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Abstract. Smoothed-particle  hydrodynamics  (SPH)  simulation  is  a  mesh-free  method  to 
simulate solid mechanics or fluid flows by approximating their volume with a set of particles 
and computation kernels. Hence the output of these simulations is usually a large set of points 
with associated values such as velocity or pressure. Due to the mesh-free nature of this method, 
their post-processing and visualization raise challenges to reconstruct the actual volume and 
extract significant features like interface surface or critical values.
This paper surveys the current and future post-processing methods of SPH simulations using 
ParaView [1], a reference tool to visualize and explore scientific data at scale. To visualize the 
millions of particles that SPH simulations can produce, ParaView can discretize particles and 
their density function over a regular grid, a surface or a line using a point interpolator. This 
enables using classic visualization techniques such as iso-contours or slicing. We also discuss 
other indirect rendering methods that can be used in ParaView, such as surface extraction and 
convex hulls, and introduce GPU representation methods [2], for direct and efficient rendering 
of particles over time, using gaussian points, volume rendering and ray tracing [3].
Finally, this paper provides an overview of particle rendering methods not yet available in 
Paraview, such as volume rendering using SPH kernels and data parallel processing algorithms 
on the GPU, for in situ rendering of large-scale SPH simulations.
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1 INTRODUCTION - SPH & VISUALIZATION

Smoothed Particles Hydrodynamics (SPH) is a mesh-free fluid simulation method used in 
a variety of fields,  such as hydrodynamics and astrophysics.  SPH, unlike more traditional 
Computational Fluid Dynamics (CFD) simulations such as the Finite Volume Method, is a 
Lagrangian approach to simulating fluids, using particles to represent mass. Each particle has a 
constant mass, a position, a velocity, and discretizes continuous fields such as pressure in space 
using kernel functions around their position. Particles’ properties change over time given the 
influence  of  their  neighboring  particles.  This  particle  model  and  its  relatively  easy 
parallelization makes SPH simulations prime candidates  for  large-scale  High-Performance 
Computing (HPC) and GPU execution [7]. HPC runs of SPH simulations often top a billion 
particles. Post-processing such a large number of particles creates new challenges in the context 
of Scientific Visualization: direct rendering of particles as color-mapped points does not yield 
a scientifically exploitable result because of the visual clutter it creates.

As  a  result,  extensive  literature  has  been  published  on  visualizing  and  extracting 
information from SPH simulation results; some approaches target realistic fluid rendering [8] 
[9], for applications in movie animation and video games, and others aim for color-mapped 
indirect rendering for scientific analysis [2]. We will focus on the latter in this paper.

To showcase different post-processing methods, we will use ParaView [1], an industry-
standard and open source visualization tool for large datasets. It can be deployed in high-
performance compute clusters and controlled remotely using a desktop Qt client. The ParaView 
server  can  be  run  in  a  distributed  environment  leveraging MPI,  natively  distributing  and 
processing  data  for  efficient  rendering.  ParaView  uses  “filters”  as  building  blocks  for 
visualization pipelines,  so data can be transformed and processed efficiently step by step. 
ParaView features a large number of filters for point cloud processing and visualization, which 
makes it an interesting platform for large-scale SPH post-processing.

We will  apply  post-processing  methods  on  industry-proven  open  source  SPH solvers 
DualSPHysics [7] and OpenRadioss. The former is a weakly compressible SPH Navier-Stokes 
solver often used for fluid dynamics, that can efficiently run on the GPU using the CUDA 
framework. Using DualSPHysics, we run a fluid simulation of a body of water flowing in an 
enclosed space simulating a dam break impacting on a structure, where particles represent fluid 
particles  of  constant  mass.  This  simulation  is  available  as  part  of  the  examples  of  the 
DualSPHysics package. The output of the simulation is a point cloud, with a pressure scalar 
field attached, as well as a velocity vector field.

OpenRadioss is Finite Element Analysis software, simulating impact, shock and highly 
dynamic events. OpenRadioss uses SPH as a complement to the Arbitrary Lagrangian Eulerian 
formulation [15], used to model fluid-like behaviors using moving points in space. The example 
simulation we are using models a close-in explosion on a concrete slab, resulting in structural 
damage of the slab. SPH particles represent the bits of the detonating charge, starting in a small 
area, and scattering all over after the impact. While these studies usually focus on the damage 
made  to  the  concrete,  we  use  this  simulation  to  showcase  visualization  methods  on  the 
detonating charge [16],  evaluating how the charge’s  particles  scatter  over time,  and their 
concentration in space.
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This  leaves  us  two very different  simulations  using SPH particles,  on which we will  
demonstrate different visualization techniques.

2 DIRECT POINT RENDERING TECHNIQUES

Scientific visualization of SPH simulation data should help scientists and decision-makers 
understand physical  phenomena,  by creating visually  pleasing visualizations  from a large 
number of points, representing particles in space. A first idea for straightforward visualization 
of SPH points would be to draw them as color-mapped points, but even for smaller datasets, 
the result in figure 1 does not help understand the particles organization and dynamics very 
much.

Figure 1: Direct point rendering of around 150k points of an explosion simulated using 
OpenRadioss. The convex hull containing all particles is depicted as a transparent grey 

surface.

To reduce the visual noise caused by the large number of points, we can subsample points  
and  try  to  keep  the  most  relevant  ones,  preserving  the  datasets’  main  features  and 
dimensionality. A possible approach is to derive a histogram from the points scalars being 
sampled, and select with a higher probability points that fall into bins where the least other 
points are. When sampling SPH particles on pressure values using this histogram method, we 
keep extreme and rare values, while discarding many particles in uniform areas. ParaView 
provides a “Histogram Sampling” filter for this purpose, that is GPU-accelerated using the 
VTK-m (now Viskores) [6] framework, built for and tested on Exascale computers. 
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The  output  of  this  filter  may  be  visualized  directly  using  color-mapped  spheres,  or 
processed further, while keeping in mind that the point density has changed, which means that 
interpolations and density analysis will not be correct anymore. Rendering these spheres can be 
done using a GPU shader transforming points into spheres, mapping their color to the scalar 
field of interest, which is the particle diameter in our case. This visualization method has the 
advantage of being run exclusively on the GPU using a dedicated shader. While it can work in 
the order of magnitude of a few hundred thousand cells, it  poorly scales with more cells, 
creating visual clutter that makes information harder to understand. ParaView supports this 
rendering mode as “Point Gaussian”.

This representation is used in figure 4, with a sampling ratio of 10%, and maps remaining 
points as spheres with a varying diameter, corresponding to the particle’s “Diameter” scalar 
field from the simulation output.  The majority of particles before decimation had a small 
diameter, this sampling by histogram balances particle diameters highlighting the location of 
the whole range of particle diameters. Note that sampling using another scalar field would yield 
different results and show differences in-between points for this field.

When dealing  with  large  particle  simulations,  we may also  want  to  query  and select  
subsets of particles from an area of interest. This can be performed in ParaView by a “Clip”  
operation,  selecting particles  inside  of  a  box,  a  sphere  or  any implicitly  defined surface.  
ParaView’s “Programmable filter” gives more control to the user, allowing to select points 
lying within a volume such as a sphere or a box, but also selecting points matching a scalar 
field or geometrical criterion. Figure 2 demonstrates the extraction of particles that lie within a 
tolerance distance off a vertical slicing plane with a programmable filter, using code from figure 
3. This custom filter acts as a plane “probe”, where further particle filtering could easily be 
added given a condition on density, and integrated to get a particle flow scalar value over 
time. 

Figure 2: Extraction of particles within a tolerance distance of a plane, shown in green, as 
seen from the top. The extracted volume is shown as a grey box.

from vtkmodules.vtkFiltersPoints import vtkFitImplicitFunction
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from vtkmodules.vtkCommonDataModel import vtkPlane

# Create a plane implicit function

plane = vtkPlane()

plane.SetOrigin([1.2,0.3,0.2])

plane.SetNormal([1, 0, 0])

# Extract points "near" the plane, within a tolerance

tolerance = 0.05

extract = vtkFitImplicitFunction()

extract.SetInputData(inputs[0].VTKObject)

extract.SetImplicitFunction(plane)

extract.SetThreshold(tolerance)

extract.Update()

output.ShallowCopy(extract.GetOutput())

Figure 3: ParaView Programmable filter Python code, extracting particles close to a plane, 
defined using an origin point and a normal.

Figure 4: Close-up of the blast simulation, with particles decimated using the Histogram 
sampling filter. Each sphere represents a particle, diameter and color depending on the 

SPH_Diameter scalar field. 
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Another  interesting  algorithm  operating  directly  on  point  clouds  is  convex  hull 
computation. Convex hulls compute the smallest convex water-tight surface that contains all 
points in the point cloud. ParaView features 3D convex hulls through the VESPA [5] plugin 
wrapping CGAL geometry processing algorithms. Figure 1 shows in transparency the convex 
hull for the clipped explosion SPH point cloud. Convex hulls can help evaluate the overall 
volume where  points  have scattered,  and is  especially  useful  when viewed over  multiple 
simulation time steps.

So far, we have only explored static visualization tools that do not take time into account. 
Both fluid and shock simulations are to be analyzed as dynamic events. Of course, one could 
create an animation from rendering every time step in a row, but creating a single image 
showing the changes over multiple steps is another option, better suited for research papers.

ParaView provides a “Temporal Particles To Pathlines” filter, that uses particle identifiers 
given by the simulation to track points over a time window, and draws the trail associated with 
changing point positions. The trail is colored given any scalar field changing over time, and the 
last particle position is represented as a white dot at the end of the trail. DualSPHysics provides 
unique identifiers for SPH points, so we can track points positions over time and follow their 
trajectory. Figure 5 represents the SPH fluid simulation as particle pathlines over 50 time steps, 
randomly  decimated  to  1/100th,  and  colored  using  particle  velocity  magnitude.  This 
representation shows how a given particle changes position and velocity over a time window. 
We  are  also  using  realistic  path  tracing  rendering,  providing  shadows  that  enhance  3D 
perception and contrast.

Figure 5: Particles trajectories over time represented as tubes colored by velocity vector 
magnitude, rendered using ParaView’s pathtracing module.
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3 SPH GRID INTERPOLATION

As we demonstrated in the previous section, direct point rendering methods can be used to 
get a first look at the data, but fall short when scaling to millions of points. Methods involving 
point decimation lose crucial information about density and overlook SPH particle kernels. 

Instead, many scientific visualization post-processing methods for SPH rely on particle 
density  interpolation over  a  regular  grid  [10]  [11]  [12],  as  they are  more suited for  data 
extraction and rendering. ParaView’s “SPH Interpolator” filter finds SPH particles around the 
regular grid’s cells by dividing the 3D space into evenly spaced buckets, and keeping  in 
memory a list of points that lie in each bucket. Point densities are then integrated over the cell  
volume. This interpolator implementation is multi-threaded for faster compute times. The “SPH 
interpolator” differs from classic interpolation algorithms as it evaluates points’ impact on 
discretized regular cells using a particle kernel function, matching the one used by the simulator. 
ParaView supports  the  classic  cubic,  quartic,  quintic  and Wendland particle  kernels.  The 
interpolation can be done on a line, a 2D plane or a volume.

Once points  are  interpolated into a  regular  grid,  we can apply more classic  scientific 
visualization algorithms, such as volume rendering [17]. We use a custom color and opacity 
transfer function to represent the density in 3D space. For the explosion simulation (figure 6), 
we chose a dark-to-light color-map showing high-density areas as lighter and more opaque, and 
lower-density areas as dark and transparent. This representation shows the high-pressure areas 
forming a ring above the slab, where deformation is occurring.

For  the  fluid  simulation,  we  run  an  iso-contour  algorithm to  highlight  the  waterfront 
(figure 7). The contour creates a surface at a given density iso-value, and color it using the 
velocity value.

Interpolating over a plane instead of a volume shows projected point density structures on 
a 2D surface. For the explosion simulation, we show figure 8 the particle density distribution 
over a lengthwise cut across the slab.
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Figure 6: Volume rendering representation, computed from particle densities interpolated 
over a 3D grid.

Figure 7. Pressure Isocontour on the fluid simulation, showing the waterfront, colored by the 
particle velocity field. 
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Figure 8: Particle density interpolated over a 2D plane, crossing the explosion simulation 
lengthwise.

Figure 9: Streamlines, computed on the interpolated volume of the fluid simulation.
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One last common visualization technique for CFD simulation is streamlines that show 
current lines for the vector velocity field. Once again, starting from the SPH particles 
interpolated over a volume, we set a starting line, and trace current lines through the regular 
grid, that preserves the velocity vector field set for each particle (figure 9). This reveals the 
direction of travel of a fluid element at a given point in time.

4 PERSPECTIVES

ParaView being a general-purpose tool for simulation post-processing, it provides many 
geometry filters and representation models that are not specific to SPH post-processing. The 
multi-purpose and configurable SPH Interpolator is an effort to make SPH simulation output fit 
the ParaView data model better, creating a regular grid from particles defined as points with 
properties, mapping a continuous field in space through a kernel function. However, ParaView 
is  still  not  a  specialized  tool  for  SPH post-processing,  and  lacks  many  possibilities  and 
performance improvement offered by ad hoc SPH scientific visualization tools.

For instance, octrees are a popular approach to efficiently store particles [13], evaluating 
their  contributions  in  discretized cells  using their  Kernel  function,  and refining tree  cells 
depending on the cell gradient. ParaView supports tree-based AMR models using 2D or 3D 
octrees as “HyperTreeGrid” [14], but there is not yet a filter interpolating SPH points to this  
efficient data model for rendering. ParaView’s pipeline and filter model limits coupling the 
different processing and rendering steps using data model and rendering mapper abstraction, so 
it is de facto slower than specialized SPH post-processing applications.

One last notable visualization technique is “in situ”, a way to view the simulation result as 
it is running, using the data in memory without copying it to create visualizations on the fly [4]. 
A large number of SPH simulations run on the GPU, but currently ParaView has limited 
capabilities  for  in  situ processing  of  GPU  memory,  limiting  the  capacity  for  efficient 
visualization  of  SPH simulations  as  they  are  running.  We  can  imagine  running  CUDA-
enabled in situ visualization pipelines through ParaView, leveraging the VTK-m [6] framework 
to interpolate and visualize particles without needing to copy data over from the GPU VRAM 
to the main memory.

5 CONCLUSIONS 

In this survey, we highlighted the characteristics of SPH simulation post-processing and 
visualization using ParaView. First, visualizing the particles only hides a large part of the 
simulation information because they are just calculation points, not the input surface or flow 
volume. So, the post-processing should take the kernel function and particle positions into 
account.  ParaView  offers  several  filters  to  extract  meaningful  information  like  the  SPH 
Interpolators.  Using  real  use  cases  simulated  with  DualSPHysics  and  OpenRadioss,  we 
successfully explored the capabilities to retrieve relevant insights from SPH simulations, but 
we also demonstrated that some features are missing, like free surface extraction. Eventually, 
the user experience should be improved to ease the visualization process.
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With  the  new  computation  paradigms  using  GPU  intensively,  SPH  simulations  are 
creating new challenges regarding post-processing like large numbers of particles and GPU 
memory management. ParaView should leverage its actual technologies like Viskores or GPU 
volume rendering to tackle these new challenges. These limitations are more pressing when 
analysing in situ large data, because zero-copy is mandatory.

We  hope  that  this  survey  would  stimulate  the  ParaView  community  regarding  the 
challenges of post-processing modern SPH simulation. Discussions and contributions are very 
welcomed.
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