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Summary. This work demonstrates how to use a piggyback-style algorithm to com-
pute derivatives of loss functions that depend on solutions of convex-concave saddle-point
problems. Two application scenarios are presented, where the piggyback primal-dual al-
gorithm is used to learn an enhanced shearlet transform and an improved discretization
of the second-order total generalized variation.

1 INTRODUCTION

For inverse problems in imaging, there is a wide range of regularizers that can be
used, classic choices include the total variation (TV), total generalized variation (TGV),
wavelets and shearlets, to name but a few. The typical variational structure is governed
by minimizing an energy hθ(x) given by

min
x∈X

hθ(x) := g(x, z) + f(Kθx), (1)

for input data z, where Kθ is a linear operator related to the chosen regularizer. This
offers a plug-and-play framework for the choice of the regularizer f(Kθx) that is used,
whereas the data term g(x, z) is usually determined by the underlying task. As f is often
a non-smooth function, problem (1) can also be cast as a saddle-point problem reading
as

min
x∈X

max
y∈Y

〈Kθx, y〉+ g(x, z)− f ∗(y), (2)

where f ∗ denotes the convex conjugate of f . Depending on the convex imaging problem
and the domain of the underlying data, it can be beneficial to learn θ such that we have an
optimal Kθ to improve some of the common choices within a convex imaging application.
This can be tackled with supervised learning, which allows to learn Kθ in a bilevel setting
given a training data set. For such a training data set with N pairs {(zn, tn)}Nn=1 denoting
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the corrupted observations and corresponding ground truth samples, respectively, the
bilevel optimization problem has the following structure:

min
θ
L(Kθ) +R(Kθ) := 1

N

N∑
n=1

`(x̂n(Kθ), tn) +R(Kθ), (3)

s.t. x̂n ∈ arg min
x∈X

max
y∈Y

〈Kθx, y〉+ g(x, z)− f ∗(y).

Note that `(x̂n(Kθ), tn) is a convex and differentiable loss function, such as the squared
`2 norm, i.e. `(x̂n(Kθ), tn) = 1

2
‖x̂n(Kθ) − tn‖2

2, whereas R(Kθ) can additionally impose
constraints on the learned θ depending on the chosen regularizer.

The key question is now how derivatives of the loss function with respect to param-
eters θ (or the linear operator Kθ) can be computed efficiently. After briefly recalling
two classical and well-known methods and discussing their advantages but also potential
disadvantages, an alternative how to compute the gradients based on a standard sensi-
tivity analysis is reviewed, namely a piggyback-style algorithm [6], which is suitable for
convex-concave saddle-point problems [1].

2 METHODS

2.1 Bilevel Optimization

Bilevel optimization using implicit differentiation [12] attempts to solve nested opti-
mization problems of the general form

min
θ

1
N

N∑
n=1

`(x̂n(Kθ), tn), s.t. x̂n ∈ arg min
x∈X

hθ(x).

Thus, for a data sample n, the sought gradient of the higher level problem with respect
to the parameters θ, i.e. ∇θ`(x̂n(Kθ), tn), is computed as

∇θ`(x̂n(Kθ), tn) = −
(
∇x`(x̂n(Kθ), tn)

)T
[∇2

xhθ(x̂n(Kθ))]
−1∇θ∇xhθ(x̂n(Kθ)), (4)

with x̂n such that ∇xhθ(xn(Kθ))|x=x̂n = 0. An advantage of this approach is that it
does not actually require the saddle-point structure as in (3), since the lower level can
represent any energy that minimizes x depending on parameters θ. However, due to
the involved Hessian, it can be computationally very expensive. Moreover, it requires a
certain regularity of the lower level problem, i.e. the energy function that is optimized
for has to be twice continuously differentiable in x.

A second popular strategy to deal with bilevel optimization problems are unrolling
techniques [9]. Hereby, the bilevel learning is approximated by unraveling a certain num-
ber of iterations k̄ of the lower level problem by some gradient-based scheme. Then, x̂n
is replaced by xk̄n which is the k̄-th iterate of the gradient-based scheme, i.e.

min
θ

1
N

N∑
n=1

`(xk̄n(Kθ), tn), s.t. xk+1
n = xkn − τ k∇xhθ(x

k
n) for k = 0, 1, . . . , k̄ − 1.

2
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Further, the chain rule (or automatic differentiation) is used to obtain the final deriva-
tives. This is a very straightforward approach, however, it only approximates the bilevel
optimization problem if k̄ → ∞. While there are approaches to interprete this as early-
stopping in a discretized continous-time gradient flow setting on the energy model [10],
convergence in theory is not guaranteed. Moreover, the number of iterations that can be
unraveled is limited by memory constraints.

Thus, unrolling is a very convenient approach but it comes without theoretical con-
vergence; while implicit differentiation on the other hand – which is computing the exact
derivative – is computationally heavy and requires more regularity. The questions arises
whether something else could be considered for less smooth energies, that offers conver-
gence guarantees while being computationally feasible. Hereby, a piggyback algorithm is
reviewed that fulfills these requirements in case of underlying convex-concave saddle-point
problems in the form of (2) for the lower level problem.

2.2 Derivation of the Piggyback Algorithm

This section motivates the use of the piggyback algorithm for the derivatives of saddle-
point problems as given in (2) and is taken from [4]. For ease of notation we assume that
the entire linear operator K is learned and we drop the notation of the data sample n
such that L(K) = `(x̂(K), t). The result can subsequently be adapted to only learn a
subset Kθ that composes the linear operator given a specific sample n. The saddle-point
problem in (2) has the primal problem shown in (1) and the corresponding dual problem

max
y∈Y
−f ∗(y)− g∗(−K∗y). (5)

The analysis is further based on the assumption of a unique saddle-point (x̂, ŷ) with
optimality conditions {

Kx̂− ∂f ∗(ŷ) = 0,

K∗ŷ + ∂g(x̂) = 0.

The starting point is to perturb the saddle-point problem by a small variation on the linear
operator K + sL with |s| � 1, which results in a perturbed solution of the saddle-point
problem in the directions ξs, ηs, i.e. we obtain x̂s = x̂+ sξs and ŷs = ŷ+ sηs. Substituting
the perturbed solution (x̂s, ŷs) into the optimality conditions and using the fundamental
theorem of calculus, one obtains{

Kx̂+ s(Kξs + Lx̂s)− [∂f ∗(ŷ) + (
∫ s

0
D2f ∗(ŷ + tηs) dt)ηs] = 0,

K∗ŷ + s(K∗ηs + L∗ŷs) + [∂g(x̂) + (
∫ s

0
D2g(x̂+ tξs) dt)ξs] = 0.

Using the optimality conditions and dividing by s yields{
Kξs + Lx̂s − (1

s

∫ s
0
D2f ∗(ŷ + tηs) dt)ηs = 0,

K∗ηs + L∗ŷs + (1
s

∫ s
0
D2g(x̂+ tξs) dt)ξs = 0,

3
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and as s→ 0 one can see that ξs, ηs go to ξ, η satisfying{
Kξ + Lx̂−D2f ∗(ŷ)η = 0,

K∗η + L∗ŷ +D2g(x̂)ξ = 0.

If the order of the equations are changed and the second line is multiplied by −1, one can
see that the unique solution is given by(

ξ
η

)
=

(
D2g(x̂) K∗

−K D2f ∗(ŷ)

)−1(−L∗ŷ
Lx̂

)
.

We can now compute the directional derivative L′(K;L) = 〈∇L(K), L〉 as follows:

L′(K;L) = ∇`(x̂, ŷ)T
(
ξ
η

)
= ∇`(x̂, ŷ)T

(
D2g(x̂) K∗

−K D2f ∗(ŷ)

)−1(−L∗ŷ
Lx̂

)
.

Next, we introduce adjoint variables X, Y which do not require knowledge of the pertur-
bation direction L but only of the derivative of the loss function, such that

(−XT , Y T ) = ∇`(x̂, ŷ)T
(
D2g(x̂) K∗

−K D2f ∗(ŷ)

)−1

⇔ ∇`(x̂, ŷ) =

(
D2g(x̂) −K∗
K D2f ∗(ŷ)

)(
−X
Y

)
,

which can also be written as{
D2g(x̂)X +K∗Y +∇x`(x̂, ŷ) = 0,

−KX +D2f ∗(ŷ)Y −∇y`(x̂, ŷ) = 0.
(6)

Equation (6) contains the optimality conditions of the quadratic adjoint saddle-point
problem:

min
X∈X

max
Y ∈Y

〈KX,Y 〉+
1

2
〈D2g(x̂)X,X〉 − 1

2
〈D2f ∗(ŷ)Y , Y 〉+

〈
∇`(x̂, ŷ),

(
X
Y

)〉
.

Denoting by (X̂, Ŷ ) the unique solution of this adjoint saddle-point problem, the direc-
tional derivative (6) is given by

L′(K;L) = 〈X̂, L∗ŷ〉+ 〈Ŷ , Lx̂〉, (7)

for any L. Using L′(K;L) = 〈∇L(K), L〉, the gradient is then given by (which relates to
the form in (4))

∇L(K) = Ŷ ⊗ x̂+ ŷ ⊗ X̂.

4
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2.3 Piggyback Algorithm

The piggyback algorithm involves both the computation of solutions of saddle-points
of the primary (lower level) problem and the adjoint (secondary) problem, which in turn
depends on the primary solution. Instead of doing this sequentially, however, the idea
is to run both primal-dual algorithms in parallel, see Algorithm 1 for the general iter-
ations (note that L̃ is the Lipschitz constant of the linear operator Kθ). Naturally, as
the secondary primal-dual algorithm depends on the solution of the primary primal-dual
algorithm, this is also reflected in its convergence rate (see Section 2.5).

Algorithm 1: Piggyback primal-dual algorithm for solving (2) and its adjoint (6).

• Initialization: x0, X0 ∈ X , y0, Y 0 ∈ Y .

• Step sizes: Choose the step sizes τ, σ such that στL̃2 ≤ 1.

• Iterations: For each k = 0, . . . , k̄ − 1 let

x̃k+1 = xk − τK∗θyk, X̃k+1 = Xk − τ(K∗θy
k +∇x`(x

k, t))

xk+1 = proxτg(x̃
k+1), Xk+1 = ∇ proxτg(x̃

k+1) · X̃k+1

x̄k+1 = 2xk+1 − xk, X̄k+1 = 2Xk+1 −Xk

ỹk+1 = yk + σKθx̄
k+1, Ỹ k+1 = Y k + σKθX̄

k+1

yk+1 = proxσf∗(ỹk+1), yk+1 = ∇ proxσf∗(ỹk+1) · Ỹ k+1

• Output: saddle-point (xk̄, yk̄) ≈ (x̂, ŷ) and adjoint state (X k̄, Y k̄) ≈ (X̂, Ŷ ).

2.4 Computing Derivatives

In practice, the learnable parameters θ are often only a subset of the operator Kθ

– although one can of course also learn the entire operator K, e.g. by learning a set
of zero-mean filters for denoising. Thus, to compute the derivatives it is convenient to
evaluate (7) and use automatic differentiation to extract the gradient with respect to the
relevant parameters. Once the gradients are computed, any gradient-based algorithm e.g.
with acceleration terms or moving gradient averages is suitable for learning.

Constraints on the learnable parameters as indicated by R(Kθ) can be incorporated by
means of projections after an update step on the learnable parameters θ was performed.

2.5 Convergence of the Piggyback Algorithm

The piggyback primal-dual algorithm is shown to converge linearly for f ∗, g strongly
convex and f , g∗ locally C2,α for some α ∈ (0, 1] [1]. This linear convergence of the
primary primal-dual algorithm is consequently reflected in a slower linear convergence of
the adjoint problem. This is due to the nature of the piggyback algorithm where solving
the adjoint problem follows the primary problem.

5
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In practice, is was shown that the algorithm can be used on less smooth energies as
well while remaining remarkably robust with the computed gradients [4, 1].

3 NUMERICAL RESULTS

To demonstrate the applicability of the piggyback primal-dual approach, it is applied to
two numerical examples. In both cases, a classical regularizer is enhanced by optimizing
it towards a specific inverse imaging problem learned on a chosen training set.

3.1 Shearlet Transform

First, an optimal shearlet transform is learned in an image denoising setting [1] on
natural images and cartoon-like data. Shearlets are based on an extension of wavelets
with the benefit of offering more isotropy whilst being faithfully discretizable [11]. The
digital shearlet transform applied to an image x ∈ X at scale j > 0 and shear level
|k| ≤ d2j/2e reads as

DSTj,k(x) = λj,kψdj,k ∗ x. (8)

More specifically ψdj,k is composed of a few basic building blocks that originate from a
low-pass filter h1 and a 2D directional filter P . A multiresolution analysis allows to
derive all subsequent required filters from these two components, see [1] for more details.
Moreover, the regularization parameters λj,k > 0 can weight the invidual contribution of
each shearlet. Thus the learnable parameters are comprised of θ = {λj,k, h1, P}.

This is incorporated into a denoising problem regularized by the shearlet transform in
the form of (1) and reads as

min
x
g(x, z) + f(Kθx),

where Kθ is a linear operator that computes the shearlet transform as given in (8). Note
that to better fit the framework where the convergence of the piggyback was shown, a
smooth approximation for fε(v) =

∑
i φε(vi) is used (i denotes the pixel index of a shearlet

coefficient). More specifically, this is a C2,α approximation φε with α = 1 of the |·| function
and it reads as

φε(t) =

{
− |t|

3

3ε2
+ t2

ε
+ ε

3
, if |t| ≤ ε,

|t| else.

This function also allows to obtain a closed form solution for the conjugate function φ∗ε
as well as for its proximal map. Casting it as a saddle-point problem allows to use a
piggyback algorithm to learn the parameters θ = {λj,k, h1, P}.

On two data sets of natural images and cartoon-like images (for which the shearlet
transform is optimized), we were able to show the qualitative and quantitative improve-
ments obtained in denoising the corresponding test data set after learning θ. Experimen-
tally we show that with decreasing smoothness parameter ε of the regularizing function f
(which then approximates the | · | function) the piggyback algorithm remains robust and
in practice works well even on less regular functions. Finally, we examine the primal-dual
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gaps of the primary and the adjoint problem for different ε showing the slower linear
convergence of the adjoint saddle-point problem, see [1].

3.2 TGV Discretization

The second application scenario is learning an improved discretization of the second-
order TGV regularizer [2]. As it builds upon TV, it can also suffer from discretization
artefacts related to isotropy and rotational invariance [5, 4], which is due to staggered pixel
grids arising from discretized finite differences. The authors in [7] propose an improved
handcrafted TGV discretization, where the dual variables are interpolated to denser grids
following the style of [5]. This is extended to a more general (consistent) setting, where
an improved discretization can be learned using a piggyback algorithm.

The TGV regularizer involves the first-order and second-order finite differences oper-
ators D and E (see [2] for definitions) and the resulting symmetrized second-order finite
differences operator D2 = ED. Using interpolation operators K and L that map the dual
variables p and div p to nK and nL times denser grids, respectively, the more general
setting of the newly discretized TGV regularizer for an image x ∈ X reads as

min
vK,vL

α1‖vL‖Z + α0‖vK‖Z , s.t. D2x = EL∗vL +K∗vK .

Here, the norm ‖v‖Z = ‖v‖1,1,2 for some v ∈ R(M×N)×J×I corresponds to the absolute
sum of I components of the 2-norm of its J components. Coupling this regularizer with a
data term g(x, z) and incorporating the constraint, the saddle-point problem is obtained:

min
x,vK ,vL

max
y

g(x, z) + α0‖vK‖Z + α1‖vL‖Z + 〈D2x− EL∗vL −K∗vK , y〉.

Using an `2 norm for the outer bilevel loss function and constraints on the interpolation
filter coefficients (to ensure their boundedness), the piggyback algorithm can readily be
applied to obtain saddle-points for the primary and the adjoint problems. Once the
gradients of the loss function with respect to the filter coefficients are computed, they are
updated using a (block-)Adam optimizer [8].

Interestingly, the learned interpolation filters tend to capture different orientations for
the operator L while exhibiting more of a smoothing effect for the filter K that operates on
the second-order finite differences. Numerical results for denoising a synthetic piecewise
affine data set and a natural image data set demonstrate the effectiveness of the learned
interpolation filters in terms of visual quality but also quantitative metrics, see [2].

4 CONCLUSION

This work motivates and demonstrates the use of a piggyback-style algorithm for bilevel
problems when the lower level problem is a convex-concave saddle-point problem. The
approach was applied to two classical regularizers in a convex imaging application. Pos-
sible extensions to other data terms or to other regularizers involving linear operators are
straightforward. Future work could tackle the extensions to more complex problems such
as in 3D and minimal surface problems, as well as an error analysis of the outer bilevel
problem depending on the (uniqueness of the) saddle-point of the lower level problem.
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