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Abstract. The prediction of leakage in polymer seals is still a particular challenge due to
many dependencies: manufacturing inaccuracy, microparticles on the contact surface and sur-
face asperity. Polymer seals, which are operated at cryogenic temperatures, undergo a material
behaviour change at the so-called glass transition temperature. At this temperature, its be-
haviour changes from viscous/rubbery to glassy. There is a significant stiffening of the polymer
material, which leads to a worse compensation of roughness in the contact surfaces. As a con-
sequence the tightness of the valve may no longer be sufficiently given.
The leakage through the valve is numerically investigated by a two-scale contact simulation,
which is based on the concept of Representative Volume Elements, which are known in homog-
enization of microstructures. The deformations on the microstructure are prescribed by the
macroscopic kinematics at the contact area. The mean microscopic friction coefficient is deter-
mined in Representative Contact Elements (RCE), which are node-wise linked to the macroscopic
contact area. The RCEs surface texture is parameterized based on optical measurement data.
As the polymer seal is operated over a wide temperature range, a fully coupled thermo-viscoelastic
material model at finite strains is used to simulate the material behaviour at both scales. Due
to the change from entropy to energy dominated behaviour over the glass transition tempera-
ture the model is extended to account for the transition from viscous/rubbery to glassy as the
temperature is decreased. The surface asperity needs to be represented explicitly as the gap and
volume between both contact surfaces and the fluid path through the seal are used to determine
the leakage through the seal.

1 Introduction

The tightness of polymer valve seals poses a particular challenge in the cryogenic temperature
range, since when the temperature drops below the so-called glass transition temperature, there
is a significant stiffening of the polymer material and thus poorer compensation for unevenness
in the contact surfaces. The consequence of this is that the tightness of the valve is no longer
sufficiently given. In this project, a thermomechanically coupled model was set up which allows
the contact pressure distribution at the sealing surface to be calculated. It should be noted that
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the sealing ability of valves is significantly influenced by the temperature. In particular, the glass
transition, which leads to significant embrittlement and stiffening of the material after falling
below the glass transition temperature, represents a challenge in the modelling. Furthermore,
the leakage through the contact area of the valve needs to be calculated. For that, a two-scale
contact model needs to be set up, as not only the real surface characteristics will be embedded
on the microscale, but also the fluid pressure between both contact parts needs to be taken
into account. Both aspects play an important role to determine the largest cross-section and
therefore define the leakage through the system. Two-scale contact was intensively investigated
in the group of Wriggers. Reinelt conducts a multi-scale analysis for elastomers on rough rigid
surfaces [2]. In [19] frictional laws based on the micromechanical approach are investigated
for soil and concrete. Multiscale contact homogenization was used to model particles between
two contact surfaces in [1]. The most notable work of modelling glass transition in Polymers
was by Haward and Thackray[14], who combined a flow model with rubbery elasticity. The
one dimensional model combined the material behaviour of glassy and rubbery materials. This
model was extended to three dimensions by [15]. Reese’s approach is based on the modelling
of rubbery elasticity[7]. The modelling of leakage in seals was well investigated numerically and
experimentally in [11, 12, 13]. In this work a pressure control valve will be investigated. The
set-up of the valve with the boundary conditions, used materials and a zoom of the relevant
contact area are shown in Fig. 1. The investigated contact area is between the poppet (green)
and the sealing ring (grey). The tightening force F1 is responsible to keep the seal closed and
the force F2 to keep the sealing ring in place. The upstream and downstream fluid pressure pu
and pd are provided as a pressure boundary condition. The sealing ring is made of PCTFE,
which is a semi-crystalline polymer. The amorphous parts undergo a material behaviour change
due to the sudden decrease in temperature.

2 Material model

The material behaviour of a polymer is viscoelastic in general. The model must be also
applicable for a wide frequency and temperature range. Therefore, a generalized Zener model,
which consists of a spring parallel to N Maxwell elements (spring and damper in series), is used
to represent the material behaviour.

2.1 Kinematics

As it is known from elastoplasticity, we assume a multiplicative split of the deformation gra-
dient into an elastic (e) and an inelastic/viscous part (v): F = FeFv [5]. The right Cauchy
green tensor is calculated by C = FTF. The elastic and viscous right Cauchy green tensors are
determined by Ce/v,i = FT

e/v,iFe/v,i, respectively.

2.2 Clausius - Duhem inequality

The Clausius-Duhem inequality for thermomechanical processes is given by

−Ψ̇ +
1

2
S · Ċ− ηθ̇ − 1

θ
Q ·Grad θ ≥ 0 (1)
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Figure 1: Set-up of the pressure control valve: boundary conditions, materials and zoom on
contact area

whereas S is the second Piola-Kirchhoff stress tensor, η and θ are the entropy and the temper-
ature and Q is the heat flux. Inserting the additive split of the Helmholtz free energy Ψ in an
elastic and N viscous parts [3]

Ψ = Ψe(C, θ) +
N∑
i=1

Ψv,i(Ce,i, θ) (2)

in Eq. (1), yields

1

2
S · Ċ− ∂Ψ

∂C
· Ċ−

N∑
i=1

∂Ψ

∂Ce,i
· Ċe,i −

∂Ψ

∂θ
θ̇ − ηθ̇ − 1

θ
Q ·Grad θ ≥ 0 (3)

With the time derivative of the elastic right cauchy green tensor Ċe,i =
˙

F−Tv,i CF−1
v,i and the

velocity gradient lv,i = Ḟv,iF
−1
v,i , the inequality yields(

1

2
S− ∂Ψ

∂C
−

N∑
i=1

F−1
v,i

∂Ψ

∂Ce,i
F−Tv,i

)
· Ċ+2

N∑
i=1

Ce,i
∂Ψ

∂Ce,i
· lv,i−

(
∂Ψ

∂θ
+ η

)
θ̇− 1

θ
Q ·Grad ≥ 0 (4)

Following the well-known Coleman Noll procedure [4] for the second Piola-Kirchhoff stress and
the entropy, the following expressions hold

S = 2
∂Ψ

∂C
+ 2

N∑
i=1

F−1
v,i

∂Ψ

∂Ce,i
F−Tv,i = Se +

N∑
i=1

Sv,i, η = −∂Ψ

∂θ
(5)
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With an isotropic function for the Helmholtz free energy and a symmetric right Cauchy-Green
tensor, the remaining Clausius Duhem inequality can be written with the symmetric part of the
viscous velocity gradient dv

2
N∑
i=1

Ce,i
∂Ψ

∂Ce,i
· dv,i −

1

θ
Q ·Grad ≥ 0 (6)

2.3 Evolution equation and heat flux

The inequality must be fulfilled for arbitrary processes. Therefore, Fourier’s law

Q = −λ∂θ
∂x

(7)

is chosen for the heat flux with λ being the heat conductivity of the material. The evolution
equation for a viscous material of the ith Maxwell arm is chosen according to [5]

dv,i =
1

2τv,iµv,i
dev

(
Ce,i

∂Ψ

∂Ce,i

)
+

1

9τv,iKv,i
tr

(
Ce,i

∂Ψ

∂Ce,i

)
I (8)

with the bulk and shear moduli Kv,i, µv,i and the relaxation time τv,i for the ith Maxwell arm.

2.4 Energy equation

Inserting the Helmholtz free energy, Eq.(2), and the time derivative of the Legendre trans-
formation of the internal energy ė = Ψ̇ + θ̇η + θη̇ in the energy equation

Jdivq− S · 1

2
Ċ + ė+ r = 0 (9)

yields the differential equation for the temperature field

ρ0cθ̇ = −divq + θ
∂S

∂θ
· 1

2
Ċ +

N∑
i=1

(
2Ce,i

∂Ψ

∂Ce,i
− 2θCe,i

∂2Ψ

∂Ce,i∂θ

)
· dv,i (10)

if Eq.(5) (η = −∂Ψ
∂θ ), the push back of Ċv = 2FT

v dvFv and the specific heat capacity defined as

c = −θ ∂2Ψ
∂θ2

is inserted in the energy equation. Heat generation depends on the rate of dissipation
H. Hereby the internal (Hint) and the external (Hext) contributions are to be distinguished:

Hint =

N∑
i=1

C

(
Sv,i − θ

∂Sv,i
∂θ

)
·C−1

v,i Ċv,i Hext = −1

2
θ
∂S

∂θ
· Ċ (11)

The internal contributions come from sliding and friction of grains, elongation and entanglement
of polymer chains. For elastic material behaviour holds: Hint = 0. The external contributions
are dependent on the rate of the deformation Ċ. For the external heat generation, a backward
Euler approach is used for the time integration of Ċ.
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2.5 Glass transition

Thermal energy leads to an increased motion and mobility of chain segments and thus to a
higher distance of the chains to each other. At a specific temperature the rate at which the
distance changes increases significantly compared to lower temperatures. This temperature is
called the glass transition temperature θg because the polymer changes from the glassy to the
rubbery state [6]. The glass transition occurs in amorphous materials and only in the amorphous
parts of a partially crystalline polymer, in which the material changes from rubbery/viscous to
hard/glassy phase when temperature is decreased:

θ > θg : rubbery phase; the material behaviour is entropy dominated

θ < θg : glassy phase; the material behaviour is energy dominated.

For entropy elastic behaviour the change of free energy is mainly due to an angle change in the
polymer chains. The internal energy of polymers stays constant under deformation. On the
other hand, the intermolecular force in crystal lattice structures of metals are dominant [7]. The
in Sec. 2.2 introduced Helmholtz free energy is extended to

Ψ̄ =
θ

θ0
Ψ(C,

N∑
i=1

Ce,i, θ) + e0

(
1− θ

θ0

)
+ c (θ − θ0 − θln(θ/θ0)) (12)

according to [3]. The parameter γ controls the type of internal energy [7]:

e0 = γΨ + 3αTKeθ0 ln J + 3

N∑
i=1

αTKv,iθ0 ln Je,i (13)

From a micromorphic motivation, the material in the glass transition region consists of rubbery
and glassy parts. Its volume fraction can be determined by

Vr
V

+
Vg
V

= 1

whereas Vr and Vg are the volume fractions of the glassy and rubbery parts. If γ is chosen as the

glassy volume fraction
Vg
V , it applies γ = 0 far above the glass transition temperature; far below

the glass transition temperature γ = 1 holds. The newly selected free energy is now expressed
as

Ψ̄ =

[
θ

θ0
(1− γ) + γ

]
Ψ− 3αT

(
Ke ln J +

N∑
i=1

Kv,i ln Je,i

)
(θ − θ0) + c̄

(
θ − θ0 − θ ln

θ

θ0

)
(14)

Since the material behaviour does not change abruptly at the glass transition temperature, but
over a wide range, the transition parameter is chosen as a function of the temperature, the
glass transition temperature and a parameter a, which controls the width of the glass transition
range[7]:

γ =
1

1 + exp(2a(θ − θg))
(15)
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2.6 Implementation in Abaqus

The material model is implemented in a user material subroutine (umat) in Abaqus. ABAQUS
is programmed with respect to the current configuration[8, 9]. Therefore the second Piola-
Kirchhoff stress and the material tangents must be pushed forward, see e.g. [10].
The explicit choices for the Helmholtz free energy are of Saint-Vernant type extended for ther-
mal expansion with the material parameters shear modulus, second Lame constant and bulk
modulus µe,Λe,Ke for the equilibrium spring, µv,i,Λv,i,Kv,i for the ith Maxwell elements and
the thermal expansion coefficient αT .

3 Contact model

3.1 Normal contact

If two bodies are in contact, the normal contact gap is gN = 0 and the pressure pN < 0. If
there is a gap between the two surfaces, gN > 0 and pN = 0 hold. This is also expressed in the
Kuhn-Tucker-Karush conditions

gN ≥ 0, tN ≤ 0, gN tN = 0 (16)

which allow no penetration. The normal traction between the surfaces is calculated using a
Penalty approach

tN =

{
εNgN gN < 0

0 gN ≥ 0
(17)

with the normal penalty parameter εN , if the bodies penetrate.

3.2 Tangential contact

As friction is considered in the simulation, the tangential traction must be considered here.
The total slip s of an arbitrary point on the contact surface is given by

s =

t∫
t0

||ġT ||dt̃→ ṡ = ||ġT || (18)

whereas ġT is the slip velocity. If the two bodies stick, the tangential velocity is zero: ṡ = 0. If
it slips, tT is determined by Coulomb’s law:

tT = −µ|tN |
ġT
||ġT ||

if f = ||tT || − µ|tN | > 0 (19)

whereas µ is the friction coefficient. If the slip surface f is in the stick region: f ≤ 0. For
f > 0, the system slips and a return map algorithm must be performed in accordance to
elastoplasticity [1]. The slip velocity is split additively into an elastic and a slip part:

ġT = ġeT + ġsT (20)
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The slip-part of the slip velocity is evaluated with the following evolution equation

ġsT = γ̇
∂fs
∂tT

= γ̇ nT (21)

whereas nT = tT
||tT || .

3.3 Micro-to-macro transition

The leakage through the valve is numerically investigated by a two-scale contact simula-
tion, which is based on the concept of Representative Volume Elements, which are known in
homogenization of microstructures. The contact forces on the microstructure are prescribed
by the macroscopic kinematics at the contact area. The mean microscopic friction coefficient
is determined in Representative Contact Elements (RCE), which are node-wise linked to the
macroscopic contact area. The pressure and the tangential displacement are applied to the unit
contact cell with periodic boundary conditions (PBC) at the faces in t1-direction, see Fig. 2.
The macroscopic friction coefficient is determined by

µ =
|t̄ · nT |
|t̄ · nN |

(22)

whereas the traction t̄ is surface averaged over the contact surface.

Figure 2: Two-scale contact modelling approach and boundary conditions on microscale

4 Numerical investigations

In this section, the numerical investigations are presented. The boundary value problem for
the pressure control valve, see Fig. 1, is calculated including the proposed material model and
the two-scale contact as introduced in Sec. 3.3.
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4.1 Boundary value problem

Firstly, the material parameters for the three components are given here. The material
parameters for steel and Incoloy are summarized in Tab. 1. A dynamic mechanical analysis

Table 1: Material parameters for steel and Incoloy

E [GPa] ν [-] α [1/K] λ [W/(mK)] cp J/(kgK) ρ [kg/m3]

Steel 200 0.3 1.65·10−5 45 490 7900
Incoloy 197 0.3 1.6·10−5 12 425 8190

(DMA) was carried out to determine the mechanical parameters for PCTFE. The loss and
storage moduli under bending and torsion were determined in the temperature range from -150°C
to +100°C at frequencies between 10 and 35 Hz. The expected closing time is between 10−1 s and
10−3 s. Therefore, master curves were determined by superposition using the time-temperature
superposition for this frequency range for temperatures between 20°C and -100°C. These master
curves were then used to determine the material parameters, see Tab. 2. The thermal material
parameters for PCTFE are the thermal expansion coefficient αT = (0.106 θ/K2+2045/K)·10−5,
the heat conductivity λ = 0.15 W/(mK), the specific heat cp = 2.4·10−3 θ J/(kgK2)+0.8 J/(kgK)
and the density ρ = 7900 kg/m3. Secondly, the boundary conditions, if not already given in Fig.1
are introduced. The fluid temperature Tf is −100◦T is applied upstream of the contact area.
The upstream and downstream fluid pressure are 7 bar and 4 bar, respectively. The pressure
boundary condition is applied upstream and downstream of the contact area. For the contact
properties a friction coefficient of µPS = 0.27/0.12 is chosen between poppet and sealing ring at
the temperatures 20◦C and −100◦C at the microscale and a constant µSS = 0.25 between the
sealing and support ring. A first approach to carry out a multiscale approach with the friction
coefficient µ = 0 on the lowest scale, according to [2], was not successful. The calculated friction
coefficient was too small.

4.2 Contact pressure

The macroscopic contact pressure and temperature distribution at the contact area is shown
in Fig. 3. The maximum value of the contact pressure and its position change with decreasing

Table 2: Mechanical material parameters for PCTFE, N = 3 Maxwell (MW) elements at
T=20◦C

MW element E [MPa] G [MPa] τ [1/s]

- 581.1 204.8 -
1. MW 145.4 54.8 0.13
2. MW 203.6 69.2 8.8e-03
3. MW 130.4 44.6 6.0e-05
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temperature as the material contracts. If the fluid pressure changes, the position of maximum
contact moves further downstream. As the seal is designed as a line contact, this dramatically
changes the tightness of the seal, see Fig. 6.

Figure 3: temperature and pressure distribution at contact area; contact pressure distribution
along contact edge for different times

4.3 Glass transition

In Fig. 4 the temperature (left) and the glass transition parameter (right) distribution is
shown in the contact area of the valve at a time, when the sealing ring is not yet fully cooled.
As the glass temperature region lies between 200 and 260K, the transition is correctly modeled.

Figure 4: temperature and glass transition parameter distribution in the seal
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Figure 5: Microscopic friction coefficient over tangential displacement t1, normal and tangential
contact force

4.4 Friction coefficient on the microscale

The friction coefficient is calculated on the microscale according to Eq. (22) and passed to
the macroscale. The macroscopic friction coefficient is shown in Fig. 5 over the displacement
in tangential direction t1. As expected it increases linearly to µ ≈ 0.27 and fluctuates around
this value depending on the surface roughness. Each peak in the curve can be associated with
one peak on the surface. The normal and tangential contact force is also shown in Fig. 5. After
linearly increasing the pressure, the poppet slides in tangential direction.

4.5 Leakage simulation

The fluid leakage through the critical cross section was calculated according to [11, 12]

Q̇f =
h3

12η
(Pu − Pd) (23)

with h being the height of the critical (maximum) gap. Three different pressure ratios were
investigated: Pu = 2/7/21 bar to Pd = 1/4/7 bar. The viscosity η at 20 bar and T = 100◦C
is 13 µPa s and is assumed to be constant over temperature and pressure. The leakage Q̇f is
shown in Fig. 6. As expected it increases significantly with increasing pressure difference. The
leakage will be experimentally investigated and compared to the numerical results in the future.

5 CONCLUSIONS

In this article a two-scale contact approach was presented to model leakage in cryogenic
seals. A fully-coupled thermo-viscoelastic material model with temperature dependent material
parameters including the change of the material behaviour over the glass transition region is used
to model the polymer’s material behaviour. The macroscopic friction coefficient was calculated
on the contact area of microscopic unit cells, whose surface roughness was taken from optical
measurements. The contact pressure distribution, temperature and leakage through the system
were numerically investigated. An axial shift of contact area and pressure changes are observed
due to material expansion with decreasing temperature. The leakage is increasing rapidly with
increasing pressure ratio.
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Figure 6: Seal leakage at different pressure ratios Pu − Pd (upstream to downstream pressure)

In the future the leakage will be investigated for different cooling profiles. It will also be validated
experimentally. In the optical measurement of the surface roughness, a decrease in the amplitude
was discovered after a loading cycle. Therefore, additional effects like damage or plasticity after
loading might be taken into account.
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