FEM) for solving a variety of problems in non linear
solid mechanics involving damage, plasticity and multifracture situations.

1 INTRODUCTION

The Discrete Element Method (DEM) is a popular technique for analysis of the mechanics of granular matter,
as well as for modeling multifracture situations in frictional materials such as concrete and geomaterials.

The Finite Element Method (FEM), on the other hand, is a standard numerical technique for linear
and non linear analysis of structures. Differently from the DEM, the FEM has difficulties for reproducing
multifracture situations in solids. The combination of FEM and DEM procedures seems therefore a win-win
situation for modeling and simulation of a wider range of problems in non linear mechanics, than using any
of the two methods separately.

In this chapter we present first recent advances in the DEM for non linear analysis of cohesive and
non cohesive materials. Then a method for coupling the DEM and FEM procedures and for studying the
interaction of physical particles and deformable solids es explained. In the last part of the chapter we
present an approach for modeling multifracture situations in a solid by starting with the FEM analysis of
the continuum domain in the standard manner. Discrete elements at the element nodes are progressively
introduced as damage on the center of the element sides exceeds a certain value. Examples of this FEM-
DEM technique are presented for a number of structural problems involving single fracture and multifracture
situations such as the failure analysis of concrete samples and beams under external loads, a shale rock domain
under a pulse load and blasting situations in a tunnel front and a granite rock specimen.

2 A LOCAL DEM MODEL

2.1 DEM model overview

The DEM was initially developed by Cundall et al. [5] in the 1970’s. It is based in the interaction of discrete
elements (also called particles) – typically cylinders (in 2D) and spheres (in 3D) – to simulate the behavior of
continuum and discontinuum domains [2,3,6,7,12,14,15,21,24,26,31]. This interaction is governed by a set
of kinematic equations involving the forces acting over the discrete elements and the displacements, velocities
and accelerations of the particles. The forces acting over a discrete element are related to the stresses and
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Fig. 1: Motion of a rigid particle

(a) (b)

Fig. 2: (a) Definition of contact interface between two discrete particles. (b) Forces acting along the normal
and shear directions on a contact interface section Aij

strains according to a constitutive model. In our work we use the local constitutive model for the DEM for
cohesive and non-cohesive materials proposed by Oñate et al. [21]. In the following a brief description of this
model is presented.

2.1.1 Kinematic equations and integration scheme

The translation and rotation of the particles in the DEM is governed by the standard dynamics equations
for rigid bodies,

miüi = Fi , Iiω̇i = Ti (1)

where ui and ωi are the i-th particle displacement and the angular velocity respectively, mi and Ii are the
mass and the inertia tensor of the particle, and Fi and Ti are vectors containing the forces and torques
due to the interaction of a particle with its neighbors (Figure 1). The set of forces applied on a particle

include external forces (Fext
i ), damping forces (Fdamp

i ) and interaction forces between neighbor particles
(Fij) (Figure 2)

Fi = Fext
i + F

damp
i +

ni
∑

j=1

Fij (2)
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where n is the number of particles adjacent to the ith particle.
The expression for the torques can be derived from Eq. (2) [22]. The dynamic equations (1) are integrated

in time using an explicit scheme as expressed in (3) for the translation motion,

ün
i =

Fn
i

mi
, u̇

n+1/2
i = u̇

n−1/2
i + ün

i ∆t , un+1
i = un

i + u̇
n+1/2
i ∆t (3)

The explicit time integration scheme is chosen due to the high computational cost of the DEM solution
for large problems. However, the stability of the scheme is conditioned to the time step value. The critical
time step is related to the high frequency of the problem, (ωmax), i.e.

∆t ≤ ∆tcr =
2

ωmax

(

√

1 + ξ2 − ξ
)

(4)

where ξ is a fraction of the critical damping [5,22].

2.1.2 Forces acting over the discrete element

The interaction forces at the contact interface between two particles i and j (Fij) are obtained from the
normal (Fij

n ) and tangential (Fij
s ) components (Figure 2b).

The normal component of the interaction forces is calculated as,

F ij
n = σnαijA

ij with Aij = πr2c (5)

where σn is the normal stress at the contact interface, rc is the minimum radius of the two interacting
particles (Figure 2a) and αij is a parameter that dependes on the number of contacts and the packing
of the particles [21]. In our work we have used a global definition of αij = α = 40 P

Nc
where Nc and P

are respectively the average number of contacts per sphere and the average porosity for the whole particle
assembly [21]. The normal stress σn is calculated from the strain ξn and the strain rate ξ̇n along the normal
direction as,

σn = Eεn + cε̇n (6)

where E is the Young modulus, c is a local damping parameter calculated as

c = 2
ξ

rc

√

mijK
ij
n with mij =

mimj

mi +mj
(7)

where Kij
n is the normal stiffness parameter (see Eq.(10)).

The normal strain and strain rate values are computed from the kinematic variables as,

εn =
un

dij
ε̇n =

u̇n

dij
(8)

where un and u̇n are the relative displacements and the relative velocity between two particles along the
normal direction at the contact interface and dij is the distance between the centroids of the two particles
(Figure 2b).

Equations (5)–(8) lead to a general relation between for the normal force and the kinematic variables as

F ij
n =

αijA
ij

dij

[

Eun + 2
ξ

rc

√

mijKnu̇n

]

= Kij
n un + Cij

n u̇n (9)

where Kij
n and Cij

n are the normal stiffness and the normal viscous damping parameters at the contact
interface between particles i and j that can be deduced from Eq.(9) as

Kij
n =

αijA
ij

dij
E , Cij

n =
2αijA

ijξ

dijrc

√

mijKn (10)

A similar approach leads to the constitutive expression for the shear forces in the two tangential directions
as [21]

Fij
s = Kij

s uij
s (11)
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where vector uij
s is the shear component of the relative displacements between particles, calculated as,

uij
s = uij −

(

uijnij
)

nij (12)

In Eq.(11) Kij
s is the shear stiffness parameter at the contact interface (assumed to be the same for both

shear directions), given by

Kij
s =

Kij
n

2 (1 + ν)
(13)

where ν is the Poisson’s ratio of the material.
The damping forces are computed from the application of a global damping over the set of particles. This

damping component is characterized by translation (αt) and rotation (αr) damping parameters defined as a
fraction of the stiffness parameters. In this work we have taken αr = αt = 0, 10. The damping forces act in
opposite direction to the motion of the particles according to the following expressions:

F
damp
i = −αt

∣

∣Fext
i + Fij

∣

∣

u̇i

|u̇i|
(14a)

T
damp
i = −αr |Ti|

ω̇i

|ω̇i|
(14b)

The local DEM constitutive model described above holds for cohesive and non-cohesive materials, this
latter as a particular case of the former, when the bonds between the particles are assumed to be initially
broken. More details can be found in [21].

2.2 Normal and shear failure

Cohesive bonds at a contact interface are assumed to start breaking when the interface strength is exceeded
in the normal direction by the tensile contact force, or in the tangential direction by the shear force. The
uncoupled failure (decohesion) criterion for the normal and tangential directions at the contact interface
between particles i and j is written as

Fnt
≥ Fnt

, Fs ≥ Fs (15)

where Fnt
and Fs are the interface strengths for pure tension and shear-compression conditions, respectively,

Fnt
is the normal tensile force and Fs is the modulus of the shear force vector Fij

s (Figure 2 and Eq.(11)).
The interface strengths are defined as

Fnt
= σ

f
t Ā

ij , Fs = τf Āij + µ1|Fnc
| (16)

where σ
f
t and τf are the tensile and shear strengths respectively, Fnc

is the compressive normal force at
the contact interface and µ1 = tanφ1 is a (static) friction parameter, where φ1 is an internal friction angle.
These values are assumed to be an intrinsic property of the material and are determined experimentally. In
our work σ

f
t is taken as the tensile strength of the material measured in a bending-tensile (BT) or a Brasilian

tensile strength test [21].
As for the shear strength τf we have estimated its value as a percentage of the maximum compressive

stress in a uniaxial compression strength (UCS) test, (σf
nc
)UCS , as

τf = β(σf
nc
)UCS (17)

where β is a parameter that is calibrated in numerical experiments via shear and UCS tests. Typically
β ≃ 0.5 [21].

Following tension failure, the constitutive behavior in the shear direction is governed by the standard
Coulomb law

Fs = µ2|Fnc
|
us

|us|
with µ2 = tanφ2 (18)

where µ2 is a dynamic Coulomb friction coefficient and φ2 is the post-failure internal friction angle. Both
parameters are determined from experimental tests.
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Figure 3 shows the graphical representation of the failure criterium described by Eqs.(15), (16) and (18).
This criterium assumes that the tension and shear forces contribute to the failure of the contact interface in
a decoupled manner. On the other hand, shear failure under normal compressive forces follows a failure line
that is a function of the shear failure stress, the compression force and the internal friction angle.

Indeed, a coupled failure model in the tension-shear zone can also be used, as described in [21]. For the
numerical tests presented in this work the uncoupled model has been used.

Figure 4 shows the evolution of the normal tension force Fnt
and the shear force modulus Fs at a contact

interface until failure in terms of the relative normal and tangential displacement increments. Elastic damage
under tensile and shear conditions has been taken into account in this work by assuming a linear softening
behaviour defined by the softening moduli Hn and Ht introduced into the force-displacement relationships
in the normal (tensile) and shear directions, respectively (Figure 4). For details see [21].

Fig. 3: Failure line in terms of normal and shear forces. Uncoupled failure model. (b) Coupled failure model

Fig. 4: Undamaged and damaged elastic moduli under tension (a) and shear (b) forces

2.3 Elasto-plastic model for compression forces

The compressive stress-strain behaviour in the normal direction at the contact interface for frictional cohesive
materials, such as cement, rock and concrete, is typically governed by an initial elastic law followed by a
non-linear constitutive equation that varies for each material. The compressive normal stress increases under
linear elastic conditions until it reaches the limit normal compressive stress σl

nc
. This is defined as the axial

stress level where the experimental curve relating the axial stress and the axial strain starts to deviate from
the linear elastic behaviour. After this point the material is assumed to yield under elastic-plastic conditions.

The elasto-plastic relationships in the normal compressive direction are defined as
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Loading path

dFnc
= KTn

dun (19a)

Unloading path

dFnc
= Kn0

dun (19b)

In Eqs.(19) dFnc
and dun are respectively the variation of the normal compressive force and the normal

(relative) displacement, Kn0
is the initial (elastic) compressive stiffness for a value of E = E0 (Figure 5),

and KTn
is the tangent compressive stiffness given by

KTn
=

ET

E0
Kn0

(20)

where ET is the slope of the normal stress-strain curve in the elastoplastic branch (i.e. ET = E1, E2, E3 in
Figure 5).

Plasticity effects in the normal compressive direction affect the evolution of the tangential forces at the
interface, as the interface shear strength is related to the normal compression force by Eq.(16).

Figure 5 shows the diagram relating the compressive axial stress and the compressive axial strain used
for modelling the elasto-plastic constitutive behaviour at the contact interfaces. The form of each diagram
is obtained from experimental tests [8].

Fig. 5: Compressive axial stress-compressive axial strain diagram for elastoplastic material. LCS1 is the limit
compressive stress (σl

nc
) defining the onset of elastoplastic behaviour at the contact interface

Figures 6 and 7 show an example of the DEM to the analysis of application of a UCS test and a BST of
a cylindrical specimen for a cement material. The material parameter are shown in Table 1.

ρ µ1 µ2 E0 ν σ
f
t τf

(g/cc) (GPa) (MPa) (MPa)

1.70 0.30 0.40 3.80 0.20 4.80 8.50

LCS1 LCS2 LCS3 YRC1 YRC2 YRC3 α
(MPa) (MPa) (MPa)

8.5 9.0 11 3 9 24 1.0

Table 1: DEM constitutive parameters for analysis of UCS and BTS tests on a cement sample
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(a) (b)

Fig. 6: DEM and experimental results for UCS test in a cement sample using 42000 spherical particles. (a)
Axial stress-axial strain curve. (b) Contour of the horizontal displacement at the failure load

(a) (b)

Fig. 7: DEM results for BTS test in cement sample using 16000 spheres. (a) Time evolution of the stress at
the center point. (b) Contour of horizontal displacement at the failure load. The experimental failure stress
is 3MPa

2.4 Enhanced local constitutive model for the DEM that accurately reproduces the behavior of a continnum

The standard DEM technique is known to suffer from sensitivity to the packaging pattern and density of
the particles when applied to the linear elastic analysis of a continuum. Standard features of a continuum
domain, such as the Poisson’s ratio effect, are difficult to predict with the DEM in a consistent manner.

Celigueta et al. [2] have presented a procedure for correcting the local constitutive equations at a contact
interface in the DEM, so that it can be accurately applied for predicting the elastic behavior of a continuum.

The enhanced local constitutive model for the DEM is based on a modified expression of the force-
displacement relationships at the contact interface between particles i and j (Eqs.(9) and (11)) as follows

F ij
n = Kij

n uij
n +Aijν(σij

s1 + σij
s2) (21)

F ij
sk

= Kij
s uij

sk
+GAij

(

∂un

∂xk

)ij

, k = 1, 2 (no sum in k) (22)

where Kij
n and Kij

s are the normal and tangential stiffness parameters associated to the contact interface
given by Eqs.(10) and (12), respectively and usk is the relative displacement in the kth tangential direction
(Figure 2).
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Input parameters: E = 1.0e9, ν = 0.35

Error in computed values
Cartesian packing Staggered packing Random packing

Standard Improved Standard Improved Standard Improved
DEM DEM DEM DEM DEM DEM

Poisson’s ratio E -0.6 % -0.6 % -23.0 % 0.7 % -28.0 % -0.2

Poisson’s ratio ν -100.0 % 0.22 % -64.0 % -2.9 % -62.0 % -3.5

Table 2: Prediction of E and ν in a sample using the normal and tangential contact forces

The underlined terms in Eqs.(21) and (22) introduce the effect of the average stress field at the contact
interface on the normal and tangential forces at the interface. Details of the computation of these terms is
given in [2].

The stresses σs1 and σs2 in Eq.(21) are obtained by projecting the average stress tensor [σ]i for the ith
particle into the local coordinate system (s1, s2,n) (Figure 2b). Tensor [σ]i is computed as

[σ]i =
1

Vi

ni
∑

i=1

li ⊗ Fi (23)

where ni is the number of contact points for the ith particle, li is the vector connecting the center of the
particle to the ith contact point, Fi is the force vector at the ith contact point and Vi is a volume associated
to the particle used to average the stresses.

A good estimation of Vi is essential for the success of this approach. In our work we have estimated Vi

using the areas of the contact interfaces associated to each particle as

Vi =

ni
∑

j=1

1

3
Âij‖li‖ (24)

where Âij is an enhanced value of the area of the contact interface between particles i and j. The value of
Âij is computed as

Âij = Aij 4παir
2
i

AT
i

(25)

where Aij is the area of the jth contact interface computed by Eq.(5), ri is the radius of the ith particle,

AT
i is the sum of the contact interface areas

(

AT
i =

ni
∑

j=1

Aij

)

and αi is a parameter that depends on the

number of neighboring particles to the ith particle and on the uniformity of the contact areas due to a
random distribution of the particle sizes. More details are given in [2].

The non-local terms in Eqs.(21) and (22) have proven to be essential for accurately predicting the elastic
and non-linear response of samples of cohesive material using the DEM.

As an example Table 2 shows the expected and computed values for the Young’s modulus and the
Poissson’s ratio for a prismatic sample of elastic material modelled with cartesian, staggered and random
distribution of spheres. Note the large errors for the values of E and ν using the standard DEM for staggered
and random packings. The errors are negligible when the enhanced local constitutive model for the DEM
presented in the previous lines is used.

The enhanced local constitutive model for the DEM has also shown an excellent behavior for accurately
predicting the non-linear response and cracking pattern of geomaterials and concrete using a simple Rankine
failure model at the contact interface.

We present an application of the enhanced local constitutive model for the DEM to the analysis of a
shear test [16] in a cylindrical notched specimen of concrete material. The definition of the test is shown in
Figure 8. More details of this particular test can be found in [8].

The material properties for the DEM analysis are E = 35.5 GPa, ν = 0, 20, µ1 = 0.1 and σ
f
t = 4.5 MPa.

The analysis was carried out using 170k spherical particles. Figure 9 shows the load vertical displacement
curve obtained with the DEM. Good agreement of the maximum load compared to the experimental value
of 82,3 kN is obtained. Figure 10a show the multifracture pattern on the cylindrical sample at failure. The
experimental results are displayed in Figure 10b.
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Fig. 8: Shear test in notched concrete specimen

Fig. 9: Shear test in notched concrete specimen. Load-displacement curve obtained with the DEM. Experi-
mental failure load = 82,3 kN

The enhanced local DEM constitutive model can be used in conjunction with any constitutive law in solid
mechanics for predicting the linear and non linear behavior of a solid. This opens the door for predicting
with the DEM the linear and non linear response of solids and structures of any material (including metallic
materias) [3], which is unusual for standard DEM models.

3 INTERACTION OF DISCRETE PARTICLES AND SOLIDS MODELLED WITH THE

FEM

The interaction of discrete particles and solids can be studied by coupling the potential of the DEM and
FEM approaches. Isolated particles can be modeled with the DEM, while solids are better modeled using the
FEM. Indeed, complex objects can also be modeled using a collection of DEM particles, which allows one to
use the standard frictional contact algorithms between particles and rigid/deformable objects developed for
the DEM. Clearly, for rigid objects only the DEM particles discretizing the boundary of the object need to
be accounted for.
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(a) (b)

Fig. 10: Shear test in concrete specimen. (a) DEM results. (b) Experimental results

The author’s group has developed an innovative algorithms for modeling contact situations between
discrete particles and solids modeled with the DEM [28]. The Double Hierarchy Method (termed H2) is a
simple contact algorithm specially designed to resolve efficiently the intersection of spheres with triangles
and planar quadrilaterals but it can also work well with any other higher order planar convex polyhedra.
A two layer the hierarchy is applied upgrading the classical the hierarchy method presented by Horner et
al. [12], namely hierarchy on type of contact followed by hierarchy on distance. The first hierarchy classifies
the type of contact (facet, edge or vertex) for every contacting neighbour in a hierarchical way, while the
distance-based hierarchy determines which of the contacts found are valid or relevant and which ones have
to be removed.

The H2 algorithm has been developed taking into account its implementation in a parallel computing
environment. This is particularly important for industrial problems involving a large number of particles
interacting with a fine FEM mesh.

Summarizing, the H2 contact search satisfies the following requirements:

– Includes poly-disperse elements for both the FEM and the DEM.
– Allows different FE geometries and primitives (triangle, quadrilateral, polygon).
– Ensures contact continuity in non-smooth regions (edges and vertices).
– Resolve multiple contacts and contact with different entities simultaneously.
– Low memory storage.
– Simple, fast and accurate need.
– Fully parallelizable.

A simple particle-structure interaction example is presented next in order to assess the DEM-FEM
coupling procedure. The example consists on a spherical particle colliding a simply supported beam (Figure
11). Two different cases are reproduced. The reference solution to this problem, taken from linear modal
dynamics was proposed by Timoshenko [30] and is reviewed in [17].

The two examples are reproduced with the same DEM and FEM parameters. In the first one the particle
radius is 0.01m and the length of the beam is 15.35m, while in the second one the particle radius is 0.02m
and the beam length is 30.70m. The material properties and the simulation parameters are summarized in
Table 3. The first case produces a single impact while the second yields three particle/beam impacts. The
FEM meshes used are 60× 4× 3 8-nodded hexahedral elements respectively for the beam length, height and
depth, respectively in the first example and 120× 4× 3 hexahedra in the second example.
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Fig. 11: Simply supported beam hit vertically at its centre by a sphere. (a) Front view. (b) Side view

Material properties DEM Analysis parameters
Sphere radius (m) 0.01/0.02
Density (kg/m3) 7960
Young’s modulus (GPa) 215.82 Initial velocity of sphere (m/s) [0.0,−0.01, 0.0]
Poisson’s ratio 0.289 Gravity (m/s2) [0.0, 0.0, 0.0]
Friction parameter 0.0 Neighbour search freq. 50

Table 3: Simple supported beam hit by a sphere. Simulation parameters

The results shown in Figure 12 are quite satisfactory and the H2 model reproduces well the contact
forces. Once the contact ends, the beam oscillates in a combination of different excited modes. The largest
frequency mode, which can be easily identified in the figures, corresponds to the natural frequency of the
beam and it is perfectly matched. The higher vibration modes however, are not correctly captured by the
linear hexahedral elements, as they are not the best suited elements to simulate flexural modes. Consequently,
there is a deviation on the second and third contact events in the second example (Figure 12b).

More details of this example and the H2 procedure can be found in [28,29].

3.1 A FEM-DEM procedure for multifracture analysis of solids

The DEM is a flexible method to simulate granular and non-continuum media, in particular the propagation
of initial cracks. On the other hand, these contact properties are defined at the micro scale, while the material
properties usually refer to experimental results in the macro scale. The step between both scales is not easy
and requires a calibration task. The FEM otherwise is based in a continuum formulation involving the macro
properties of the material. The FEM allows one to establish failure criteria compatible with the equilibrium
equations in continuum mechanics, which makes it consistent and easy to apply for different materials.

The distance between DEM and FEM approaches is wide. Extensive research has been carried out in
last years to combine FEM and DEM procedures, taking profit the advantages of both numerical methods.
Combination of the FEM with the standard DEM using circular and spherical particles are reported in
[13,20,22,27]. A combined finite-discrete element method based on the splitting of the finite elements into
discrete elements of poligonal shape is presented in [10,11,18–20,23]. Zárate and Oñate [32,35] have recently
presented a coupled FEM-DEM formulation for the numerical simulation of cracks starting from a finite
element discretization of the domain.

The FEM-DEM formulation presented in [32,35] discretizes the continuum using linear 3-noded triangles
(in 2D) and 4-noded tetrahedra (in 3D) whose nodes define the position of a (virtual) discrete element. These
discrete elements are introduced in the simulation process when cracks appear. The normal contact forces
between discrete elements are calculated integrating the stiffness matrix of the linear triangle along its sides
that connect the discrete particles as shown in Figure 13 [32]. The mechanical problem in the crack-free
region is solved using the standard FEM and an appropriate damage model. In the examples shown in this
chapter damage onset and evolution of damage is governed by a Mohr-Coulomb failure criteria.

Onset of a crack at the center of an element side depends on the damage level at that point. The stresses
over the edge are computed as the mean of the stresses in the elements sharing that side.

Once the damage limit is reached, a stiffness loss is induced in the triangle. The stiffness loss is associated
to the area determined by the centroid of the triangle and the damaged side as shown in Figure 14.
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(a) Beam 1

(b) Beam 2

Fig. 12: Lateral impact of a sphere on a simply supported beam. (a) Analytical solution versus DEM-FEM
numerical solution for beam 1. (b) Analytical solution versus DEM-FEM numerical solution for the beam 2

The stiffness matrix of a damaged element is recalculated at every time step as follows

K(e) =

[

1−
di + dj

2

]

K
(e)
0 (26)

where K0 is the initial stiffness matrix of the undamaged element and di and dj are to the two maximum
values of the damage parameters for the three element sides (Figure 15).

When a cohesive bond is removed the side nodes of the element are disconnected and two discrete
particles are introduced at the same nodal positions. Their radii and masses are defined as the maximum
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Fig. 13: Equivalence between stiffness matrix (FEM) and cohesive link (DEM)

Fig. 14: Equivalence between stiffness matrix (FEM) and cohesive link (DEM) with a damaged edge

Fig. 15: Three-noded triangle with two sides damaged

ones to guarantee contact without overlapping other discrete elements in order to avoid spurious contact
forces [14].

Once the discrete elements are created their interaction is governed according to contact and friction
laws, as in the general DEM formulation described in a previous section.

A relevant point in the FEM-DEM approach described above is its computational cost. Most of the cost
in a DEM simulation is due to the contact searching algorithms. In the FEM-DEM technique presented the
number of discrete elements is in general much lower than the number of nodes because the fractured area
is typically smaller than the whole calculation domain. Hence, the computational time consumed by the
contact searching algorithms is much lower than in a standard DEM solution.
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3.2 Examples of application of the FEM-DEM procedure

Four-point bending beam

The 2D version of the FEM-DEM technique is applied to the study of the failure of a double notch concrete
beam analyzed under plane stress conditions. The beam is supported at two points and deforms in a bending
mode by imposing displacement at the two points depicted in Figure 16 where the beam dimensions are also
shown.

Fig. 16: Double notched concrete beam. Dimensions and boundary conditions

Figure 17 shows the crack path obtained with the 2D FEM-DEM approach for the three meshes analysed
which coincide with the numerical results of Cervera et al. [4]. The mix-mode fracture is clearly seen. Figure
18 shows the plots of the vertical reaction at a support version the imposed displacement at any of the two
points depicted in Figure 16. The graphs are in good agreement with the results reported in [4].

Fig. 17: Double notched concrete beam. Displacement contours and crack path at the two notches regions
using three different meshes of 3-noded triangles. (a) Coarse mesh (2202 triangles). (b) Intermediate mesh
(3480 triangles). c) Fine mesh (11206 triangles). Discrete elements generated at the cracks
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Fig. 18: Double notched concrete beam. Relationship between the force and the imposed displacement at
any of the two points depicted in Figure 5. 3D FEM-DEM results are compared with those given in [4]

Brazilian tensile strength (BTS) test

We have applied the 3D FEM-DEM procedure to the simulation of a BTS test on a cylindrical concrete
sample of diameter D = 0.2m and 0.1m thickness (t). The tensile strength value is computed by [1]:

ft =
2P

πtD
(27)

were P is the applied load.
The material properties are Eo = 21 GPa, ν = 0.2, γ = 7.8× 103 N/m3, ft = 10 KPa and Gf = 1× 10−3

J/m2. Using Eq.(27) this corresponds to a failure load of P = 314.16 N.
Three finite element meshes were used for the analysis with 9338, 31455 and 61623 4-noded linear tetra-

hedra, respectively. The crack patterns obtained for each mesh are depicted in Figure 19. The numerical
results for the load-displacement curve are presented in Figure 20. The numerical values obtained for the
tensile strength were (coarse to fine mesh) 10693 Pa, 10351 Pa and 10 235 Pa which yielded a range of 6%
to 2% error versus the expected value of ft = 10 kPa.

Fracture of shale rock under a pulse load

The FEM-DEM procedure has been applied to the study of the fracture of a rock mass under a pulse load
[9]. This is a usual procedure in the so-called fracking technique used in the oil and gas industry.

Figure 21 shows the geometry of the domain analyzed and the loads acting at the boundary. These loads
are computed in terms of the depth of the rock mass analyzed. The evolution of the pulse load acting at
central hole is shown in Figure 21. Figure 22 depicts the finite element mesh of 3-noded triangles used for
the analysis. The fracture pattern in the rock obtained with the FEM-DEM technique for a depth of 500
ft are shown in Figure 23. The length of the vertical crack obtained is 36 ft which compares well with the
length of 40 ft using the DEM [9] and also with an alternative FEM formulation [25].

Multifracture of a tunnel front induced by a blast load

This example shows the capability of the FEM-DEM approach for simulating the evolution of multiple cracks
in a tunnel front induced by a blast load.
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Fig. 19: 3D FEM-DEM analysis of BTS test on a concrete specimen. Damage zone and discrete elements
generated. (a) Coarse mesh. (b) intermediate mesh. (c) Fine mesh

Fig. 20: 3D FEM-DEM analysis of BTS test on a concrete specimen. Force-displacement relationship for the
three meshes used

Figure 24 shows the geometry of the front of the Bekkelaget tunnel in Norway, including the distribution
of blast holes and the mesh of 38000 3-noded triangles discretizing the tunnel front. Details of the material
properties, the blasting sequence and the computational features of this problem can be found in [34].

Figure 25 shows the evolution of cracks at the front induced by a particular blasting sequence. The results
demonstrate the usefulness of the FEM-DEM technique for simulating this complex multifracturing problem.
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(a) (b)

Fig. 21: Fracture of shale rock. (a) Analysis domain and applied loads. (b) Pulse pressure function

Fig. 22: Shale rock domain under pulse load. Mesh of 3-noded triangles for FEM-DEM anaysis

Fracture pattern in a granite rock specimen under pulse load accounting for the gas pressure

Figure 26 shows the fracture pattern in a cylindrical specimen of granite rock under a pulse load acting at the
central hole. The effect of the gas filling the cracks has been taken into account by coupling the FEM-DEM
procedure described earlier with a compressible flow FEM solver using an embedded solution technique. The
coupling strategy solves the equations for the compressible gas flow in the finite element mesh that fills the
spaces created by the cracks. Figure 26 shows a snapshot of the pressure field in the gas domain between
the cracks at a certain instant. More information of this coupled solution can be found in [33].

CONCLUDING REMARKS

This chapter has shown the possibility of the DEM for linear and non linear analysis of cohesive materials and
structures, as well as the advantages of coupling the FEM and DEM techniques for studying the interaction
of particles with structures and the prediction of complex multifracture situations in solids.
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Fig. 23: Crack simulation with FEM-DEM model. Depth 500 ft. FEM results in box from [25]

Fig. 24: Distribution of blast holes at the front of the Bekkelaget tunnel (Norway) and finite element method
for FEM-DEM simulation of the cracking pattern
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15. Labra C, Rojek J, Oñate E, Zárate F (2008) Advances in discrete element modelling of underground excavations. Acta

Geotechnica 3(4):317–322
16. Luong MP (1990) Tensile and shear strengths of concrete and rock. Engineering Fracture Mechanics 35:127–135
17. Meijaard J (2007) Lateral impacts on flexible beams in multibody dynamics simulations. IUTAM Symposium on Multiscale

Problems in Multibody System Contacts. Vol 1 Springer Netherlands, 173182
18. Moharnmadi S, Owen DRJ, Peric (1998) A combined finite/discrete element algorithm for delamination analysis of com-

posites. Finite Elements in Analysis and Design 28(4):321–336
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