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Abstract. This study is about the construction of a numerical scheme of the predictor-corrector
type in conservative form for solving general systems of conservation laws in multiple space di-
mensions on unstructured meshes. The work is a generalization of the one-dimensional finite
volume characteristics (FVC) scheme and is related to the work of Fayssal Benkhaldoun and
Mohammed Sead. The construction of the intermediate state is based on the method of charac-
teristics, while the corrective stage recovers the conservation equations. The scheme is accurate
to first order, monotonic and entropic; it avoids Riemann solvers at each interface; it also allows
for improved accuracy order in time and space on unstructured three-dimensional meshes in the
framework of the finite volume method. The scheme’s performance is evaluated through a series
of test benchmarks for the three-dimensional version of the Euler equations..

1 INTRODUCTION

A complementary approach for experiment and modeling, numerical simulation is one of
the three pillars of scientific research. Fluid mechanics is one of the pioneering sectors in this
triptych, and obtaining numerical schemes well suited to fluid mechanics models is a subject
that has occupied numerical scientists for some time. One of the difficulties is to reconcile
accuracy and robustness with a reasonable computational cost, but the complications can be
quite different depending on the applications targeted. Thus, despite the numerous works and
the advances in a subject that is still relevant today, it is quite natural that there is no uniformly
efficient technique in all regimes. In the context of the numerical approximation of hyperbolic
systems of conservation laws, several methods based essentially on the solution of the Riemann
problem have been retained, and concern shock capture schemes [7, 8, 9, 10]. These methods
propose schemes allowing the exact solution of the Riemann problem on each interface, which
makes their computation algorithm very expensive. To reduce the computational time, other
approaches propose an approximate solution to the Riemann problem, and for the same purpose,
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the work of Roe [4, 5] and Hartan [6] provided a scheme based on the evaluation of numerical
flux from the exact solution of the linearized problem, the industry widely uses this scheme
because it has the ability to capture shock waves with reasonable accuracy.

This paper aims to describe a simple approach that may be a good candidate for the simu-
lation of most compressible flow phenomena in real configurations. The proposed approach is a
new family of numerical schemes that incorporates the techniques of the method of character-
istics in the reconstruction of numerical flux, it is easy to implement, and it accurately solves
hyperbolic systems of conservation laws; it is also written in the formalism of non-uniform tetra-
hedral meshes, in addition, this scheme avoids the resolution of Riemann problem in the time
integration process, it is conservative and can be considered as a finite volume method without
a Riemann solver for the Euler equations. To approximate the characteristic curves, an iterative
process is used, and the numerical fluxes are calculated using interpolation. Let us mention
that the advantage of using the characteristic method is that no boundary conditions are nec-
essary for the numerical flows at the predictor stage. These features are demonstrated using
several reference problems for the Euler equations. The results presented provide accurate and
efficient solutions. In this paper, the reader will find a process that will allow him to have a
programmable solution and be capable of generating the numerical solutions of Euler equations
for incompressible flows.

This paper is structured as follows: a brief description of the mathematical model and the
predictor-corrector algorithm of the multidimensional FVC scheme will be presented in Section
2. Then, numerical results and examples will be presented in Section 3. Finally, a discussion on
the accuracy and efficiency of the characteristic finite volume scheme, as well as some conclusions
on the paper, are disclosed in Section 4.

2 FVC scheme in multiple space dimensions

We consider the three-dimensional Euler equations modelling the dynamics of non-viscous
gases

∂tW +∇ · F(W) = 0, (1)

with

W =



ρ

ρu

ρv

ρw

ρE


, F(W) =



ρu

ρu2 + P

ρuv

ρuw

u(ρE + P )

ρv

ρuv

ρv2 + P

ρuw

v(ρE + P )

ρw

ρuw

ρvw

ρw2 + P

w(ρE + P )


. (2)

where F is the flux tensor and W is the unknowns vector, such as ρ is the density of the gaze,
u := (u, v, w) is the gaze particle velocity, E is the total energy, and P is pressure, knowing that
the latter is related to the total energy using the law of the state of perfect gases given by

ρE = (
1

2
ρ|u|2 +

P

(γ − 1)
) (3)
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with γ is the ratio of specific heats, it is a constant that depends on the particular gas. We
formulate the three-dimensional finite volume characteristic scheme to solve the equation (1).
The method uses general meshes to facilitate grid generation for complex configuration com-
putational domains. In addition, a predictor-corrector step is used for temporal integration.
In the predictor step, the method of characteristics is used to determine the intermediate val-
ues to evaluate the numerical flow, while a thoroughly conservative solution is obtained in the
correction step.

2.1 FVC scheme on unstructured meshes

We assume a conforming tessellation T of the computational domain Ω ⊂ R3 a by elements

Ti that are called a control volume such that T =
⋃
i

Ti.

Integrating the (1) over a control volume Ti by using Green’s divergence formula, we obtain
the following integral system

∂

∂t

∫
Ω
WdV +

∫
∂Ω

F(W) · n dσ = 0, (4)

where Ω is the domain of interest, ∂Ω is the boundary surrounding, n is the normal vector to ∂Ω
in the outward direction, dV and dσ are respectively the surface element and the length element.
The problem domain is first discretized into a set of triangular cells forming an unstructured
computational mesh. We consider the cell-centered finite volume formulation, i.e. it starts with
the discretization of the computational domain Ω by a finite set of control volumes Ti, see Figure
1, then, by integrating (1) over a control volume Ti and using Green’s divergence formula, we
obtain the integral system (4). A cell-centred finite volume method is formulated where all the
dependent variables of the system are represented as piecewise constant in the cell. Therefore,
the equation (4) can be reformulated as

dWi

dt
= − 1

|Ti|
∑
j∈N(i)

|γij |Φ(Wij ,nij), (5)

where Wi =
1

|Ti|

∫
Ti

W dV is the average quantity on cell Ti stored at the cell center.

Φ(Wij ,nij) '
1

|γij |

∫
γij

F(W)·nijdσ, is the numerical flux computed at the interface γij between

the cells Ti and Tj . The idea of the flux approximation is to reconstruct the intermediate state
Wij as the following process.
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Figure 1: Generic control cells of the computational domain.

Notations:

• pi, vertex of Ti,

• xi, centroid of the cell Ti,

• γij , boundary face between the cells Ti and Tj ,

• |γij |, area of γij ,

• |Ti|, volume of the cell Ti,

• ∂Ti, boundary of the cell Ti,

• Pi, the surface area of the cell Ti.

• nij , unit normal to γij , outward to Ti such as, nji = −nij .
We compute the intermediate state Wij from a projected velocity model whose velocity compo-

nents are projected onto the frame R = (Ti;~b, ~τ , ~η) see Figure 2, where ~η := (nx, ny, nz)
T is the

unit outward normal to the surface of the cell Ti. ~τ = (τx, τy, τz)
T and b = (bx, by, bz)

T are the

tangential vectors such as,~b := ~η∧~τ . The projected velocities are defined as uη := u·~η, uτ := u·~τ
and ub := u ·~b, i.e.  uη

uτ
ub

 =

 nx ny nz
τx τy τz
bx by bz

 ·
 u

v

w

 (6)

Figure 2: The projected velocity frame.
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The projected speed model associated with the Euler equations (1) is reformulate

∂U

∂t
(t,X) + uη(t,X)

∂U

∂η
(t,X) = S(U), (7)

where

U =



ρ

ρuη

ρuτ

ρub

ρE


, S(U) =



−ρ∂η(uη)

−ρuη∂η(uη)− ∂ηP

−ρuτ∂η(uη)

−ρub∂η(uη)

−ρE∂η(uη)− ∂η(Puη)


. (8)

U is the projected conservative unknown, uη is the normal speed, and S(U) is the second member
that contains other terms of the system. The method of characteristics used traces backwards
position at time tn of particles that will reach the points of a fixed mesh at time tn + αn∆t, X?

see Figure 3, the method avoids the grid distortion difficulties that the conventional Lagrangian
schemes have. The characteristic curves associated with (7) are the solutions of the following
equation

X(tn) = X? −
∫ tn+αn∆t

tn

uη(s,X(s)) · n ds. (9)

In order to complete the reformulation of the algorithm used, the departure points must be
calculated once the characteristic curves are known. Therefore, the solution of the advection
equation (7) is

U(tn + αn∆t,X?) = U(tn, X(tn)) +

∫ tn+αn∆t

tn

S(U(s,X(tn))) ds. (10)

In our implementation, we have used a global fixed value for αn however, a local selection αnij
is also possible. The solution in the characteristic field is calculated by interpolation from cell
center values.

Un
ij = Û

n
ij + IF(Û

n
ij), (11)

where IF is the approximation of the integral in (10) and Û
n
ij =

∑
k∈V (Xc)

βk(X
c)Un

k , with V (Xc)

is the set of neighbours by face and vertices to the cell of Xc and βk(X
c) is the interpolation

weight. The normal derivative terms in S are evaluated using the diamond scheme see [13]

Figure 3: illustration of the time grid for the choice of the starting condition in order to calculate
the characteristics of the equation (7).
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One Un
ij is calculated in the predictor step, the state Wn

ij is recovered from Un
ij using the

projection transformations (6) then, Φ(Wn
ij ,nij) = F(Wn

ij) · nij .
Regarding the temporal discretization, the equation (5) will be solved with various implicit or
explicit temporal numerical schemes, amongst which are the Euler, Rung-Kutta, and Adams-
Bashforth schemes. Here we have chosen the explicit Euler scheme, which is simple and fast.
The time domain is divided into N sub-intervals [tn, tn+1] with time step ∆t = tn+1 − tn for
n = 0, 1, ...., N − 1. Wn is the value of a generic function W at time tn. The fully-discrete
formulation of the equation (4) is given by

Wn+1
i = Wn

i −
∆t

|Ti|
∑
j∈N(i)

|γij |Φ(Wn
ij ,nij). (12)

For the systems of conservation laws, such as the compressible Euler equations, all of the re-
construction procedures are implemented in the characteristic local directions to avoid spurious
oscillations.

3 Numerical results

In this study, the Courant-Friedrichs-Lewy number for the explicit scheme (12) can be written
under the following condition

∆t 6 min

{
|Ti|

Pi(|u · n|+
√
γP/ρ)

,
|Ti|

Pi(|u · n|+
√
γP/ρ)

√
2αn

}
, see [14]. A fixed CFL = 0.9 is

used and αn = 1 for first order approximation. Specific heat ratio γ = 1.4 is expected.

3.1 Shock tube problem

We consider a tube of length 1m, separated in the middle by a membrane with on one
side a gas at high pressure (pl, ρl) and on the other a gas at low pressure (pr, ρr). Due to the
pressure difference. A shock wave propagates in the low-pressure chamber, followed by a contact
discontinuity, and an expansion wave propagates in the high-pressure chamber. Note that the
contact discontinuity is only visible on the density. The initial conditions are given by

(ρ, p, u)(0, x, y, z) =

{
(ρl, pl, ul) if x 6 xm,

(ρr, pr, ur) if x > xm,
0 6 x 6 1, 0 6 y 6 0.04, 0 6 z 6 0.04

v(0, x, y, z) = w(0, x, y, z) = 0 m/s.

Table 1: Initial states left and right and simulation end times for the 3D shock-tube problem.

Test case ρl ul pl ρr ur pr tend

1 1.0 0.0 10.0 0.125 0.0 1.0 0.06
2 0.445 0.698 3.528 0.5 0.0 0.571 0.14
3 1.0 -2.0 0.4 1.0 2.0 0.4 0.15

The mesh used is a non-uniform tetrahedron grid of 22626 cells and 5846 nodes, the results
obtained are displayed at time tend given in Table 1. We present in the Figure 7 the cross-section
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at (y = 0.02m, z = 0.02m) of the density and the pressure for each test case of the Table 1. For
a better comparison, we also include the exact solution to the shock tube problem, as it can
be seen that the contact discontinuity and the shock wave are very well captured and that the
FVC scheme can generate its results with accuracy. It should be noted that the performance of
the FVC method is very interesting for shallow water equations, see [12].

Figure 4: Unstructured tetrahedral mesh used for the 3D shock tube problems.
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Figure 7: A cross-section at (y = 0.02m, z = 0.02m) of the numerical solution of a shock tube
problem in comparison with the exact solution. All figures show that the numerical solution
agrees with the exact solution. We notice a small numerical diffusion which will be adjusted
with the increase in order in time and space.

We show in Table 2 below an excellent agreement obtained between the numerical and ana-
lytical results, such as the L1 error and the accuracy order of ρ and P are presented, respectively.
The comparison shows that, under this condition, our scheme can accurately predict the shock
wave without creating oscillations.

Table 2: Relative L1 error and CPU times for test 1 [15] using FVC scheme with α = 1.5.

# Cells Maximum of cells height size Error in ρ Error in P Order CPU time (s)

4141 0.0143 1.878E-04 1.739E-04 - 4.82
11546 0.00812 1.034E-04 1.001E-04 1.311 8.32
23567 0.00645 4.518E-05 3.711E-05 1.356 18.36
43985 0.003679 1.986E-05 1.138E-05 1.409 23.34

In this work, we have developed a
code manapy [16] this code is based
on the solution of the Euler equations
using the FVC scheme in unstructured
meshes. The CFL is fixed at 0.8 and
the used computer is an Intel Core i7-
8565U CPU @ 1.80GHz × 8, with 15
GB RAM. -1 -0.5 0 0.5 1 1.5
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3.2 3D GAMM channel

This example was proposed in its two-dimensional version in [11] to study the subsonic and
transonic flows described by the Euler equations in a channel. The flow in the channel is initially
uniform and then the flow tangency condition for the walls and non-reflective condition for both
upstream and downstream the Dirichlet boundaries are applied.

The solution domain is a cube [0, 3]× [0, 1]× [0, 0.5] with a circular bump of height 10% on
the lower side see Figure 8. The initial conditions are: ρ = 1 in the whole domain and P = 1

γ .
The output boundary P = 0.736952. The rest of the boundary is a non-permeable wall, so we
prescribe a normal velocity component equal to zero. The figures show the numerical results
generated by FVC scheme.

Figure 8: Computation mesh with 53065 cells for the channel flow with a 10% thick circular arc
bump.

Figure 9: Mach number (left) and Density (right) at time t which is assumed to be an equilibrium
time.
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Figure 10: Mach number on bottom and upper wall Mmax = 1.3891

The figures of Figure 9 shows the Mach number distribution and density of the steady-
state solution. As shown in Figure 9, the numerical solution is fairly symmetrical concerning
the median chord which is a good indication of the accuracy of the solution for this subsonic
application. According to the calculation, a supersonic region appears in the solution which
ends with a shock as shown in Figure 10 (Inviscid compressible flow in the GAMM channel: and
Mach number on bottom and upper wall).

4 Concluding remarks

A generalization of the one-dimensional FVC scheme to multiple space dimensions for solv-
ing the Euler equations on general meshes in two regimes, stationary and unsteady, has been
presented. Furthermore, the first results of the internal transonic flow problems obtained by
the Finite Volume Characteristic scheme are presented. The agreement between the numerical
results and the analytical solution for the unsteady flow case (Shock tube problem) is good and
promising. The results obtained for the GAMM channel satisfy both the maximum Mach num-
ber parameters and the ability to generate steady states with acceptable accuracy. The approach
has several advantages. First, it can solve stationary flows without large numerical errors, thus
demonstrating that the proposed scheme achieves numerical results. Second, it can calculate
the numerical flow corresponding to the actual state of the gas flow without relying on Riemann
problem solvers. Furthermore, it has strong applicability to various hyperbolic conservation law
models, as shown by its formulation. Future work aims at extending the presented method for
the solution of incompressible Navier-Stokes equations.
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