


advective model. Since the viscosity jump across the mate-
rial interface produces a discontinuity in the derivatives of
the velocity, we use the eXtended Finite Element Method
(X-FEM) [6,7] to interpolate the velocities, adding a func-
tional enrichment via the partition of unity method. The X-
FEM approach has already been used to solve multiphase
Stokes flows in other contexts (e.g. [8]).

The remainder of the paper is structured as follows. Sec-
tion 2 is devoted to present the problem to be solved and to
highlight the main assumptions and simplifying hypothe-
ses. The proposed numerical methodologies are described
in Section 3. A validation test is used in Section 4 to dem-
onstrate the performance of the numerical solver of the
mechanical problem and its desirable features. Finally, a
number of simulations of subduction mechanisms for a
set of different parameters is analyzed in Section 5.

2. Problem statement

The subduction process is a complex phenomenon in
which some of the Earth’s uppermost layers (lithospheric

plates) penetrate into the Earth’s interior (upper mantle).
The mechanical behaviour of the system is modelled as a
two-phase incompressible fluid governed by the Stokes
equation. This approach is standard in subduction models
(e.g. [9,10]) because at the time-scale of the subduction phe-
nomenon, the Deborah number is very small (lower than
4.55 · 10 4). The different fluid phases represent the tec-
tonic plates and the underlying mantle. Although they
are modelled as a fluid, tectonic plates are stiff and can
transmit stresses over long distances. This behaviour is
obtained by imposing a high viscosity contrast between
the phases. In reality, the viscosity of the plates is usually
two to four orders of magnitude higher than the viscosity
of the upper mantle. As previously mentioned, incompress-
ibility for both phases is assumed.

Since the physical properties of rocks depend on temper-
ature and pressure, subduction processes are highly influ-
enced by their thermal state. In the domain under
consideration, both temperature and pressure show drastic
variations. For instance, in the upper 700 km, temperature
and pressure increase with depth, respectively, from 273 K
and 0 GPa at surface, to approximately 2000 K, and
24 GPa at the bottom. These extreme variations in temper-
ature and pressure result in very different mechanical prop-
erties of the materials. For instance, the density of two
chemically identical rocks, one near the surface and
another at 700 km depth, may vary from 3200 kg/m3 to
4900 kg/m3. The rheological and thermal behaviour of
the rocks are also imbricated. Consequently, in order to
realistically simulate subduction phenomena, the mechani-
cal and thermal models have to be coupled.

2.1. Mechanical model

As already mentioned, the mechanical part of the sub-
duction system is modelled as an incompressible fluid gov-
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erned by the Stokes equation. Due to geophysical
timescales and the viscosity orders of magnitude involved
in this problem, dimensional analysis results in an extre-
mely large Prandtl number (Prandtl number 1024).
Therefore the inertia term is neglected and Stokes equation
is considered in its quasi-static version:

r � ðgrsuÞ þ rp ¼ qg; ð1aÞ
r � u ¼ 0; ð1bÞ

where u is the velocity, g the viscosity, p the pressure, q the
density, and g the gravitational acceleration vector. The
operator $s is defined as 1/2($T+$).

The nonlinear behaviour is introduced by the depen-
dence of g on the solution u and p. Moreover, g is also a
function of the temperature, and consequently the mechan-
ical and thermal problem are coupled. Material properties
are discussed in Section 2.3.

The transient equation (1) is said to be pseudo-static
because it does not contain any explicit time dependence.
The transient character of the solution is due to the motion
of the phases and temperature field evolution.

2.2. Thermal model

The standard heat equation reads

qCpð _T þ urT Þ ¼ r � ðkrT Þ þ qf ; ð2Þ

where T is temperature, Cp the isobaric heat capacity, k the
thermal conductivity, and f fr + fsh a heat source term.
The later has two different components: the constant term
fr corresponds to the decay of radioactive elements ura-
nium, thorium and potassium and the shear heating term
fsh is associated with the mechanical heat dissipation. It is
computed from the solution of the mechanical problem
(1) as fsh ¼ rij _eij, where r is the deviatoric stress tensor

r ¼ 2g_e

and _e is the strain rate tensor

_e ¼ 1=2ðruþ ðruÞTÞ:

The dimensional analysis of Eq. (2) reveals that the con-
vective term is three orders of magnitude larger than the
diffusive term (associated with k). The thermal problem
to be solved is therefore convection dominated.

2.3. Material parameters

The rheological and thermal properties of rocks are
functions of temperature, pressure, and in some cases,
strain rate. As a consequence of these dependencies, the
mechanical and the thermal problem are two-way coupled.

2.3.1. Density

The proper assessment of the density q is essential to the
accurate simulation of subduction. In fact, the driving
force is in this case generated by the contrast between the



density of the cold subducting plate and the hot upper
mantle. The resulting pulling force on the oceanic plate is
of major importance in the system. The density is repre-
sented as a function of temperature and pressure by the fol-
lowing expression [11]:

q ¼ q0½1� aðT � T 0Þ�½1þ bðp � p0Þ�; ð3Þ

where a and b are, respectively, the thermal expansion and
compressibility coefficients, and T0 and p0 are reference val-
ues at surface.

A mineral phase diagram indicates which are the stable
mineral phases at any given temperature and pressure. The
equilibrium Clapeyron line separates the stability fields of
the three possible phases. That is, if two points (in the tem-
perature pressure plane) are at different sides of the line
given by the Clapeyron slope, then they correspond to dif-
ferent minerals. In this context, for our practical purposes,
the phase diagram is divided into three regions correspond-
ing to three minerals: olivine, spinel-structured olivine, and
perovskite as shown in Fig. 1.

Two major mineralogical phase transitions occur, one at
410 km depth and other at 660 km depth (other deeper
transitions run outside the domain under study). The den-
sity increases discontinuously across these phase transi-
tions. In order to take into account the effect of these
discontinuities, the density q0 in Eq. (3) is taken as a refer-
ence density plus an increment Dq, i.e.

q0 ¼ qol þ Dq;

where

Dq ¼
0 if T � p is in the olivine region;

Dqes if T � p is in the spinel region;

Dqper if T � p is in the perovskite region:
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Fig. 1. Phase diagram indicating stable mineral phases in the tempera
ture pressure plane. The phase diagram is divided into three regions
corresponding to three distinct minerals: olivine, spinel and perovskite.
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2.3.2. Thermal conductivity

The thermal conductivity of rocks also depends on tem-
perature and pressure. At high temperatures (T P 1500 K)
the electromagnetic radiation becomes important enough
to be included as an extra heat transfer mechanism [12].
The following empirical expression, which includes both
conductive and radiative effects, is used (see [13]):

k ¼ aþ b
T þ c

� �
expðdpÞ; ð4Þ

where a 0.73, b 1293, c 77, and d 0.00004, see [9].
Note that this expression is dimensional (W m 1 K 1) and
therefore temperature and pressure have to be expressed in
K and MPa, respectively.

2.3.3. Viscosity

The mantle is assumed to behave mechanically as a non-
Newtonian fluid with an average viscosity of 1021 Pa s.
Note that, compared to the viscosity of honey at room tem-
perature (19 Pa s), the mantle viscosity is 20 orders of mag-
nitude larger.

The following power-law expression is used to describe
how the viscosity depends on temperature, pressure, and
strain rate [14]

gcreep ¼ ð_eIIÞ
1 n
2n F ðADÞ

1
n exp

E þ PDV
nRT

� �
; ð5Þ

where _eII ¼ 1
2

_eij _eij is the second invariant of the deviatoric
strain rate tensor, and the material parameters are: the acti-
vation energy E, the activation volume DV, the material
constant AD, the stress exponent of the power-law n, and
a dimensionless coefficient F, depending on the dominating
flow regime (F 2(1 2n)/n for simple shear). This expression
is truncated if the resulting viscosity exceeds a predefined
threshold or is lower than a minimum value.

2.4. Initial and boundary conditions

The complete problem statement requires appropriate
initial and boundary conditions for Eqs. (1) and (2).

The boundary conditions for the mechanical problem
(1) are described in Fig. 2a. The velocity is imposed on
the top of the domain. It is set to be zero on the left half,
and it is given certain horizontal velocity on the right side.
At the center point between these two domains, a down-
ward velocity (55� with the horizontal) is prescribed. A free
slip condition is adopted at the bottom (uz 0, zero shear
forces). Along the laterals, labeled as Cs on Fig. 2a, peri-
odic boundary conditions are imposed. This allows mate-
rial to flow trough the sides of the model in a confined
domain. Finally, as a reference for the pressure field, a
node on the surface is set to have null pressure.

The model domain is a 2D, 1000 km depth and 8000 km
wide rectangle. The initial thermal state corresponds to
that of a 100 km thick oceanic plate subducting beneath
another plate with identical features (shown in Fig. 2b).
The location of the material interface and the velocity field





tion). However, as demonstrated in the examples and in the
test in Section 4.1, for the current application this method
is sufficiently accurate and it does not require any post-pro-
cess to reconstruct the distance shape.

The level set approach may describe changes in the
shape (topology) of the phases. In practice, this allows
the representation of detaching drops, merging bubbles,
breaking sets, etc. This feature of the level set method is
of great interest when used to model subduction processes.
In some cases the slab may break off and separates from
the surface plate sinking into the mantle. This topology
change in the interface can be represented by the level set
function.

3.2. Space discretization

The Stokes problem (1) is discretized using a mixed for-
mulation, that is u and p are interpolated differently. The
stability of such a mixed formulation is guaranteed if the
LBB condition is fulfilled. Here the well-known mini ele-

ment [15] is used: this triangular element passes the LBB
condition and has four nodes for the velocity (three at
the vertices with linear shape functions and one at the cen-
ter with a cubic bubble function) and three pressure nodes
(piecewise linear interpolation).

Thus, denoting by Nlin the indices associated with the
vertex nodes and Nj, for j 2Nlin, the corresponding shape
functions, the interpolated pressure is

pðx; tÞ ’ phðx; tÞ ¼
X

j2Nlin

NjðxÞpjðtÞ: ð8Þ

The interpolation of the velocity also includes the bubble
degrees of freedom Nj for j 2Nbub, namely

uðx; tÞ ’ uhðx; tÞ ¼
X

j2Nlin

S
Nbub

NjðxÞujðtÞ: ð9Þ

The level set formulation is interpolated in terms of the lin-
ear degrees of freedom

/ðx; tÞ ’ /hðx; tÞ ¼
X

j2Nlin

NjðxÞ/jðtÞ: ð10Þ

In order to improve the ability of the interpolation to rep-
resent the gradient discontinuities across the interface, the
interpolation of the velocity and pressure are enriched
using a partition of the unity approach and a ridge function
R, defined by

RðxÞ ¼
X

j2Nenr

j/jjN jðxÞ �
X

j2Nenr

/jNjðxÞ
�����

�����: ð11Þ

Note that R is defined such that is only different from zero
in the elements containing part of the interface [7]. The
enrichment affects only the degrees of freedom correspond-
ing to the vertex nodes of the elements in contact with the
interface. The set on indices corresponding to such nodes is
denoted as Nenr. Thus enriched interpolations of velocity
and pressure are expressed as
5

uhðx; tÞ ¼
X

j2Nlin

S
Nbub

ujðtÞNjðxÞ þ
X

j2Nenr

ajðtÞMjðxÞ ð12Þ

and

phðx; tÞ ¼
X

j2Nlin

pjðtÞNjðxÞ þ
X

j2Nenr

bjðtÞMjðxÞ; ð13Þ

where Mj(x) R(x)Nj(x), and aj and bj are the additional
degrees of freedom for velocity and pressure, respectively.

A compact expression of the interpolation of velocity
and pressure is used in the following:

uT
h ðx; tÞ ¼ NuU ð14Þ

and

phðx; tÞ ¼ NpP; ð15Þ

where

Nu ¼ ½N 1;N 2; . . . ;N nu ;M1; . . . ;Mne �;
U ¼ ½u1; u2; . . . unu ; a1; . . . ; ane �

T
;

Np ¼ ½N 1;N 2; . . . ;N nlin
;M1; . . . ;Mne �;

P ¼ ½p1; p2; . . . ; pnlin
; b1; . . . bne �

T
;

where nu ¼ cardðNlin

S
NbubÞ, nlin ¼ cardðNlinÞ and

ne ¼ cardðNenrÞ.
Note that the vector of unknowns U is defined as a

(nu + ne) · 2 array and therefore is not suitable as an entry
in a linear system of equations. In order to properly write
the matrix form of the system, U has to be reshaped as

Urs ¼ ½ux
1; u

y
1; u

x
2; u

y
2; . . . ; ux

nu
; uy

nu
; ax

1; a
y
1; . . . ; ax

ne
; ay

ne
�T;

which is a 2(nu + ne) · 1 vector. According to this reshape,
a similar reordering has to be done in Nu in order to obtain
an expression analogous to (14), namely

Nrs
u ¼

N 1 0 N 2 0 . . . Nnu 0 M1 0 . . . Mne 0

0 N 1 0 N 2 . . . 0 Nnu 0 M1 . . . 0 Mne

� �
:

Nrs
u is a 2 · 2(nu + ne) matrix. It is worth noting that the

number of enriched nodes, ne varies along time as the inter-
face described by the level set is transported. Consequently,
the size of Urs and Nrs

u changes.
Problem (1) is discretized in space using the interpola-

tion introduced above and the Galerkin formulation. The
resulting system of algebraic equations reads

KuUrs þGT
u P ¼ fu; ð16aÞ

GuUrs ¼ 0; ð16bÞ

where the matrices Ku, Gu and fu are defined as

Ku ¼
Z

X
BTgBdV ;

Gu ¼ �
Z

X
NT

p qðr �Nrs
u ÞdV ;

fu ¼
Z

X
ðNrs

u Þ
TqgdV :



where the gravity vector g used in fu is the column vector in
the right hand side of Eq. (1a). The gradient matrix B is de-
fined as

B ¼ ½B1;B2; . . . ;Bnu ;
eB1; . . . ; eBne �;

Bi ¼

oNi
ox1

0

0 oNi
ox2

oNi
ox2

oNi
ox1

2664
3775 and eBi ¼

oMi
ox1

0

0 oMi
ox2

oMi
ox2

oMi
ox1

2664
3775:

Note that the spatial derivatives of Mi contained in matri-
ces eBi, for i 1, . . . ,ne account for the enrichment and de-
pend on the level set /. Therefore, the chain rule must be
employed to evaluate those derivatives.

Eq. (16) are compacted in the following block matrix
form [15]

Ku GT
u

Gu 0

" #
Urs

P

� �
¼

fu

0

� �
:

The discretization of the thermal problem (2) is performed
using the linear interpolation, in a similar way as with pres-
sure. The thermal conductivity is not expected to be discon-
tinuous across the interface and therefore the interpolation
is not enriched. The approximation of the temperature is

T ðx; tÞ ’ T hðx; tÞ ¼
X

i2Nlin

NiðxÞT iðtÞ ¼ NT T; ð17Þ

where

NT ¼ ½N 1;N 2; . . . ;N nlin
�;

T ¼ ½T 1; T 2; . . . ; T nlin
�T:

And the system of ordinary differential equations resulting
from the spatial discretization (17) reads

MT
_TþGT T ¼ KT Tþ fT ; ð18Þ

where

MT ¼
Z

X
NT

T qCpNT dV ;

GT ¼
Z

X
qCpNT

T uTðrNT ÞdV ;

KT ¼
Z

X
ðrNT ÞTkrNT dV ;

fT ¼
Z

X
NT

T qdV :

The level set is discretized in space using a linear interpola-
tion (same as with temperature)

/ðx; tÞ ’ /hðx; tÞ ¼
X

i2Nlin

NiðxÞ/iðtÞ ¼ NT /; ð19Þ

where

/ ¼ ½/1;/2; . . . ;/nlin
�T:

The transport equation of the level set (7) is discretized
using (19) and yields
6

M/
_/�G// ¼ 0;

where

M/ ¼
Z

X
NT

T NT dV ; ð20aÞ

G/ ¼ �
Z

X
NT

T uTðrNT ÞdV : ð20bÞ
3.3. Integration quadrature for the multiphase elements

In the elements cut by the level set, the functions to be
integrated are discontinuous because the material proper-
ties are different at different sides of the level set. The stan-
dard Gauss quadratures used in the FE context are not well
suited to integrate these discontinuous functions. There are
two alternatives to obtain an accurate response in the mul-
tiphase elements: either to use a very large number of inte-
gration points or to decompose the element into simple
one-phase subdomains for integration purposes. Here, we
choose the second option because we are using triangular
elements in 2D. Probably in more complex situations, espe-
cially en 3D, using a large number of integration points is
advantageous because it precludes a complex coding that
must account for all the possible geometrical
configurations.

The multiphase elements are easily detected because
they have nodal values of the level set with different sign.
In 2D, linear triangles may be decomposed in two ways.
If the straight interface contains one of the nodes (the level
set is zero in this node) the triangle is cut in two triangles. If
not, the three nodal values are nonzero and the interface
cuts two sides of the triangle. In this second case, the trian-
gle is split in a new triangle plus a quadrilateral (which is
cut into two triangles).

The implementation of this kind of quadrature requires
using a numerical criterion to detect the intersection
between the element and the interface. The results are sen-
sitive to the tolerance used to detect if some point lies in the
interface. This is because the ridge function takes a very
small value when the level set is close to a node. In this case
enriching the solution results in a ill-conditioned problem
because the coefficient associated with the enriched part
of the solution must compensate the tiny values of the ridge
function. Here, the tolerance is set to a 10 percent of the
element size.
3.4. Time discretization

The level set function tracking the interface is updated at
each time step by the transport equation (7), which is
rewritten as

_/ ¼ �U � r/:

This equation is integrated upon time using a two-step
third order Taylor Galerkin method (2S-TG3), namely
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5. Application example

The convergence of two tectonic plates is simulated to
model the subduction process, where one moving plate
bends and sinks below the other plate. The relative velocity
of convergence between tectonic plates is called conver-
gence rate and does not refer to the approximation proper-
ties of any particular numerical scheme. The goal of the
simulation is to find a relationship between the conver-
gence rate and the geometry of the subducted oceanic plate
(slab). The geometry of the slab is parameterized by the
slab dip (angle with respect to the horizontal) and the cur-
vature at the discontinuity occurring at the depth of
660 km.

Observations of real subduction zones reveal that the
slab dip increases gradually from the surface to a depth
of 80 150 km. Below this depth, it remains almost constant
down to the limit between the upper and the lower mantle
at 660 km depth, where the slab may deflect [16].

The problem statement is illustrated in Fig. 2a. The sim-
ulation is performed to reproduce approximately 1360 km
of plate convergence, that is, one plate moves 1360 km
against the other. The velocity of the plates at the surface
is imposed by the boundary conditions, as explained in Sec-
tion 2.4. In order to test the influence of the velocity in the
slab dip, the surface velocity is changed during each simu-
lation. Three different realistic values for the velocity are
used: low (2.5 cm/yr), moderate (5 cm/yr) and high
(10 cm/yr). Each simulation uses two of these velocities.
The transition from one velocity to another is either grad-
ual or sudden.

The slab dip is computed between 200 and 400 km
depth. Ignoring the upper 200 km precludes the influence
from the shallow dip, possibly biased by the surface bound-
ary conditions. The lower 400 km limit is above the curved
part of the slab caused by the deflection at 660 km.

The slab dip is computed by a linear least squares fitting
of the position of the interface between the subducted
Fig. 6. Final temperature distributions (dimensionless) resulting in five differen
of interest (b) (f). The slab dip is indicated for each simulation.
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lithosphere and the upper mantle. Note that this interface
is described by the level set function.

The slab dip is computed at many stages in each simula-
tion. Fig. 6 shows the final dimensionless temperature dis-
tributions for five different simulations, and the slab dip
measurements. Due to the extremely low conductivity,
the temperature field is a good proxy for identifying the
slab geometry.

Fig. 7 shows the results of a set of numerical simulations
in terms of slab dip and convergence rate: every circle in the
plot corresponds to a specific measurement in each simula-
tion, all with different conditions. A clear correlation is
found: high velocities are associated with low subduction
angles. Taking into account all the velocity-dip measure-
ments (a grand total of 412 corresponding to 39 different
simulations) the correlation parameter is R �0.71. The
same analysis performed only with the measurements taken
after a period of constant velocity (at the end of the simu-
lation or before the velocity change, that is 61 measures)
t simulations. Complete computational domain (a) and zoom into the zone





We interpreted that two forces are in competition to
control the dip: the viscous force of the mantle resisting
the slab penetration, which depends on the plate velocity,
and the mass excess caused by the lateral density contrast,
depending on the temperature contrast between the slab
and the mantle (the slab-pull force). If, as it is found in
the present simulations, the velocity correlates with the slab
dip, the mechanical viscous forces have a greater influence
in the slab geometry than the gravitational forces. The
effect of the thermal state is in this case of second order.

6. Concluding remarks

A numerical model of the tectonic plate subduction is
presented.

The physical model accounts for the complexity of this
natural system and its main features are summarized in
the following points:

• the pseudo-static mechanical problem (inertia terms are
neglected and therefore no time derivatives appear) is
governed by the Stokes equation, being a two-phase
fluid with a sharp viscosity contrast,

• highly-nonlinear rheology,
• two-way mechanical thermal coupling, being the ther-

mal problem advection dominated and with a heat pro-
duction term associated with shear effects, based on
strain rate,

• the physical properties depend on both temperature and
pressure.

The resulting model is numerically solved using the
X-FEM approach for the space discretization and explicit
time-marching schemes which handle properly the advec-
tive character of the problem.

The results of the numerical tests allow assessing the
relation between the plate convergence velocity and the
subducted plate dip. These observations are relevant for
the geophysical interpretation of the model. A clear corre-
lation between these subduction parameters is found and it
is concluded that the mechanical viscous forces have a lar-
ger influence on the dip than the thermal forces. These con-
11
clusions may be extended to assess the origin of the driving
forces of the plate motion in the subduction zones.
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