IX International Conference on Particle-Based Methods
PARTICLES 2025
J. Bonet, M. Cremonesi, A. Franci, A. Gil (Eds)

SMOOTHED-PARTICLE HYDRODYNAMICS POST-PROCESSING &
VISUALIZATION USING PARAVIEW: A SURVEY

% * %
Louis GOMBERT , FRANCOIS MAZEN , GUILLAUME GISBERT AND JEAN M. FAVRE'

" Kitware Europe
6 Cours André Philip 69100 Villeurbanne, France
e-mail: kitware@kitware.fr, web page: https:/kitware.eu

"Swiss National Supercomputing Centre
Via Trevano 131
CH-6900 Lugano

Key words: ParaView, Scientific Visualization, 3D graphics, Smoothed-Particle
Hydrodynamics

Abstract. Smoothed-particle hydrodynamics (SPH) simulation is a mesh-free method to
simulate solid mechanics or fluid flows by approximating their volume with a set of particles
and computation kernels. Hence the output of these simulations is usually a large set of points
with associated values such as velocity or pressure. Due to the mesh-free nature of this method,
their post-processing and visualization raise challenges to reconstruct the actual volume and
extract significant features like interface surface or critical values.

This paper surveys the current and future post-processing methods of SPH simulations using
ParaView [1], a reference tool to visualize and explore scientific data at scale. To visualize the
millions of particles that SPH simulations can produce, ParaView can discretize particles and
their density function over a regular grid, a surface or a line using a point interpolator. This
enables using classic visualization techniques such as iso-contours or slicing. We also discuss
other indirect rendering methods that can be used in ParaView, such as surface extraction and
convex hulls, and introduce GPU representation methods [2], for direct and efficient rendering
of particles over time, using gaussian points, volume rendering and ray tracing [3].

Finally, this paper provides an overview of particle rendering methods not yet available in
Paraview, such as volume rendering using SPH kernels and data parallel processing algorithms
on the GPU, for in situ rendering of large-scale SPH simulations.

https://kitware.eu/
mailto:kitware@kitware.fr

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

1 INTRODUCTION - SPH & VISUALIZATION

Smoothed Particles Hydrodynamics (SPH) is a mesh-free fluid simulation method used in
a variety of fields, such as hydrodynamics and astrophysics. SPH, unlike more traditional
Computational Fluid Dynamics (CFD) simulations such as the Finite Volume Method, is a
Lagrangian approach to simulating fluids, using particles to represent mass. Each particle has a
constant mass, a position, a velocity, and discretizes continuous fields such as pressure in space
using kernel functions around their position. Particles’ properties change over time given the
influence of their neighboring particles. This particle model and its relatively easy
parallelization makes SPH simulations prime candidates for large-scale High-Performance
Computing (HPC) and GPU execution [7]. HPC runs of SPH simulations often top a billion
particles. Post-processing such a large number of particles creates new challenges in the context
of Scientific Visualization: direct rendering of particles as color-mapped points does not yield
a scientifically exploitable result because of the visual clutter it creates.

As a result, extensive literature has been published on visualizing and extracting
information from SPH simulation results; some approaches target realistic fluid rendering [8]
[9], for applications in movie animation and video games, and others aim for color-mapped
indirect rendering for scientific analysis [2]. We will focus on the latter in this paper.

To showcase different post-processing methods, we will use ParaView [1], an industry-
standard and open source visualization tool for large datasets. It can be deployed in high-
performance compute clusters and controlled remotely using a desktop Qt client. The ParaView
server can be run in a distributed environment leveraging MPI, natively distributing and
processing data for efficient rendering. ParaView uses “filters” as building blocks for
visualization pipelines, so data can be transformed and processed efficiently step by step.
ParaView features a large number of filters for point cloud processing and visualization, which
makes it an interesting platform for large-scale SPH post-processing.

We will apply post-processing methods on industry-proven open source SPH solvers
DualSPHysics [7] and OpenRadioss. The former is a weakly compressible SPH Navier-Stokes
solver often used for fluid dynamics, that can efficiently run on the GPU using the CUDA
framework. Using DualSPHysics, we run a fluid simulation of a body of water flowing in an
enclosed space simulating a dam break impacting on a structure, where particles represent fluid
particles of constant mass. This simulation is available as part of the examples of the
DualSPHysics package. The output of the simulation is a point cloud, with a pressure scalar
field attached, as well as a velocity vector field.

OpenRadioss is Finite Element Analysis software, simulating impact, shock and highly
dynamic events. OpenRadioss uses SPH as a complement to the Arbitrary Lagrangian Eulerian
formulation [15], used to model fluid-like behaviors using moving points in space. The example
simulation we are using models a close-in explosion on a concrete slab, resulting in structural
damage of the slab. SPH particles represent the bits of the detonating charge, starting in a small
area, and scattering all over after the impact. While these studies usually focus on the damage
made to the concrete, we use this simulation to showcase visualization methods on the
detonating charge [16], evaluating how the charge’s particles scatter over time, and their
concentration in space.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

This leaves us two very different simulations using SPH particles, on which we will
demonstrate different visualization techniques.

2 DIRECT POINT RENDERING TECHNIQUES

Scientific visualization of SPH simulation data should help scientists and decision-makers
understand physical phenomena, by creating visually pleasing visualizations from a large
number of points, representing particles in space. A first idea for straightforward visualization
of SPH points would be to draw them as color-mapped points, but even for smaller datasets,
the result in figure 1 does not help understand the particles organization and dynamics very
much.

1.2e-04

0.00011

0.0001
— 9e-5

—8e-5
—7e-5
— 6e-5
— 5e-5
— 4de-5

3e-5
2e-5
le-5
0.0e+00

ity

SPH_Denisi

Figure 1: Direct point rendering of around 150k points of an explosion simulated using
OpenRadioss. The convex hull containing all particles is depicted as a transparent grey
surface.

To reduce the visual noise caused by the large number of points, we can subsample points
and try to keep the most relevant ones, preserving the datasets’ main features and
dimensionality. A possible approach is to derive a histogram from the points scalars being
sampled, and select with a higher probability points that fall into bins where the least other
points are. When sampling SPH particles on pressure values using this histogram method, we
keep extreme and rare values, while discarding many particles in uniform areas. ParaView
provides a “Histogram Sampling” filter for this purpose, that is GPU-accelerated using the
VTK-m (now Viskores) [6] framework, built for and tested on Exascale computers.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

The output of this filter may be visualized directly using color-mapped spheres, or
processed further, while keeping in mind that the point density has changed, which means that
interpolations and density analysis will not be correct anymore. Rendering these spheres can be
done using a GPU shader transforming points into spheres, mapping their color to the scalar
field of interest, which is the particle diameter in our case. This visualization method has the
advantage of being run exclusively on the GPU using a dedicated shader. While it can work in
the order of magnitude of a few hundred thousand cells, it poorly scales with more cells,
creating visual clutter that makes information harder to understand. ParaView supports this
rendering mode as “Point Gaussian”.

This representation is used in figure 4, with a sampling ratio of 10%, and maps remaining
points as spheres with a varying diameter, corresponding to the particle’s “Diameter” scalar
field from the simulation output. The majority of particles before decimation had a small
diameter, this sampling by histogram balances particle diameters highlighting the location of
the whole range of particle diameters. Note that sampling using another scalar field would yield
different results and show differences in-between points for this field.

When dealing with large particle simulations, we may also want to query and select
subsets of particles from an area of interest. This can be performed in ParaView by a “Clip”
operation, selecting particles inside of a box, a sphere or any implicitly defined surface.
ParaView’s “Programmable filter” gives more control to the user, allowing to select points
lying within a volume such as a sphere or a box, but also selecting points matching a scalar
field or geometrical criterion. Figure 2 demonstrates the extraction of particles that lie within a
tolerance distance off a vertical slicing plane with a programmable filter, using code from figure
3. This custom filter acts as a plane “probe”, where further particle filtering could easily be
added given a condition on density, and integrated to get a particle flow scalar value over
time.

& oy
’7 tuid
:

I 1.6e+00

- 15
—14

— 13

l 1.2e+00

Figure 2: Extraction of particles within a tolerance distance of a plane, shown in green, as
seen from the top. The extracted volume is shown as a grey box.

Vel Magnitude

| from vtkmodules.vtkFiltersPoints import vtkFitImplicitFunction

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

from vtkmodules.vtkCommonDataModel import vtkPlane

Create a plane implicit function
plane = vtkPlane()
plane.SetOrigin([1.2,0.3,0.2])
plane.SetNormal([1, 0, 0])

Extract points "near" the plane, within a tolerance
tolerance = 0.05

extract = vtkFitImplicitFunction()
extract.SetInputData(inputs[0@].VTKObject)
extract.SetImplicitFunction(plane)
extract.SetThreshold(tolerance)

extract.Update()

output.ShallowCopy(extract.GetOutput())

Figure 3: ParaView Programmable filter Python code, extracting particles close to a plane,
defined using an origin point and a normal.

’ . 20 [

SPH_Diamete

Figure 4: Close-up of the blast simulation, with particles decimated using the Histogram
sampling filter. Each sphere represents a particle, diameter and color depending on the
SPH_Diameter scalar field.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

Another interesting algorithm operating directly on point clouds is convex hull
computation. Convex hulls compute the smallest convex water-tight surface that contains all
points in the point cloud. ParaView features 3D convex hulls through the VESPA [5] plugin
wrapping CGAL geometry processing algorithms. Figure 1 shows in transparency the convex
hull for the clipped explosion SPH point cloud. Convex hulls can help evaluate the overall
volume where points have scattered, and is especially useful when viewed over multiple
simulation time steps.

So far, we have only explored static visualization tools that do not take time into account.
Both fluid and shock simulations are to be analyzed as dynamic events. Of course, one could
create an animation from rendering every time step in a row, but creating a single image
showing the changes over multiple steps is another option, better suited for research papers.

ParaView provides a “Temporal Particles To Pathlines” filter, that uses particle identifiers
given by the simulation to track points over a time window, and draws the trail associated with
changing point positions. The trail is colored given any scalar field changing over time, and the
last particle position is represented as a white dot at the end of the trail. DualSPHysics provides
unique identifiers for SPH points, so we can track points positions over time and follow their
trajectory. Figure 5 represents the SPH fluid simulation as particle pathlines over 50 time steps,
randomly decimated to 1/100th, and colored using particle velocity magnitude. This
representation shows how a given particle changes position and velocity over a time window.
We are also using realistic path tracing rendering, providing shadows that enhance 3D
perception and contrast.

Figure 5: Particles trajectories over time represented as tubes colored by velocity vector
magnitude, rendered using ParaView’s pathtracing module.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

3 SPH GRID INTERPOLATION

As we demonstrated in the previous section, direct point rendering methods can be used to
get a first look at the data, but fall short when scaling to millions of points. Methods involving
point decimation lose crucial information about density and overlook SPH particle kernels.

Instead, many scientific visualization post-processing methods for SPH rely on particle
density interpolation over a regular grid [10] [11] [12], as they are more suited for data
extraction and rendering. ParaView’s “SPH Interpolator” filter finds SPH particles around the
regular grid’s cells by dividing the 3D space into evenly spaced buckets, and keeping in
memory a list of points that lie in each bucket. Point densities are then integrated over the cell
volume. This interpolator implementation is multi-threaded for faster compute times. The “SPH
interpolator” differs from classic interpolation algorithms as it evaluates points’ impact on
discretized regular cells using a particle kernel function, matching the one used by the simulator.
ParaView supports the classic cubic, quartic, quintic and Wendland particle kernels. The
interpolation can be done on a line, a 2D plane or a volume.

Once points are interpolated into a regular grid, we can apply more classic scientific
visualization algorithms, such as volume rendering [17]. We use a custom color and opacity
transfer function to represent the density in 3D space. For the explosion simulation (figure 6),
we chose a dark-to-light color-map showing high-density areas as lighter and more opaque, and
lower-density areas as dark and transparent. This representation shows the high-pressure areas
forming a ring above the slab, where deformation is occurring.

For the fluid simulation, we run an iso-contour algorithm to highlight the waterfront
(figure 7). The contour creates a surface at a given density iso-value, and color it using the
velocity value.

Interpolating over a plane instead of a volume shows projected point density structures on
a 2D surface. For the explosion simulation, we show figure 8 the particle density distribution
over a lengthwise cut across the slab.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

8.5e-05
7e-5
6e-5
— 5e-5
—4de-5

- 3e-5
2e-5
le-5
0.0e+00

ty

SPH_Densi

Figure 6: Volume rendering representation, computed from particle densities interpolated
over a 3D grid.

Vel Magnitude

Figure 7. Pressure Isocontour on the fluid simulation, showing the waterfront, colored by the
particle velocity field.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

ty

B
c
7}

[a)

=

o

[

Figure 8: Particle density interpolated over a 2D plane, crossing the explosion simulation
lengthwise.

2.5e+03

2000

— 1500

— 1000

Press

— 500
0

-5.1e+02

Figure 9: Streamlines, computed on the interpolated volume of the fluid simulation.

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

One last common visualization technique for CFD simulation is streamlines that show
current lines for the vector velocity field. Once again, starting from the SPH particles
interpolated over a volume, we set a starting line, and trace current lines through the regular
grid, that preserves the velocity vector field set for each particle (figure 9). This reveals the
direction of travel of a fluid element at a given point in time.

4 PERSPECTIVES

ParaView being a general-purpose tool for simulation post-processing, it provides many
geometry filters and representation models that are not specific to SPH post-processing. The
multi-purpose and configurable SPH Interpolator is an effort to make SPH simulation output fit
the ParaView data model better, creating a regular grid from particles defined as points with
properties, mapping a continuous field in space through a kernel function. However, ParaView
is still not a specialized tool for SPH post-processing, and lacks many possibilities and
performance improvement offered by ad hoc SPH scientific visualization tools.

For instance, octrees are a popular approach to efficiently store particles [13], evaluating
their contributions in discretized cells using their Kernel function, and refining tree cells
depending on the cell gradient. ParaView supports tree-based AMR models using 2D or 3D
octrees as “HyperTreeGrid” [14], but there is not yet a filter interpolating SPH points to this
efficient data model for rendering. ParaView’s pipeline and filter model limits coupling the
different processing and rendering steps using data model and rendering mapper abstraction, so
it is de facto slower than specialized SPH post-processing applications.

One last notable visualization technique is “in situ”, a way to view the simulation result as
it is running, using the data in memory without copying it to create visualizations on the fly [4].
A large number of SPH simulations run on the GPU, but currently ParaView has limited
capabilities for in situ processing of GPU memory, limiting the capacity for efficient
visualization of SPH simulations as they are running. We can imagine running CUDA-
enabled in situ visualization pipelines through ParaView, leveraging the VTK-m [6] framework
to interpolate and visualize particles without needing to copy data over from the GPU VRAM
to the main memory.

5 CONCLUSIONS

In this survey, we highlighted the characteristics of SPH simulation post-processing and
visualization using ParaView. First, visualizing the particles only hides a large part of the
simulation information because they are just calculation points, not the input surface or flow
volume. So, the post-processing should take the kernel function and particle positions into
account. ParaView offers several filters to extract meaningful information like the SPH
Interpolators. Using real use cases simulated with DualSPHysics and OpenRadioss, we
successfully explored the capabilities to retrieve relevant insights from SPH simulations, but
we also demonstrated that some features are missing, like free surface extraction. Eventually,
the user experience should be improved to ease the visualization process.

10

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

With the new computation paradigms using GPU intensively, SPH simulations are
creating new challenges regarding post-processing like large numbers of particles and GPU
memory management. ParaView should leverage its actual technologies like Viskores or GPU
volume rendering to tackle these new challenges. These limitations are more pressing when
analysing in situ large data, because zero-copy is mandatory.

We hope that this survey would stimulate the ParaView community regarding the
challenges of post-processing modern SPH simulation. Discussions and contributions are very
welcomed.

REFERENCES

[1] Ahrens, James, et al. "ParaView: an end-user tool for large-data visualization. Visualization
handbook, pp 717-731." Amsterdam, Netherland: Elsevier. ISBN-13 (2005): 978-
0123875822.

[2] Biddiscombe, John, David Graham, and Pierre Maruzewski. "Interactive visualization and
exploration of SPH data." Proceedings of 2nd SPHERIC international workshop, Madrid
(Spain). 2007.

[3] Jin, Zhefan, et al. "High-performance astrophysical visualization using Splotch." Procedia
Computer Science 1.1 (2010): 1775-1784.

[4] Ayachit, Utkarsh, et al. "Paraview catalyst: Enabling in situ data analysis and
visualization." Proceedings of the first workshop on in situ infrastructures for enabling
extreme-scale analysis and visualization. 2015.

[5] Gueunet, Charles, and Tiffany L. Chhim. "VESPA: VTK Enhanced with Surface
Processing Algorithms." EuroVis (Posters). 2023.

[6] Moreland, Kenneth, et al. "Vtk-m: Accelerating the visualization toolkit for massively
threaded architectures." IEEE computer graphics and applications 36.3 (2016): 48-58.

[71 Dominguez, Jose M., et al. "DualSPHysics: from fluid dynamics to multiphysics
problems." Computational Particle Mechanics 9.5 (2022): 867-895.

[8] Goswami, Prashant, et al. "Interactive SPH simulation and rendering on the GPU." (2010):
55-64.

[9] Loschner, Fabian, et al. "Weighted Laplacian Smoothing for Surface Reconstruction of
Particle-based Fluids." VMV. 2023.

[10] Price, Daniel J. "SPLASH: An interactive visualisation tool for Smoothed Particle
Hydrodynamics simulations." Publications of the Astronomical Society of Australia 24.3
(2007): 159-173.

[11] Price, Daniel J. "Smoothed particle hydrodynamics and magnetohydrodynamics." Journal
of Computational Physics 231.3 (2012): 759-794.

[12] Navratil, Paul, Jarrett Johnson, and Volker Bromm. "Visualization of cosmological
particle-based datasets." IEEE transactions on visualization and computer graphics 13.6
(2007): 1712-1718.

[13] Chandler, Jennifer, Harald Obermaier, and Kenneth I. Joy. "WebGL-Enabled Remote
Visualization of Smoothed Particle Hydrodynamics Simulations." EuroVis (Short
Papers). 2015.

[14] Harel, Guénolé, Jacques-Bernard Lekien, and Philippe P. Pébay. "Visualization and
analysis of large-scale, tree-based, adaptive mesh refinement simulations with arbitrary

11

Louis Gombert, Francois Mazen, Guillaume Gisbert and Jean M. Favre

rectilinear geometry." arXiv preprint arXiv:1702.04852 (2017).

[15] Barlow, Andrew J., et al. "Arbitrary Lagrangian—Eulerian methods for modeling high-
speed compressible multimaterial flows." Journal of Computational Physics 322 (2016):
603-665.

[16] Loverini, Mathis “Radioss Validation Study: Close-In Explosion on Concrete Slab”,
2025, https://community.altair.com/discussion/62159

[17] Brebin, Robert A., Loren Carpenter, and Pat Hanrahan. "Volume rendering." Seminal
graphics: pioneering efforts that shaped the field. 1998. 363-372.

12

https://community.altair.com/discussion/62159

