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Abstract

The numerical modelling of plate subduction requires solving a coupled thermo mechanical highly nonlinear transient problem. The
mechanical description of the phenomenon results in a multiphase quasi static Stokes flow, where the inertia terms are neglected. The
transient thermal problem is dominated by the advection term. Here, the representation and evolution of the different phases are
described using level sets. The phase tracking is carried out transporting the level set along with the material, using a pure advective
model. The gradient discontinuities induced by the viscosity jump across the interface are resolved numerically by enriching the solution
using a partition of unity method in a eXtended Finite Element Method (X FEM) context. These numerical tools are used to simulate
plate subduction with different parameters and to derive useful correlations between relevant geophysical factors.
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1. Introduction

Plate tectonics is a framework in which most of the
major Earth geological features can be explained. For
instance, it explains satisfactory the global bathymetry,
the existence of mid-ocean volcanic ridges, the position of
continental mountain chains, the magnetic anomalies at
the ocean bottom, the location of volcanic arcs and seismic
activity, etc.

Despite the ability of assembling all these phenomena in
a unified framework, major questions remain regarding the
dynamics of the plates.

In subduction zones, oceanic plates bend and descend
into the Earth’s interior, generating most of the Earth’s
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volcanism and seismic activity. It is therefore important
to understand subduction mechanisms and the history
and current configuration of the plates in subduction
zones. Numerical modelling of this phenomenon provides
further insights into the mechanisms, as well as valuable
information on the dependence of the results on material
parameters and boundary conditions (velocities. . .).

The models used in simulations of these phenomena are
essentially flow models with thermal coupling. The different
plates and the underlying mantle are described as distinct
phases with different material properties (viscosity, density,
conductivity...). The most popular numerical technique
used to track the phases in a finite difference or a finite ele-
ment context, is the so-called marker and cell method [1 5].
This approach is limited by the lack of flexibility of the
numerical discretization, and biased by the averaging func-
tion used to pass the marker’s variables to the node’s vari-
ables and vice versa.

In this work we use a level set technique to track the
interface and to describe the phase motion. The phase
tracking requires transporting the level with a pure



advective model. Since the viscosity jump across the mate-
rial interface produces a discontinuity in the derivatives of
the velocity, we use the eXtended Finite Element Method
(X-FEM) [6,7] to interpolate the velocities, adding a func-
tional enrichment via the partition of unity method. The X-
FEM approach has already been used to solve multiphase
Stokes flows in other contexts (e.g. [8]).

The remainder of the paper is structured as follows. Sec-
tion 2 is devoted to present the problem to be solved and to
highlight the main assumptions and simplifying hypothe-
ses. The proposed numerical methodologies are described
in Section 3. A validation test is used in Section 4 to dem-
onstrate the performance of the numerical solver of the
mechanical problem and its desirable features. Finally, a
number of simulations of subduction mechanisms for a
set of different parameters is analyzed in Section 5.

2. Problem statement

The subduction process is a complex phenomenon in
which some of the Earth’s uppermost layers (/ithospheric
plates) penetrate into the Earth’s interior (upper mantle).
The mechanical behaviour of the system is modelled as a
two-phase incompressible fluid governed by the Stokes
equation. This approach is standard in subduction models
(e.g.[9,10]) because at the time-scale of the subduction phe-
nomenon, the Deborah number is very small (lower than
4.55%x 10 %). The different fluid phases represent the tec-
tonic plates and the underlying mantle. Although they
are modelled as a fluid, tectonic plates are stiff and can
transmit stresses over long distances. This behaviour is
obtained by imposing a high viscosity contrast between
the phases. In reality, the viscosity of the plates is usually
two to four orders of magnitude higher than the viscosity
of the upper mantle. As previously mentioned, incompress-
ibility for both phases is assumed.

Since the physical properties of rocks depend on temper-
ature and pressure, subduction processes are highly influ-
enced by their thermal state. In the domain under
consideration, both temperature and pressure show drastic
variations. For instance, in the upper 700 km, temperature
and pressure increase with depth, respectively, from 273 K
and 0 GPa at surface, to approximately 2000 K, and
24 GPa at the bottom. These extreme variations in temper-
ature and pressure result in very different mechanical prop-
erties of the materials. For instance, the density of two
chemically identical rocks, one near the surface and
another at 700 km depth, may vary from 3200 kg/m’ to
4900 kg/m>. The rheological and thermal behaviour of
the rocks are also imbricated. Consequently, in order to
realistically simulate subduction phenomena, the mechani-
cal and thermal models have to be coupled.

2.1. Mechanical model

As already mentioned, the mechanical part of the sub-
duction system is modelled as an incompressible fluid gov-

erned by the Stokes equation. Due to geophysical
timescales and the viscosity orders of magnitude involved
in this problem, dimensional analysis results in an extre-
mely large Prandtl number (Prandtl number 10%%).
Therefore the inertia term is neglected and Stokes equation
is considered in its quasi-static version:

V- (nV*u) + Vp = pg, (la)
V-u=0,

where u is the velocity, i the viscosity, p the pressure, p the
density, and g the gravitational acceleration vector. The
operator V* is defined as 1/2(V'+V).

The nonlinear behaviour is introduced by the depen-
dence of 1 on the solution u and p. Moreover, 5 is also a
function of the temperature, and consequently the mechan-
ical and thermal problem are coupled. Material properties
are discussed in Section 2.3.

The transient equation (1) is said to be pseudo-static
because it does not contain any explicit time dependence.
The transient character of the solution is due to the motion
of the phases and temperature field evolution.

2.2. Thermal model

The standard heat equation reads
pC,(T +uVT) =V - (kVT) + pf, (2)

where T is temperature, C, the isobaric heat capacity, k the
thermal conductivity, and f f, + f;, a heat source term.
The later has two different components: the constant term
fr corresponds to the decay of radioactive elements ura-
nium, thorium and potassium and the shear heating term
fsn 18 associated with the mechanical heat dissipation. It is
computed from the solution of the mechanical problem
(1) as fs = 0y;¢;, where o is the deviatoric stress tensor

g =2n¢
and ¢ is the strain rate tensor
&= 1/2(Vu+ (Va)").

The dimensional analysis of Eq. (2) reveals that the con-
vective term is three orders of magnitude larger than the
diffusive term (associated with k). The thermal problem
to be solved is therefore convection dominated.

2.3. Material parameters

The rheological and thermal properties of rocks are
functions of temperature, pressure, and in some cases,
strain rate. As a consequence of these dependencies, the
mechanical and the thermal problem are two-way coupled.

2.3.1. Density

The proper assessment of the density p is essential to the
accurate simulation of subduction. In fact, the driving
force is in this case generated by the contrast between the



density of the cold subducting plate and the hot upper
mantle. The resulting pulling force on the oceanic plate is
of major importance in the system. The density is repre-
sented as a function of temperature and pressure by the fol-
lowing expression [117]:

p = po[l =T = To)J[1 + Blp — po)l, (3)

where o and f are, respectively, the thermal expansion and
compressibility coefficients, and T, and pg are reference val-
ues at surface.

A mineral phase diagram indicates which are the stable
mineral phases at any given temperature and pressure. The
equilibrium Clapeyron line separates the stability fields of
the three possible phases. That is, if two points (in the tem-
perature pressure plane) are at different sides of the line
given by the Clapeyron slope, then they correspond to dif-
ferent minerals. In this context, for our practical purposes,
the phase diagram is divided into three regions correspond-
ing to three minerals: olivine, spinel-structured olivine, and
perovskite as shown in Fig. 1.

Two major mineralogical phase transitions occur, one at
410 km depth and other at 660 km depth (other deeper
transitions run outside the domain under study). The den-
sity increases discontinuously across these phase transi-
tions. In order to take into account the effect of these
discontinuities, the density pg in Eq. (3) is taken as a refer-
ence density plus an increment Ap, i.e.

Po = Por + Apa
where

0 if T — p is in the olivine region,
Ap = ¢ Ap,, if T —p is in the spinel region,

Ap,e, if T — p is in the perovskite region.
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Fig. 1. Phase diagram indicating stable mineral phases in the tempera
ture pressure plane. The phase diagram is divided into three regions
corresponding to three distinct minerals: olivine, spinel and perovskite.

2.3.2. Thermal conductivity

The thermal conductivity of rocks also depends on tem-
perature and pressure. At high temperatures (7 > 1500 K)
the electromagnetic radiation becomes important enough
to be included as an extra heat transfer mechanism [12].
The following empirical expression, which includes both
conductive and radiative effects, is used (see [13]):

b
k=a+ (T—+c> exp(dp), 4)
where a  0.73, b 1293, ¢ 77,and d 0.00004, see [9].

Note that this expression is dimensional (Wm 'K ') and
therefore temperature and pressure have to be expressed in
K and MPa, respectively.

2.3.3. Viscosity

The mantle is assumed to behave mechanically as a non-
Newtonian fluid with an average viscosity of 10*! Pas.
Note that, compared to the viscosity of honey at room tem-
perature (19 Pa s), the mantle viscosity is 20 orders of mag-
nitude larger.

The following power-law expression is used to describe
how the viscosity depends on temperature, pressure, and
strain rate [14]

1

) _1
Nereep = (SH) & F(AD) Y <

M>7 (5)

nRT

where &y = 1&;¢; is the second invariant of the deviatoric
strain rate tensor, and the material parameters are: the acti-
vation energy E, the activation volume AV, the material
constant A4p, the stress exponent of the power-law n, and
a dimensionless coefficient F, depending on the dominating
flow regime (F 2! 2" for simple shear). This expression
is truncated if the resulting viscosity exceeds a predefined
threshold or is lower than a minimum value.

2.4. Initial and boundary conditions

The complete problem statement requires appropriate
initial and boundary conditions for Egs. (1) and (2).

The boundary conditions for the mechanical problem
(1) are described in Fig. 2a. The velocity is imposed on
the top of the domain. It is set to be zero on the left half,
and it is given certain horizontal velocity on the right side.
At the center point between these two domains, a down-
ward velocity (55° with the horizontal) is prescribed. A free
slip condition is adopted at the bottom (. 0, zero shear
forces). Along the laterals, labeled as I'y on Fig. 2a, peri-
odic boundary conditions are imposed. This allows mate-
rial to flow trough the sides of the model in a confined
domain. Finally, as a reference for the pressure field, a
node on the surface is set to have null pressure.

The model domain is a 2D, 1000 km depth and 8000 km
wide rectangle. The initial thermal state corresponds to
that of a 100 km thick oceanic plate subducting beneath
another plate with identical features (shown in Fig. 2b).
The location of the material interface and the velocity field
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Fig. 2. Problem statement for the simulation of subduction: computa
tional domain and boundary conditions (a); initial thermal state (b); initial
density (c) (note that two discontinuities occur at 410 and 660 km depth)
and initial viscosity (d).

are set accordingly to this configuration. The white line
corresponds to the 1573 K isotherm which is the base of
the tectonic plates. During simulation this isotherm closely
follows the interface defined by the level set. Fig. 2c and d
are the initial density and viscosity fields, respectively.
These fields are computed by a simple post-process of a sta-
tic Stokes problem with the boundary conditions described
above. The density has two sharp increments due to phase
transitions at 410 km and 660 km depth.

The boundary conditions that complete the thermal
problem are of Dirichlet type at the surface and bottom,
and periodic at the sides. The imposed temperatures at
the surface and bottom are T, 273K and T
2053 K, respectively. The sides are set as periodic to be
consistent with the mechanical problem.

3. Numerical approximation

This section is devoted to describe the numerical meth-
odologies used to solve the coupled transient nonlinear
Egs. (1) and (2). Note that, besides the standard difficulties
associated with this type of problems, the numerical simu-
lation of plate subduction requires describing and tracking
the evolution of the different plates modelled as a multi-
phase system. In contrast to the common markers and cells
method, here we use the eXtended Finite Element Method
(X-FEM) instead. This approach adds two new ingredients
to the standard finite element recipe: a level set and a func-
tional enrichment via partitioning of the unity method.

3.1. Level sets and phase tracking

The interface between two materials is tracked using a
level set function ¢. The sign of ¢ describes the geometrical
domains using the following convention:

>0 for x in domain 1,
=0 for x on the interface, (6)

o(x,1) =

<0 for x in domain 2,

where x stands for a point in the simulation domain and ¢ is
the time. The interface position is the set of points where
the level set field vanishes (Fig. 3). Initially, ¢ is taken as
a signed distance to the interface. Far enough from the
interface, ¢ is truncated by maximum and minimum cutoff
values. The resulting level set function describes the posi-
tion of the interface independently of the computational
mesh.

In the practical implementation, ¢ is described (interpo-
lated) with the finite element mesh, and therefore the reso-
lution of the approximated interface depends on the quality
of this mesh. Thus, the level set represents interfaces which
do not necessarily coincide with the element edges. The
same mesh can be used throughout the entire simulation
to describe the interface.

The level set ¢ is a material property and consequently it
is transported by the velocity. Therefore, it is updated by
solving the following pure advection equation (first order
hyperbolic)

¢+u-Vep=0, (7)

where u is the velocity field. Note that the velocity u is com-
puted by solving the Stokes problem (1). In this context,
the velocity field is known in all the points of the domain.
Thus, the level set is transported integrating Eq. (7) using
an explicit time-marching scheme designed for the pure
advective problem: the two-step third order Taylor
Galerkin method [15]. This method, described in Section
3.4, is straightforwardly implemented and computationally
affordable. Note that in similar situations other authors use
the Hamilton Jacobi equation to transport the interface.
This is specially appropriate if the only data is the front
velocity and if the front is sharp. In the present situation
the velocity is known everywhere as a vector and it is pos-
sible to directly integrate the pure advection problem. In
general, the time evolution of the level set function is such
that it does not conserve the property of being a truncated
distance to the interface (as set for the initial configura-
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Fig. 3. (a) The two domains (materials) are associated with the sign of the
level set function. The dotted line is the interface. (b) Surface represen
tation of the level set function.
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tion). However, as demonstrated in the examples and in the
test in Section 4.1, for the current application this method
is sufficiently accurate and it does not require any post-pro-
cess to reconstruct the distance shape.

The level set approach may describe changes in the
shape (topology) of the phases. In practice, this allows
the representation of detaching drops, merging bubbles,
breaking sets, etc. This feature of the level set method is
of great interest when used to model subduction processes.
In some cases the slab may break off and separates from
the surface plate sinking into the mantle. This topology
change in the interface can be represented by the level set
function.

3.2. Space discretization

The Stokes problem (1) is discretized using a mixed for-
mulation, that is u and p are interpolated differently. The
stability of such a mixed formulation is guaranteed if the
LBB condition is fulfilled. Here the well-known mini ele-
ment [15] is used: this triangular element passes the LBB
condition and has four nodes for the velocity (three at
the vertices with linear shape functions and one at the cen-
ter with a cubic bubble function) and three pressure nodes
(piecewise linear interpolation).

Thus, denoting by .47y, the indices associated with the
vertex nodes and N, for j € Ay, the corresponding shape
functions, the interpolated pressure is

p(x,1) =~ > N (8)

JEN lin

pi(x,1) =

The interpolation of the velocity also includes the bubble
degrees of freedom N; for j € A"y, namely

ux ) =w(x )= > NXu). ©)
JEN tin U A bub

The level set formulation is interpolated in terms of the lin-
ear degrees of freedom

DX, 1) = dy(x,1) = > Ny(x) (10)

JEN lin

In order to improve the ability of the interpolation to rep-
resent the gradient discontinuities across the interface, the
interpolation of the velocity and pressure are enriched
using a partition of the unity approach and a ridge function
R, defined by

D 1dIN(x

JEN enr

R(x) =

I3 e

JEN enr

(11)

Note that R is defined such that is only different from zero
in the elements containing part of the interface [7]. The
enrichment affects only the degrees of freedom correspond-
ing to the vertex nodes of the elements in contact with the
interface. The set on indices corresponding to such nodes is
denoted as A ¢,,. Thus enriched interpolations of velocity
and pressure are expressed as

uy (X7 t) = Z
JEN lin U A bub

w(ON;(x) + Y a(OM;(x)  (12)

JEN enr

and

> )
JEN in
where M(x) R(x)N(x), and a; and b; are the additional
degrees of freedom for velocity and pressure, respectively.

A compact expression of the interpolation of velocity
and pressure is used in the following:

+ ) bi(M(x), (13)

JEN enr

phxt

u; (x,7) =N,U (14)
and

pi(x,1) =N,P, (15)
where

N, =[N|,Ny,...,N,,M,y,...,M,],
U=[u,m,...u,,a,...,a,]",

N, = [N, Nay... Ny Mo, .. M,

P=[p,p,... s Py D15 - -bne]T7

where n, = card(A s J A oub)> i = card(A7,)  and

ne = card( AN enr).

Note that the vector of unknowns U is defined as a
(n, + n,) x 2 array and therefore is not suitable as an entry
in a linear system of equations. In order to properly write
the matrix form of the system, U has to be reshaped as

ay,aj,...,a .a

S X X v T
U 7[”171’[)1}7”2’1’{27"" n,ﬂ n,ﬂ 1 ’ ne’ m]

which is a 2(n, + n,) X 1 vector. According to this reshape,
a similar reordering has to be done in N,, in order to obtain
an expression analogous to (14), namely
W [N O N, O ..N,, 0 M 0 ..M, 0
“lo N ON,... O N, O M ... 0 M,]

NP is a 2 X 2(n, + n,) matrix. It is worth noting that the
number of enriched nodes, n, varies along time as the inter-
face described by the level set is transported. Consequently,
the size of U™ and NI° changes.

Problem (1) is discretized in space using the interpola-
tion introduced above and the Galerkin formulation. The
resulting system of algebraic equations reads
KU® +G'P =1, (16a)
G, U" =0, (16b)

where the matrices K,,, G, and f, are defined as

K, = / B"yBdV,

/ NT Nrs

P, = / (N pgdV.
Q



where the gravity vector g used in f,, is the column vector in
the right hand side of Eq. (1a). The gradient matrix B is de-
fined as

B=[B,B,,...,B,,B,....,B,],
ON; oM;
axy x| 0
_ oN; B — M;
B,=1|0 o and B;=| 0 axz
axz axl axz a)(l

Note that the spatial derivatives of M, contained in matri-
ces B;, fori 1,...,n, account for the enrichment and de-
pend on the level set ¢. Therefore, the chain rule must be
employed to evaluate those derivatives.

Eq. (16) are compacted in the following block matrix

form [15]
e o)le ][]
G, oflLP] [o0o]

The discretization of the thermal problem (2) is performed
using the linear interpolation, in a similar way as with pres-
sure. The thermal conductivity is not expected to be discon-
tinuous across the interface and therefore the interpolation
is not enriched. The approximation of the temperature is

T(x,t) ~ T"(x,0) = Y N:i(x)Ti(t) = N;T, (17)

€N fin
where
N7z = [Ni,Na, ..., Ny, 1,
T=[1,Ts..., Ty,]"

And the system of ordinary differential equations resulting
from the spatial discretization (17) reads

MTT+GTT - I(T'I‘—Ff]"7 (18)

where
MT:/QNﬁpcpNTdV,

G = /Q pC,Niu" (VNy)dV,
K, = /Q (VN7) kVN7dV,

Q

The level set is discretized in space using a linear interpola-
tion (same as with temperature)

¢(X7t) = ¢h(x,l) = Z Ni(x)¢i(t) = Nr¢, (19)
where
¢ = [¢1’ ¢27 ERE (nbnun]T'

The transport equation of the level set (7) is discretized
using (19) and yields

Myp — Gy =0,
where
M, — / NN, d7, (20a)
Q
G, = NJu"(VN;)dV (20b)
Q

3.3. Integration quadrature for the multiphase elements

In the elements cut by the level set, the functions to be
integrated are discontinuous because the material proper-
ties are different at different sides of the level set. The stan-
dard Gauss quadratures used in the FE context are not well
suited to integrate these discontinuous functions. There are
two alternatives to obtain an accurate response in the mul-
tiphase elements: either to use a very large number of inte-
gration points or to decompose the element into simple
one-phase subdomains for integration purposes. Here, we
choose the second option because we are using triangular
elements in 2D. Probably in more complex situations, espe-
cially en 3D, using a large number of integration points is
advantageous because it precludes a complex coding that
must account for all the possible geometrical
configurations.

The multiphase elements are easily detected because
they have nodal values of the level set with different sign.
In 2D, linear triangles may be decomposed in two ways.
If the straight interface contains one of the nodes (the level
set is zero in this node) the triangle is cut in two triangles. If
not, the three nodal values are nonzero and the interface
cuts two sides of the triangle. In this second case, the trian-
gle is split in a new triangle plus a quadrilateral (which is
cut into two triangles).

The implementation of this kind of quadrature requires
using a numerical criterion to detect the intersection
between the element and the interface. The results are sen-
sitive to the tolerance used to detect if some point lies in the
interface. This is because the ridge function takes a very
small value when the level set is close to a node. In this case
enriching the solution results in a ill-conditioned problem
because the coefficient associated with the enriched part
of the solution must compensate the tiny values of the ridge
function. Here, the tolerance is set to a 10 percent of the
element size.

3.4. Time discretization

The level set function tracking the interface is updated at
each time step by the transport equation (7), which is
rewritten as

¢=-U-Vo.

This equation is integrated upon time using a two-step
third order Taylor Galerkin method (2S-TG3), namely



" =¢"+ %At{b" + aAP¢", (21a)

" =¢" + Atg" + %A#Jf'. (21b)
The o parameter takes the value 1/9 to reproduce
the phase-speed characteristics of the single-step Taylor
Galerkin scheme [15].

Taking into account the incompressibility equation (1b),
the second time derivative of the level set function ¢ can be
expressed as

¢=-u-V(¢)=u-V(u-Ve$)=V-((u-u)Ve).

Therefore, the first step of the Taylor Galerkin algorithm is
given by

~ 1

" =¢" + §At(—u -V¢) + aALV - ((u-u)Ve). (22)
Using the space discretization ¢ (19) of the level set func-

tion ¢, the first and second steps of the TG3 scheme are ex-
pressed in the following matrix forms

~ 1
My¢" = [M¢ +3AG, + aAt2K4,] ¢",

1 "
Myp™" = [My + AtGyl¢" + EAtZKW",

where My, and G are defined in (20), and K4 comes from
the discretization of the last term of (22)

Ry /ﬂ (u-u)(VNIVN,) dV.

Note that G, and K, depend on the velocity field. In the
practical implementation, the velocity field u” of the n step
is taken constant during the entire time step and conse-
quently the steady (quasi-static) Stokes problem is not
solved for the intermediate step ¢".

To keep the solution in the stability domain of the two-
step TG3 algorithm the time increment &7 is set such that
the Courant number is lower than 3/4.

The unsteady heat equation (2) is integrated upon time
using a n-stage explicit Padé method. This multistage
method is expressed in the following incremental form:

Tn+ﬁl = Tn,
TP = T 4 B AT

(23a)
(23b)

i=2,...,n+1,

where f; 0,and f; 1/(n,+2—i).
From the discretization (18) of the heat equation (2),

each step of the explicit Padé method can be written in

the matrix form

MT'I"n+ﬁ1 = (GT + KT)T'Hﬂ/ 14 ny
T"+ﬁl =T"+ B'_ A{i‘"*’ﬁ/ 1

This method updates the temperature from step » to step
n+ 1 computing the temperature in some intermediate
points n + ;. Same as with the TG3 integration algorithm,
the G, and K, matrices depend on the velocity field u and
in the present implementation a constant velocity is
assumed during the time step. These matrices are assem-
bled once in each time step, and then used in each stage
of the Padé method.

4. Validation test

Two basic properties of the numerical approach used
here are checked in this section with an academic example.
Firstly, the ability of the level set to describe interfaces and
to ensure the volume conservation is studied. Secondly, we
demonstrate how the enriched interpolation improves
solution.

The motion of two immiscible incompressible fluids with
different densities and viscosities is simulated (the values
are taken to be of the same order of magnitude as in the
application example of the next section #; 102 Pas,
p1 3300kg/m® and 5,  10*°Pas, p» 3290 kg/m?). At
the initial configuration the denser fluid is in the top of a
square box and it flows to the bottom. The initial state
and several snapshots along the evolution are shown in
Fig. 4. Note that in this example the thermal behaviour is
not taken into account and the viscosity and density of
each phase are assumed to be constant (linear mechanical
model). This is because the goal of this example is only

Fig. 4. Dense fluid falling in a square box. Evolution of the two phases.
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to test the description of the phase tracking via the level set
approach (see Section 3.1), the accuracy of the numerical
scheme used to transport the level set (solving Eq. (7))
and the influence of the enrichment in the numerical
results.

4.1. Checking volume conservation

The volume of each phase (the denser and the lighter flu-
ids) has to be conserved along the time stepping procedure.
Therefore, volumetric changes in time are used to assess the
accuracy of the numerical techniques.

The numerical test is performed with a series of uni-
formly refined non-structured meshes. The results are dis-
played in Table 1, which shows the maximum volume
variation obtained with each mesh. As expected, the finer
the mesh, the better description of the level set, and there-
fore, the lesser volume variation is observed. However,
even with a coarser mesh (average edges length is 0.05)
the error produced is less than 4%.

Table 1

Volume conservation

Mesh Elements Initial volume Avol % Error
1 910 0.74 0.024 33

2 1432 0.74 0.020 2:7

3 2074 0.74 0.016 2.1

4 2832 0.74 0.014 1.9

5 3710 0.74 0.015 20

6 4706 0.74 0.014 1.8

7 5814 0.74 0.012 1.6

Maximum volume variation (along time) with respect to the initial con
figuration for different uniform meshes.

4.2. Influence of the enrichment

The influence of using the enrichment presented in Eqgs.
(12) and (13) is analyzed here. The mesh with 2074 ele-
ments (Fig. 5d) is taken as a reference for a coarser mesh
of 508 elements (Fig. 5e). The solutions of the coarser mesh
with and without enrichment are compared by computing
the errors with respect to the more accurate solution of
the finer reference mesh.

The solution is analyzed at a given time that corre-
sponds to the configuration shown in Fig. 5c. The error
is computed as the difference of the velocity solutions at
a fine cloud of sample points. The global figures displayed
in Table 2 demonstrate that the error is reduced using the
enrichment both in its average and its maximum value by
a factor of approximately 2.

The enriched solution shows smaller errors (approx. one
half) when compared with the non-enriched solution
(Fig. 5a and b, respectively). The histogram of Fig. 5,
shows that the lower errors for the enriched solution occur
in a much larger number of points. In addition, the larger
error (up to 3.5%) are absent for the enriched solution.

This example demonstrates that, even in this simple
problem, the enrichment is needed to properly capture
not only the discontinuities in the derivatives of the velocity
but also the values of the velocity itself.

Table 2
Error reduction by enrichment

Enriched Not enriched
Max. rel. error 1.212 3.783
Average rel. error 0.1462 0.3331

6000
T T a c
Relative error
5000 - §
H
4000 | [ enriched 4
B not enriched
3000 b
2000 3
5 .é 06 e
5
g 04
1000 c
02
E_ 0
0 A L

1
0 05 q 1.5

max relative error
enriched solution

3
max relative error
not enriched solution

Fig. 5. Effect of the enrichment in the discretization error. Histogram of relative errors: number of occurrences of every error value at the sample points
(left). Space distribution of relative errors for the enriched solution (a) and the not enriched solution (b). Configuration at the time analyzed (c). Finer

mesh used in the reference solution (d) and coarser computational mesh (e).
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5. Application example

The convergence of two tectonic plates is simulated to
model the subduction process, where one moving plate
bends and sinks below the other plate. The relative velocity
of convergence between tectonic plates is called conver-
gence rate and does not refer to the approximation proper-
ties of any particular numerical scheme. The goal of the
simulation is to find a relationship between the conver-
gence rate and the geometry of the subducted oceanic plate
(slab). The geometry of the slab is parameterized by the
slab dip (angle with respect to the horizontal) and the cur-
vature at the discontinuity occurring at the depth of
660 km.

Observations of real subduction zones reveal that the
slab dip increases gradually from the surface to a depth
of 80 150 km. Below this depth, it remains almost constant
down to the limit between the upper and the lower mantle
at 660 km depth, where the slab may deflect [16].

The problem statement is illustrated in Fig. 2a. The sim-
ulation is performed to reproduce approximately 1360 km
of plate convergence, that is, one plate moves 1360 km
against the other. The velocity of the plates at the surface
is imposed by the boundary conditions, as explained in Sec-
tion 2.4. In order to test the influence of the velocity in the
slab dip, the surface velocity is changed during each simu-
lation. Three different realistic values for the velocity are
used: low (2.5cm/yr), moderate (5cm/yr) and high
(10 cm/yr). Each simulation uses two of these velocities.
The transition from one velocity to another is either grad-
ual or sudden.

The slab dip is computed between 200 and 400 km
depth. Ignoring the upper 200 km precludes the influence
from the shallow dip, possibly biased by the surface bound-
ary conditions. The lower 400 km limit is above the curved
part of the slab caused by the deflection at 660 km.

The slab dip is computed by a linear least squares fitting
of the position of the interface between the subducted

2000 km 4000 km 6000 km

+54.7°
Cc 0
05
i)

8000 km d ?
1000 km

lithosphere and the upper mantle. Note that this interface
is described by the level set function.

The slab dip is computed at many stages in each simula-
tion. Fig. 6 shows the final dimensionless temperature dis-
tributions for five different simulations, and the slab dip
measurements. Due to the extremely low conductivity,
the temperature field is a good proxy for identifying the
slab geometry.

Fig. 7 shows the results of a set of numerical simulations
in terms of slab dip and convergence rate: every circle in the
plot corresponds to a specific measurement in each simula-
tion, all with different conditions. A clear correlation is
found: high velocities are associated with low subduction
angles. Taking into account all the velocity-dip measure-
ments (a grand total of 412 corresponding to 39 different
simulations) the correlation parameter is R —0.71. The
same analysis performed only with the measurements taken
after a period of constant velocity (at the end of the simu-
lation or before the velocity change, that is 61 measures)

80

75} %3

O
.8
0F %o o

dip (deg)
(o)
(3]
o
e

60

55} 1
® 69,0

50
2

3 4 5 6 7 8 9 10 11
velocity (cm/yr)

Fig. 7. Velocity dip values.

s 53.5°

! / 741.7°
f 7 0
ﬁuw
;

Fig. 6. Final temperature distributions (dimensionless) resulting in five different simulations. Complete computational domain (a) and zoom into the zone

of interest (b) (f). The slab dip is indicated for each simulation.



gives a correlation parameter of R —0.88. If the linear
regression is applied to the cases where the slab reaches
the 660 km discontinuity (a grand total of 209 measures)
the correlation is even better: R —0.93.

An analysis of the relations between plate curvature at
660 km depth and other known parameters showed no evi-
dent correlation. At the end of every simulation, the slab
remains buoyant at the 660 km discontinuity. Moreover,
no systematic relationship is found between the final slab
geometry and the type of velocity transition (sudden or
gradual) or the acceleration of the slab (positive or
negative).

Fig. 8 shows six velocity-dip paths, three corresponding
to sudden velocity transitions and three to gradual transi-
tions. It is observed that the average dip rate is 2°/Myr
for shallowing slabs and 2.7°/Myr for steepening slabs.

The velocity-dip path for the model with a constant con-
vergence rate of 10 cm/yr (see Fig. 9) shows a clear incre-
ment in slab dip, until the plate is deflected at 660 km
depth. Similar behaviour was found in other examples.

Geophysical interpretation. According to the simula-
tions, the slab dip does not depend on the length of the sub-
ducted lithosphere, nor on the thermal state of the slab
(slabs of slower subduction zones have more time to adjust
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Fig. 9. Velocity dip path for a constant velocity model (10 cm/yr).
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its temperature to the surrounding mantle). A clear depen-
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to the gradual velocity transition models and corroborate
the velocity-dip correlation.

Fig. 8. Velocity dip paths for six shallowing and steepening models. Black arrows indicate the times where the velocity changes. Gradual transition models
have smoother paths than sudden transition models with same initial and final velocity.
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We interpreted that two forces are in competition to
control the dip: the viscous force of the mantle resisting
the slab penetration, which depends on the plate velocity,
and the mass excess caused by the lateral density contrast,
depending on the temperature contrast between the slab
and the mantle (the slab-pull force). If, as it is found in
the present simulations, the velocity correlates with the slab
dip, the mechanical viscous forces have a greater influence
in the slab geometry than the gravitational forces. The
effect of the thermal state is in this case of second order.

6. Concluding remarks

A numerical model of the tectonic plate subduction is
presented.

The physical model accounts for the complexity of this
natural system and its main features are summarized in
the following points:

e the pseudo-static mechanical problem (inertia terms are
neglected and therefore no time derivatives appear) is
governed by the Stokes equation, being a two-phase
fluid with a sharp viscosity contrast,

¢ highly-nonlinear rheology,

e two-way mechanical thermal coupling, being the ther-
mal problem advection dominated and with a heat pro-
duction term associated with shear effects, based on
strain rate,

e the physical properties depend on both temperature and
pressure.

The resulting model is numerically solved using the
X-FEM approach for the space discretization and explicit
time-marching schemes which handle properly the advec-
tive character of the problem.

The results of the numerical tests allow assessing the
relation between the plate convergence velocity and the
subducted plate dip. These observations are relevant for
the geophysical interpretation of the model. A clear corre-
lation between these subduction parameters is found and it
is concluded that the mechanical viscous forces have a lar-
ger influence on the dip than the thermal forces. These con-

11

clusions may be extended to assess the origin of the driving
forces of the plate motion in the subduction zones.
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