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Abstract. Wind turbine blades are subjected to wind pressure distribution that depends on the external
environment and the inertial loads from their rotational velocity, acceleration, and turbine control. To
simulate these effects, numerical tools are used. Allowing a coupled nonlinear aero-hydro-servo-elastic
simulation in the time domain representing the multibody 1D beam finite element model (FEM). Nev-
ertheless, when the mechanical analysis comes into detail, a shell FEM with applied loads in 3D spatial
space must be used to analyze the fatigue. Therefore, the loads estimated by beam simulations need to
be transferred into an equivalent 3D distributed loads for the shell FEM Called in the literature Load Ap-
plication Methods (LAM), Each of these LAM differs in the stress distribution and the deflection of the
blade. Subsequently, fatigue analysis of the whole blade can be performed by defining the cycle counting
method and multi-axial damage criteria for composite material. However, this process is computation-
ally expensive, since it is required to calculate the stress history in the shell FEM of the blade for each
time instant of the aero-elastic simulation for different mean wind speed, other authors use a damage
equivalent load (DEL) to estimate the fatigue damage directly from the 1D simulations. To reduce the
number of call of the aero-elastic and shell FEM simulation a deep neural network (DNN) was trained
to predict the accumulated fatigue damage in a node of the blade given the 10 minutes mean wind speed
and the empirical cumulative density function of the damage per cycles with a relative error less than 5%

1 INTRODUCTION

The wind turbine has developed over the last 35 years. They are more cost-effective and more reliable.
The evolutionary period is not over, because the trending growth in power (kW ) continues in process,
designing larger and more generation power wind turbine as the 10MW wind turbine developed by DTU
[1] in 2013. Typically, numerical tools are used to facilitate the design of wind turbine blades, usually
loads calculation is carried out with a beam Finite Element Model (FEM), taking into account aero-elastic
behavior and turbine control commands. One example of these codes are the Fatigue, Aerodynamics,
Structures, and Turbulence (FAST)[2] from National Renewable Energy Laboratory.

These multi-physics and multi-body aero-servo-hydro-elastic beam finite element codes can run a great
number of the design situations described by certification bodies [3], taking into account all different
extreme loads acting in the structure, generating the loading history used to basic or detailed analysis.
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For a detailed analysis as buckling or fatigue analysis, is necessarily a high-fidelity FEM representation
of the wind turbine, but using usually this model requires a large amount of CPU time calculation and
it’s really difficult to incorporate the effects of the controller, energy production, and others behaviors as
the beam aero-elastic simulations. To solve this problem, some authors have tried different approaches
to transfer the time history loads from the beam simulations to a 3D load distribution to apply to a shell
FEM, called in this article load application methods (LAM). Caous [4] has classified the methods re-
viewed in the literature into 4 groups. They aim to replicate the same behavior as the one produced by
the 1D beam simulations. To estimate the fatigue damage in the wind turbine blade, different authors
have to develop their methodologies to analyze the fatigue damage of wind turbines without using sur-
rogate models. Some examples are the research presented by Dimitrov [5] defined a constant uniform
pressure distribution as a linear function of the flap-wise bending moment and applied to the 3D FEM of
a composite material wind turbine blade. Then, using the Hashin criterion calculates the ultimate failure
of a composite laminate. The author used a progressive failure analysis, following the development of
matrix-related failure events, until the first fiber failure occurs. for the fatigue failure for laminates a
fatigue analog to the static Hashin failure criterion [6] with a progressive update of stiffness in the lam-
inates. Subsequently, treatment of uncertainty in different assessments as uncertainties in wind climate
variables in estimating extreme and fatigue loads, in the ultimate limit state, and fatigue limit state. And
Also, the research by Bottasso [7] in the structural composite blade optimization. Divided into two major
parts, first, optimizing a 2D FEM section and beam modeling, and then a 3D FEM is used to update the
constraints of the 2D FEM optimization.

Other authors to overcome the limitations due to computational time cost, introduce the use of surrogate
models in their estimation of fatigue damage. Hu [8] in his study for reliability-based optimization
in wind turbine blades for fatigue life develops A wind load uncertainty model representing realistic
spatiotemporal annual wind load variation represents a joint probability density function (PDF) of 10-
minutes mean wind speed and 10-minutes turbulence intensity. That estimate the lift, drag, and moment
coefficients integrating Xfoil and aerodynamic code AeroDyn for a different angle of attack for each
blade section. Then, applying a pressure distribution along the 3D FEM model of the blade to calculate
the fatigue damage using a multi-axial fatigue damage model for isotropic and anisotropic materials
[9]. Because of the outrageous amount of variables on his fatigue damage model, the author used a
Kriging surrogate model [10] on defined hotspots, to estimate the reliability-based optimization of the
wind turbine blade.

In a more recent study about surrogate models in wind turbine reliability assessment [11], the authors
simulate the wind turbine using FAST code [2] to get resultant loads in a beam FEM of the wind turbine.
Subsequently, Uses DELs implicitly assuming that a linear S-N curve can model fatigue strength of
materials. The Miner’s rule [12] is used to accumulate fatigue damage. Subsequently, a surrogate model
using two different approaches are used to predict the damage at a different location of the blade, Kriging
[13] and PCE (Polynomial Chaos Expansion) [14]. Then, making quantification of the surrogate model’s
uncertainty for different conditions on the wind turbine blade outputs. Modeling the wind turbine blade
using beam FEM, the fatigue damage analysis is faster than using a 3D FEM. However, there is no
detailed information on stress distribution along with the wind turbine, especially the blade which has
the most complex geometry, and estimating this distribution is difficult to calculate. These methods
mentioned before requires an enormous amount of simulations to train the surrogate model to estimate
the fatigue damage, and this cost increases performing a 3D finite element analysis to estimate the fatigue
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damage over the wind turbine blade model.

These methodologies tend to use a large number of aero-elastic simulations for each combination of
environmental conditions, in the study of Slot et al. [11] the number of aero-elastic simulations is 625
environmental cases and each of them is simulated 100 times to capture the time variation response. Us-
ing these aero-elastic time histories load responses to estimate the fatigue damage in a 3D finite element
wind turbine blade model is an unattainable task because of the high computational cost of the 3D model.
This study proposed a method to reduce the number of aero-elastic simulations and estimate the prob-
abilistic fatigue damage using a 2D shell finite element wind turbine composite blade model. It selects
first the environmental conditions for the 10 minute mean wind speed. Then 10 minutes aero-elastic-
servo simulations are performed at integer values between cut-in and cut-out wind speeds, subsequently,
the load responses are filtered using Fourier transformation to reduce the time step of the load response.
Then each time step of this filtered response is transferred into a 2D shell finite model of the composite
blade using a load application method from the literature to estimate the detailed fatigue damage on the
blade composites layers. To determine the fatigue damage is used multi-axial fatigue criteria based on
a Tsai-hill criterion, constant life diagrams to estimate the fatigue strength at different stress ratios and
Miner’s rule for the fatigue accumulation. Once the fatigue damage is calculated a surrogate model based
on deep neural networks is trained to predict the 10 minutes fatigue damage, taking as input parameters
the 10 minutes mean wind speed and a uniform random variable that represents the empirical cumulative
distribution function of the damage caused at each cycle.

A deep neural network is trained and validated to substitute this computational process taking as input
variables the 10 minutes mean wind speed and the empirical cumulative density function of the damage
per cycle of the blade root to predict the damage for a different time history of the same wind conditions
with an error less than 5%.

2 FATIGUE SIMULATION METHODOLOGY

2.1 Aero-elastic simulation

2.1.1 Wind speed conditions:

Measurements of wind speed during the last three years where extracted from open-data Engie Renew-
able project at la haute borne, Grand Est, France [15] collected for a 2MW wind turbine at a hub height of
80m. The wind turbine used in this study has a hub height of 119m and cut-in and cut-out wind speeds of
[4,25] m/s respectively. In order to use these measurements, the wind speed is transformed to DTU hub
height using a power law [16] and Hellmann’s exponent coefficient q = 0.27 for a condition of unstable
air above human inhabited areas [17]:

ū(z) = ū(zre f )

(
z

zre f

)q

(1)

2.1.2 Aero-elastic unsteady simulation:

The IEC 61400-1 [3] define the dependency between wind speed (WS) and the standard deviation of the
wind speed (σ1) in the Normal Turbulence Model. In this study case, a reference ambient turbulence
intensity of a site Class 1A: T Ire f = 0.16. This dependency is given by the local statistical moments of
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σ1 as: E(σ1|WS) = T Ire f (0.75WS+ 3.8) and V(σ1|WS) = (1.4T Ire f )
2. The details of the correlation

parameter can be found in reference [3]. The correlation between WS and mean shear exponent α is
based on the simplified joint distribution defined by Dimitrov et al. [18].

Table 1: Wind turbine surrogate model inputs parameters.

Input Parameter PDF PDF Parameter

10-min mean hub height wind speed Weibull E(WS) = 7.28m/s
Std. of the wind speed during the 10-min simulation Log-normal µσ1(WS),σσ1(WS)
10-min mean shear exponent Normal µα(WS),σα(WS)

In this case, for the fatigue analysis, only uncertainties on the wind loads are considered. Other studies
[11] take into account variation in multiple variables of the wind condition as mean wind speed, the
standard deviation of the wind speed, shear exponent, wind direction, miss-align angle. This study only
considers uncertainties in the 10 minutes mean wind speed to decrease the complexity of the problem
and also reduce the sample size of simulations, decreasing the computational time. This simplification
could lead to an underestimation of the fatigue damage of the wind turbine, however, it is considered
as an initial step to evaluate and validate the proposed methodology. For the generation of the 3D wind
field, the turbulence intensity and the shear exponent are constant values defined in the IEC standard
[19].

2.1.3 Filtered FAST Simulation load time history

The environmental conditions described before are inputs to FAST [2] and an effective 10 mins unsteady
study with a time step ∆t = 0.015s is launched for integer values of wind speeds between [4,25]m/s.
A turbulent simulation is made using a full-field flow that contains a proper Spatio-temporal turbulent
velocity field generated using TurbSim [20], afterward is used as a FAST input to simulate the inflow
turbulent environment that incorporates many of the important fluid dynamic features known to adversely
affect turbine aeroelastic response and loading. The number of simulations realized in this study is 1 per
integer wind speed in the range [4,25]m/s resulting in 21 FAST simulations.

Subsequently, a time history response of the forces and moments acting on 10 nodes of the blade are
extracted as outputs from the FAST model resulting in 60 outputs variables described as FFast

i and MFast
i ,

where i = x,y,z for each node. After 300 simulated seconds, these loads are re-sampled to reduce the
time step to ∆t = 0.63s of the time history resulting for each wind speed and apply each time instant to
the 2D FEM blade to create a high fidelity response resulting in a total of 21,000 finite element analysis.

The filter used to re-sample the aero-elastic response is based on the Discrete Fourier Transformation
(DFT) [21, 22]. The DFT is the equivalent of the continuous Fourier Transformation (FT) for signals
only knowing at N instants separated by sample times T, a finite number of data points.

This method is used to down-sample the original signal by assuming is periodical, changing the sample
space from dt to dt · length(T )/M, where M is the new sample number. After re-sampling the loads,
there is little reduction in the maximum and minimum value of the output. However, this reduction is not
important for the magnitude of the loads and is used for further analysis.
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a) b)

Figure 1: FAST load output time history for Spn1FLxb1 at 11m/s with a time step of 0.015s and re-sampled to a
time step of 0.63s, and a zoom between 200 and 300 seconds.

2.2 Load application method for shell finite element model

As the loads are extracted from an aero-elastic simulation code, the blade is modeled using 1D beam
FEM, and these loads are the resulting load in a node. Simple analysis can be carried out as maximum
load, frequency, and/or tip displacement analysis, however, if a more complex analysis, like fatigue or
buckling analysis is required, it must use a 3D model of the blade with distributed loads.

To transfer the 1D load distribution from the beam FEM to a 3D load distribution to apply to a shell
FEM, Caous has classified the methods reviewed in the literature into 4 groups: Application of loads by
sections, application of loads by sections but physical distribution on sections, continuous application
on the blade of an oriented surface load and Dissociation of inertial and aerodynamic loads with an
application of an acceleration field and pressure distribution across the whole blade. In this study is
chosen a LAM from the second group applying the loads at 4 different nodes per section assuming
simplified physical laws.

2.2.1 Blade Description

The wind turbine used in this study is the reference 10MW WT from DTU [1], but to simplify their
complex material distribution, the composite materials were changed to QQ1 and P2B from composite
database SNL/DOE/MSU [23] and Balsa was retained as core material. The spatial material distribution
is simplified, where, only 3 sections are defined in the span-wise direction and the transversal section
is divided into 3 groups: Shear Webs (SW), Trailing Panel (TP), and Leading Panel (LP), each group
has the same layup and thickness. Also, all layups are considered symmetric, reducing the number of
thickness variables to 24 (9 thicknesses for TP, 9 for LP, and 6 for SW).

2.2.2 LAM: 4 Nodes

This approach distributes the forces and moments resultants between four nodes of each section, assum-
ing simplified physical laws. Loads are applied by section and distributed across the section in such a
way that sections stay deformable. They distribute external forces and moments extracted from the 1D
beam FAST simulations on four points of the corresponding shell FEM sections. As explained by Caous
[4], it describes six equations to distribute the loads and moments at the four nodes in each section. To
know the details of this method read the article [4].
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2.3 Blade root fatigue evaluation

Once the loads are applied to the 2D shell FEM, Python scripts are developed to extract the resulting
stress components. After applying the loads time history in the 2D shell FEM using LAM 4 nodes,
can be extracted the stress at each node and each position of every ply, these results in a total of more
than 450,000 output values per time instant, in this case, to reduce the size of the output domain is only
analyzed the inferior position of the inner ply of a node at the blade root to extract their stress time history
in σxx,σyy and σxy that will be used to calculate the multi-axial fatigue damage.

The stress distributions through a laminate have a piece-wise linear function, which is consistent with
the classical laminate theory of composite materials.

2.3.1 Multi-Axial Fatigue Criteria

The stress time history got shows that the blade bears non-proportional multi-axial complex stress states
of variable amplitude and mean, which is the same result obtained by [24]. Stress history of longitudinal
normal stress σxx, transverse normal stress σyy and shear stress σxy of blade root node 606, are estimated
only in QQ1 layer as this is the layer with the highest stress value.

To count cycles for the non-proportional multi-axial complex stress states, 800 seconds of the FAST
simulation are executed and after 200 seconds, the remaining 600 seconds (10 min of an effective simu-
lation) are used to count peak, valley, for each of the stress components. A range-mean counting method
described by ASTM Committee [25] is applied to count all the half cycles, allowing a cycle-by-cycle
fatigue analysis. The stress path from one stress state to the next following stress state is defined as a
one-half cycle. According to the Tsai-Hill criterion [26], a multi-axial fatigue damage index [27] caused
in a half cycle under a stress level σi

xx,σyyi and σi
xy is computed as:

Di = 0.5

√
1

(Ni
xx)

2 +
1

(Ni
yy)

2 +
1

(Ni
xy)

2 +
1

Ni
xxNi

yy
(2)

where Ni
xx,N

i
yy and Ni

xy are the number of allowable cycles under pure stress components σi
xx,σyyi and

σi
xy, respectively. The coefficient 0.5 indicates the half cycle.

2.3.2 Fatigue damage accumulation

To continue the fatigue analysis is necessary to select the estimation of the fatigue damage accumula-
tion, which is nonlinear under variable amplitude non-proportional multi-axial loading. A comparative
study of nonlinear damage accumulation in stochastic fatigue FRP (fiber-reinforced plastics) laminates
by Sarkani [28] presents different non-linear methods versus a linear method and all of them predicted
fatigue lives comparable to those predicted by the linear damage accumulation rule.

The Miner’s rule [12], the most used method to predict fatigue damage of wind turbine blades, assumes
a linear damage accumulation [3]. The fatigue damage in 10 minutes simulation is calculated as:

D10 =
n

∑
i=1

Di = 0.5
n

∑
i=1

√
1

(Ni
xx)

2 +
1

(Ni
yy)

2 +
1

(Ni
xy)

2 +
1

Ni
xxNi

yy
(3)
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2.3.3 Constant life diagram

The S-N curves or Wöhler diagram [29] are used to represent the fatigue properties of structures in
terms of a damage accumulation law. In this representation, the number of cycles to failure is given as a
function of the stress cycle’s amplitude. In its typical form, the S-N fatigue life model [30] is provided
by the relation:

Ni j = ai jS
bi j
i j (4)

where Si j is the stress amplitude, Ni j is the number of cycles to failure, ai j and bi j are fatigue strength
coefficients corresponding to a stress ratio R. ASTM standards [30] suggest treating statistically the
fatigue strength coefficient used to construct the S-N curve to represent a 95% survival probability with
a confidence interval of 95%. However, S-N curves only capture the failure behavior at a constant ratio
R, which is used for constant amplitude stress. In this case, the stress amplitude is variable through time,
meaning that failure cycles at different ratios must be estimated. Here, is used a constant life diagram
[31].

The constant life diagram (CLD) is a model used to predict the number of cycles to failure as a function
of cycle amplitude S and mean stress values by interpolating between S-N curves obtained from constant
amplitude with different load ratios. CLD for composite materials QQ1 and P2B for longitudinal and
transversal direction are constructed using fatigue test data extracted from SNL/MSU/DOE composite
material database [23]. This test includes maximum stress, minimum stress, and cycles to failure for
each material tested at ratios R = [−2,−1,−0.5,0.1,0.5,0.7,10].

The constant life diagram is constructed from the 95% lower bound S-N curves. Vassilopoulos [32]
studied the influence of the CLD formulation and concluded after analyzing different approaches that
piece-wise linear is the most accurate of the approaches when using a reasonable number of S-N curves
(> 3). The piece-wise linear CLDs of QQ1 and P2B has a range of cycles to failure that goes from 102

to 108.

2.4 Surrogate model: regression deep neural network

The surrogate model selected for this problem is the deep neural network (DNN) due to the increas-
ing development of this technology and problem complexity. DNN is an artificial neural network with
multiple layers between the input and output layers that can model complex functions [33].

2.4.1 input domain

The input parameters to generate the environmental conditions are the 10 minutes mean wind speed, 10
minutes turbulence intensity, and 10 minutes mean shear exponent. Only one simulation per wind speed
between (4,25)m/s was performed, resulting in a total of 21 stress time history used to calculate the
damage caused in a half cycle Di per wind speed WS, for a unique value of WS multiple values of Di

are correlated as shown in figure 2(a). As can be seen, if a neural network is used to predict the damage,
it only predicts a mean value per wind speed, resulting in a bad prediction of Di. To predict the 10
min damage D10 is added as the second input parameter, the empirical cumulative distribution function
(ECDF) of Di per each wind speed ordered as an increasing function, using python package statsmodel
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[34]. Adding this second input parameter, the damage prediction for D10 is estimated by selecting the
desired wind speed and generating a uniform distribution function [0,1], of size equal to the number of
half-cycles in a 10 min stress history (i.e., count of ranges of stress).

a) b)

Figure 2: a) Damage distribution Di per wind speed and b) ECDF per wind speed of Damage using LAM 4NO at
Node 506.

The ECDF is a step function with a step size equal to 1/nobs where nobs is the number of observed data
points. Its value at any specified value of the measured variable is the fraction of observations of the
measured variable that are less than or equal to the specified value.

The use of ECDF in this problem is motivated by the idea of the inverse transform method [35], the
theorem implies that, If F is a continuous distribution function on R with inverse F−1 defined by

F−1(u) = in f x : F(x) = u,0 < u < 1

If U is a uniform [0,1] random variable, then F−1(U) has distribution function F . Also, if X has dis-
tribution function F , then F(X) is uniformly distributed on [0,1]. This theorem can be used to generate
random variables with an arbitrary continuous distribution function F provided that F−1 is explicitly
known.

As shown in figure 2 sorting the damage from lowest to highest, each value of Di per wind speed has a
corresponding value of F̄ , which gives the network a better representation of the behavior of the damage.

2.4.2 DNN description

For training the DNN, all inputs and output parameters were scaled between (0,1) to normalize all param-
eters magnitude, after the data is shuffled, 90% of the data was used to train the model and the left 10%
for validating the model prediction. The DNN is a sequential fully connected network, having a total of 6
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hidden layers, each has 296 neurons, also all layers have a rectified linear unit (Relu) activation function
and a learning rate of 0.001. For this regression problem, the weight and bias for the DNN are optimized
using Adam optimizer to minimize the mean squared error of the difference between prediction and real
value.

After the training and validation phase of the DNN, it can be used to predict the 10 minutes fatigue dam-
age. The stopping criteria were a maximum iteration of 3000 epochs or an absolute error of validation
mean squared error between two subsequent epochs.

3 RESULTS

3.1 DNN prediction

The training phase of the DNN are shown in figure 3 (a) the correlation between the damage simulated
Di and the damage predicted D̂i performed in the validation set is good, having an RMSE of 4.16e−05.
Also, the relative percent error of each damage prediction is shown in figure 3 (b), the maximum relative
error is about 3.5% which shows good accuracy of the DNN.

a) b)

Figure 3: a) correlation between damage simulated and damage predicted by DNN, b) prediction relative percent
error.

But, these predictions are made over one aero-elastic simulation at 1 selected seed number, to test the
predictions of 10 minutes damage D̂10 of the network a new seed number must be used to calculate the
real accuracy of the trained network.

The 3D wind field is generated using a different seed number selected randomly and used to run the aero-
elastic simulation to generate the time history of the behavior of the wind turbine blade, that subsequently
was transfer to the blade shell FEM and calculated the 10 minutes damage at the blade root per each wind
speed as shown in table 2. These DSEED=2

10 are used to test the response of the trained DNN to predict
D̂10. The maximum relative percent error was found at wind speed 12 m/s less than 5%, meaning that
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Table 2: 10 minutes damage prediction testing using a different seed number for generation of the 3D wind field
time history.

Wind speed DSEED=2
10 D̂10 Relative error

4 2.71E-09 2.71E-09 0.02%
5 3.48E-09 3.42E-09 1.85%
6 3.11E-09 3.03E-09 2.72%
7 3.71E-09 3.70E-09 0.26%
8 2.57E-09 2.50E-09 2.85%
9 4.05E-09 3.90E-09 3.81%
10 3.19E-09 3.13E-09 2.05%
11 3.64E-09 3.58E-09 1.79%
12 4.40E-09 4.18E-09 4.87%
13 4.66E-09 4.67E-09 0.13%
14 4.06E-09 4.10E-09 0.94%
15 3.89E-09 3.82E-09 1.78%
16 4.44E-09 4.48E-09 0.71%
17 6.77E-09 6.78E-09 0.09%
18 7.28E-09 7.27E-09 0.11%
19 6.59E-09 6.59E-09 0.12%
20 6.68E-09 6.67E-09 0.05%
21 6.78E-09 6.78E-09 0.02%
22 2.35E-09 2.37E-09 0.98%
23 6.72E-09 6.73E-09 0.09%
24 6.70E-09 6.70E-09 0.04%

our DNN can predict accurately the accumulated damage at 10 minutes at different time histories per
wind speed.

4 CONCLUSIONS

A 10 minutes fatigue analysis of a composite wind turbine blade is presented in this study. To reduce the
calculation time is introduced a deep neural network (DNN), which takes as input values the wind speed
and the empirical cumulative distribution function of the damage per cycle for 10 minutes, which can
predict the accumulated 10 minutes of damage at one node of the blade root.

This methodology could be implemented in other wind turbine components to estimate the fatigue dam-
age as the tower or the jacket. The estimation of the 10 minutes fatigue damage could be improved by
increasing the length of the aero-elastic simulation and adding changes in turbulence intensity and shear
exponent, however, this also will increase the computational cost when transferring the loads to the 2D
shell blade model or by taking into consideration more uncertainty due to the turbulence intensity, wind
direction, and shear exponent.
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