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RECENT DEVELOPMENTS IN THE NONLINEAR ANALYSIS OF REINFORCED
CONCRETE STRUCTURES USING THREE DIMENSIONAL FINITE ELEMENT
MODELS

M. Cervera, E. Hinton and 0. Hassan

University College of Swansea

SUMMARY

In this paper we review our efforts to develop an
efficient and accurate 3D finite element model which can be
used in the nomlinear analysis of reinforced concrete
structures with particular emphasis on plates and shells. The
need for good pre— and post-processing facilities is also

highlighted.

1, INTRODUCTION

Computer—aided structural analysis of reinforced concrete
structures has been the object of extensive research for almost
twenty years. Attention first focused on two—dimensional and
axisymmetric models, but it was soon widemed to include plate
and shell systems. Problems invelving reinforced concrete
shells are of great practical interest, as they include those
that appear in nuclear enpgineering, gas storage tanks, etc.

The wusual method of modelling reinforced concrete shell
structures is to make use of the so—called 'layered' shell
elements, The -elements are composed of a series of through-
thickaess ‘layers’, each assumed to be in a state of plane
stress, This approach has several disadvantages:

(a) The quadrature rule used to integrate gquantities such
as the residual forces and the tangential stiffness through the
thickness (i.e. the mid-ordinate zule) is mot very accurate,
and many layers (eight to twelve) must be used to ensure
reasonable accuracy.

(b) The large number of sampling points used per element
makes the evaluation of the tangential stiffness matrix and
internal force vector gquite expensive,
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{(¢c) The plane stress assumption in the layered plate or
shell implies that the mnormal stress perpendicular to the
midsurface is meglected. Furthermore, in most models, in-plane
stresses are treated separately from transverse shear stresses,
usually in an inconsistent way.

(d) Cracks are assumed to form due to in—plame stresses
only, the effect of the transverse shear stresses Dbeing
disregarded when checking for cracking. As a result, cracks are
perpendicular to the midsurface, which is an +unrealistic
constraint of the model that makes it unable to represent
non—flexural failures.

(e} The elements used are umsually of the Mindlin-type.
This results in an 'a priori’'’ imposed wniform distribution of
transverse shear strains through the thickness,

(£) Concrete slabs are wusually moderately thick, so
consideration of transverse shear strains and stresses is not
insignificant, especially near the supports.

All these considerations point to the mnecessity of
developing fully three dimensional models which can be used to
analyse reinforced concrete structures both efficiently and
accurately.

The wuse of a standard three dimensional approach for the
analysis avoids the complexities associated with shell
formulations, allows for a wider range of applications, and is
free from the simplifying assumptions mentioned above.  On the
other hand, a 3D analysis usuvally involves a larger number of
degrees of freedom for a given discretization than a shell
formulation, and requires better mesh—-generation and
post-processing facilities than those of an essentially two
dimensional analysis,

This paper reviews our efforts to develop such a 3D model
for nonlinear structural analysis of reinforced concrete
structures subjected to short term static loading,

2, THREE DIMENSIONAL COMPUTATIONAL MODEL

The three dimensional computational model is now
described, Firstly, the finite element discretization is
discussed with particular attention given +to the type of
integration rule adopted and problems of locking behaviour.
Next, the constitutive models adopted are presented. Thirdly,
the nonlinear equation solution procedures are considered.
Finally, the need for careful pre— and post— processing of the
data in three—dimensional analysis is emphasised.
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Figure 1. 20-noded isoparametric solid element with reinforcement

2.2 Finite element model

(a) Concrete solid, The 20-node isoparametric element
shown in Figure 1 is used in this work. Hierarchical, rather
than standard, interpolation functions [1] are used in the
present formulation., Trilinear shape functions are used for the
eight corner nodes and gquadratic hierarchical shape functions
are employed for the twelve mid-side nodes. The use of this
hierarchical approach provides a ‘'matural’ preconditioning
matrix when iterative solution techniques (such as the
conjugate gradient method) are used. Furthermore, hierarchi-
cally derived stiffness matrices are better conditioned than
the standard ones. This feature is of additional advantage
when analysing plates and shells with three—dimensional
slements.

To evaluate the necessary volume integrals which occur in
the stffness matrix and residual force veetor numerical
integration is used. A fifteen point rule [2] is employed. The
location of the sampling points is shown in Figure 2. This
particular rule is chosen because it requires less
computational time than the uswal 3x3x3 Gaussian rule, and
unlike the reduced 2x2x2 Gauss rule it does not produce any
spurious mechanism,
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Figure 2. Dggffibution of the integration points
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As the solid finite element is intended for wuse in the
analysis of plates and shells of wvarious thicknesses, some
linear elastic aspect ratio tests were carried out. A series
of uniformely-loaded square plates of various span—to—thickness
ratios, a/h, were analysed with two sets of boundary
conditions: (i) simply supported on all edges, and (ii) clamped
conditions on all edges.

Figure 3 shows results for the two analyses using a 4x4xl1
mesh. As expected, a shear locking type behaviour is observed
for thin situations.
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Figure 3. Aspect ratio tests

(a) simply-supported plate; (b) clamped plate.
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From a careful analysis of these and other results it
appears wise to limit the aspect ratio of individual 20-node
brick elements to a maximum of about 25 when bending action
predominates and when adeguate computational precision {at
‘least 11 significant digits) is available.

Other quadratic solid elements are c¢urrently being
jnvestigated to extend the range of applicability of the 3D
model .,

(b} Reinforcing steel. Perfect bond is assumed between
the steel reinforcement and the surrounding concrete. The
assumption of compatibility of displacements and straims
.between concrete and steel allows the steel +to be treated as
part of the 3D element. The steel stiffness and resisting
forces are added to those of the concrete to obtain the global
quantities of the element.

Bach set of reinforcing bars is smeared as a two-
.dimensional membrane ‘layer’' of equivalent thickness, placed
‘inside the element as shown in Figure 1. The steel is assumed
‘to possess uniaxial material properties. The angle between the
local tangent at each sampling point of the steel membrane and
the local coordinate system may be arbitrary. This treatment
! for the steel is identical to the procedure used for 'layered
. elements’ usually employed for plates and shells.

:2.2 Concrete constitutive model

The constitutive models employed here account for various
types of material nomlinearities in the concrete and steel, The
material behaviour is assumed to be independent of time.
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Figure 5. Hardening rule.

(a) Uncracked concrete. Experimental evidence indicates
that the stress—strain relationship for concrete is non-linear
even for low stress levels. The inelastic deformation may be
separated into recoverable and irrecoverable components. In the
present model, elasticity is used Ffor the recoverable strain
components, and a work-hardening associated plasticity approach
is employed to model the irrecoverable part of the deformation.

The yield function selected depends on the first two
stress invariants [3] and can be written as

f(Il,JZ) = [ oI, + 387, 13 = o, (1)

The values o = 0,355 and B = 1.355 are suggested for
and adequate fitting to experimental data [4] (see Figure 4).

A valve of ¢ = a,f’' (being 0.3 a typical value for a.)
defines a surface limi%ing the elastic behaviour., When this
surface is reached inelastic deformation begins and a hardening
rule monitors the expansion of the yield surface under further
loading. In this way, a family of 'loading surfaces' is
defined. The hardening rule chosen is the conventional 'Madrid
Parabola’, which can be expressed as

o =-FE g + ( 2B2g ¢ )% a.f' { o £ f!
o op o op 17¢ = (2)
where @ is the effective sress, E is the initial Young's
modulus, e is the total strain at peak stress and & is the
plastic strain, Values «, = 0.3 and & = 2f'/E provide good
approximation to experimental data [4] (See Figure 5).
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Figure 6. Cracking surfaces in stress space.

i Crushing of concete is assumed to occur when a certain
1failure surface in the principal strain space is reached. The
ifailure surface may be defined as

H ] 2

| BBIZ 82 (3)
iwhere J) is the second deviatoric strain invarjant and &_is an
‘nltimate total strain value extrapolated from uniaxial tests

i(typically eu=0.003—0.004).

(b) Crack modelling. The smeared crack approach is used
to model cracking., The maximum stress criterion is used: if the
‘maximum principal stress exceeds a limiting value then a crack
'is formed in a plane orthogonal to the offending stress.
‘Thereafter, concrete becomes orthotropic, with local material
.axes orthogonal to the c¢rack planes. A maximum of two sets of
orthogonal c¢racks are allowed to open at each sampling point.
The 1limiting value required to define the onset of cracking is
established as follows,

(i) in the triaxial tension zone

O'io = fé i= 1’2’3 (4)

.as  there is experimental evidence that triaxial tensile
‘strength of concrete is almost independent of the stress ratio.
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(ii) for tension—tension-compression and tension—
compression—compression stress states, linearily decreasing
tensile strength expressions are used,

%
= ’ ——— e i
S ft (1 + fé ) .41 {0 {5)
o g
s ft {1+ fé Y1 + fé } Gi+1'ci+2<0

(6)

These expressions incorporate the fact that compression
in one direction favours microcracking inm the orthogonal
directions, thus reducing tensile capacity.

The resulting cracking surfaces are shown in Figure 6.

After cracking, the tensile stress normal to the ecrack is
released following the exponential curve

o= fé [ expl *(e”so)/a 1] (7)

where f] is the concrete tensile strenght, & is the tensile
strain dcross the crack, and g, = fé/Eo. The softening
parameter o is chosen to be

a = Gf/fé 1c (8)

where G_ is the fracture energy of concrete {assumed to be a
materiaf property) and 1 is a characteristic length associated
with the sampling point.cThe dependence of the softening branch
on the size of the element implies that the cracking model is
mesh independent [5].

The shear modulus is also modified for cracked concrete.
The process consists of assingning to the shear modulus
corresponding to the crack plane a2 reduced value Gc defined as

G, =BG, (9)

where G 1is the shear modulus of uncracked concrete and B is a
reducingo value in the range of zeroc to one., A constant value
for the reducing factor has been used in many analysis,
However, it dis more realistic to relate the value of B to the
tensile strain normal to the crack plane, a smeared measure of
the crack width, In this work, the following value is used [6]

B =1- (e /0.005 yka (10)

where g, is the tensile strain normal to the crack plane, and

kl is a parameter in the range of 0.3 to 1,0
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(c) Compressive behaviour of cracked concrete

When establishing the limiting values required to define
the onset of cracking, the fact that compressive stresses in
the transverse directions reduce the tensile strength of
concrote was taken into account in the cracking criterion, The
reciprocal effect can also be accounted for: tensile strains in
the crack direction effectively reduce the compressive strength
in the transverse directions. This effect is included in the
present model by scaling the hardening rule described earlier
by a reducing factor [6]

A=1~ k2 ( et/0.005 ) . (11)

where £y is the tensile stress normal to the crack plane and kz

is a factor in the range of 0.1 to 0.5.
The modified hardening rule is defined by the expression

c =-E &+ (2E3xg ¢ )W ro f! S o
op o op 17¢

{ AES
o - [+}

(12)

o]

Comparisons of the numerical prediction and experimental
results for different stress combinations are shown in Figure

7.

2.3 Steel reinforcement model

The steel reinforcement is assumed to have uniaxial
properties in the direction of the bars. A plasticity
formulation is adopted im which linear isotropic hardening is
employed after initial yielding. Unloading occurs elastically.

2.4 Nonlinear equation solution technigues

In order to trace the entire response of the structure,
an incremental/iterative technigue must be adopted,
Traditionally modified versions of the Newton—Raphson method
have been used, thus avoiding frequent calculations and
factorisations of the tangential stiffness matrix, Refinements
of such techniques involving automatic 1load incrementation,
methods for tracing the equilibrium path by updating the load
level during the iterative process (i.e. arc—~length and
displacement control methods, and particularly, the use of
inexact line searches have been found to be invaluable. A
description of the application of these techniques to the
analysis of reinforced comcrete structures is given el sewhere

[71.
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2,5 Pre— and post-processing of data

The use of a three dimensional formulation for structural
analysis requires appropiate pre— and post—processing
facilities. In pre—processing it is necessary to use
mesh—generation programs to generate the geometry, element
connectivity, boundary conditions and loading data from a very
simple specification. In post-processing, plotting facilities
for representation of deformed shapes and material state
information should include the possibility of hidden line
removal, different perspectives, rotation of the model, etc.

3. NUMERICAL EXAMPLES

Some examples are mnow presented to illustrate the
performance of the 3D model.

3.1 Vecchio—Collins panels

Recently, Vecchio and Collins [8] conducted an excellent
study on the behaviour of reinforced concrete panels under
in—plane and normal stresses, In their experimental programme
they tested 30 specimens of dimensions 890 x 890 x 70 mm. (see
Figure 8) on a special testing rig which allowed a uniform
plane stress state to be created in the panels. In all the
cases the reinforcement was arranged parallel to the panel
sides. but with different ratios and amounts for different
specimens., 0f the whole series, only two specimens will be
considered here, namely panels number 27 and 25, Both have
equal reinforcing ratios of 0.01785, in the x and y directions,
so0 they were nominally identical, although the measured

Table 1 Material propertiss for the Vecchio—Collins panels

PANEL 27 PANEL 25
CONCRETE
Young’s modulus, E. = 20000, 20000, EN/m®
Poisson's ratio, v = 0.15 0,15
Ultimate compressive stress, f; = 20,5 19.3 ﬂllm2
Ultimate compressive strain, By = 0.0035 0¢,0035
Cracking tensile stress, ft‘ = 2.4 2,0 KN/m2
Fracture energy, G, = 0,15 0.15 T/m
shear reduction, kl = 0.4 G.4
strength redoction, 1:2 = 0.55 0.27
elasticity limit, 2 = 0.3 0.3
STEEL
Yourg's modulus, . = 200000, 200000, KN/m2
Tield stress, 1= 4a 442, KN/unZ
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| Figure 8. Vecchio-Collins panels. Geometry and loading.

Figure 9. Stress-strain curves for V-C panels.
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concrete properties were slightly different. The material
properties used for the numerical analysis are shown in Table
1. Panel 27 was loaded in pure shear, while panel 25 was
subjected to a combination of shear and biaxial compression

(see Figure 8), Both panels were loaded proportiomally.

The tests are designed so that the response of the panels
is mainly dependent on the concrete behaviour., Both panels
failed due to crushing of cracked concrete. These examples are
included here because they are a demanding test on the
computational material model, With one principal stress in
tension and the other in compression the problem is designed to
test both the tensile and compressive parts of the models, and
their mutual infiuence. It is also interesting to observe how
the additional ©biaxial compression in panel 25 influences the
failure load in comparison with panel 27, Although a simple
equilibrium analysis shows that the additional compression
produces no change in the concrete stress, in reality, panel 25
showed a 44 per cent increase in the shear failure load.

The numerical analyses are performed using the imitial
stress method, with line search, and a tolerance of 1 per cent
on the norm of the residwal forces.

Results from the numerical znalyses are shown in Figures
9{a) and 9{(b), Excelient agreement between the experimental
results and the numerical solutiom is obtained. Not only are
the failure loads accurately predicted in both cases, but the
complete stress—-strain curves closely agree,

3.2 Analysis of deep beams

In this second example two deep beams experimentally
studied by Ramakrishan and Anathanarayana [9] are analysed. Two

Table 2 Material properties for deep beams

30 in. beam 20 in. beam
CONCRETE
Young's modulus, Ec = 4600, 4600, kipslinz
Poisson's ratio, v = 0.17 0.17
Tltimate compressive stress, £é = 3.95 2.00 kips/in2
Ultimate compressive strain, LT 0.0035 ¢.0035
Cracking tensile stress, fé = 0.36 0.23 kips/in2
Fracture enmergy, G, = 0.0006 0.0006 kips/in
shear reduction, ky = 0.5 0.5
strength rednction, k2 = 0.5 0.5
elasticity Limit, oy = 0.3 0.3
STEEL
Young's modulus, E, = 20000, 29000, kips/inZ
Yield stress, go= 46, 46, kips/in
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Figure 10. Deep beams. Geometry

beams are considered, one 30 in, and the other 20 in. deep. The
first one is subjected to two point loads, while the other is
loaded with a uniform pressure (see Figure 10).  The
reinforcement consists of ome bar of cross section 1 in2, The
material properties used in the analysis are shown in Table 2.

By taking advantage of symmetry, only one half of the
beams is discretised, using meshes of twenty solid elements,

The analyses are performed using the initial stress
method with a tolerance of 1 per cent on the norm of the
residual forces.

Load—~deflection curves are shown in Figure 11, Excellent
agreement with the experimental results is obtained. The
ultimate loads are also accurately predicted.

The computed crack patterns at failure are shown in
Figures 12(a) and 12(b). The experimentally observed cracks (a
stable flexural crack at mid-span and an unstable one running
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Figure 11. Load-deflection curves for deep beams.

from the loads towards the support) are well predicted in the
numerical analysis, Deformed shapes at failure are shown in
Figure 13,

3.3 T1linois slab—column connection tests

Finally, two tests from a series carried out by Sunidja
et al, [10] at the University of ¥llinois in Urbana—Champaign
are studied. The object of these tests was to study the
strength and behaviour of unbonded prestressed concrete
plate—edge column connections representative of those used in
prestressed flat plate buildings and subjected to statiec

vertical loading.
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" The test specimens each consist of a 1524 mm, square
pre— stressed concrete slab 101.6 mm. in total thickness and
with a 304.8 mm, square column located adjacent to and
centered along one edge of the slab, The system and the
dimensions of the slab are shown in Figure 14,

The two-way flat slabs are prestressed in both dir—-
ections., The arrangement of the tendons is shown in Figure 15,
In addition, No, 3 deformed bars (71 mm? cross-sectional area)
are used as bonded reinforcement as shown in Figure 14,
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‘ The slabs are loaded by four concentrated loads placed at
"a distance of 1066.8 mm. from the column face for slab S1 and
609,6 mm. for slab S2.

By taking advantage of symmetry only ome half of the slab
is discretized in each amalysis, The slabs are assumed to be
clamped 2t the column edge. This assumption is justified
because the heavily reinforced column is very stiff when
compared to the slab,

The pre-tension forces are represented by a horizontal
load at the slab edges. To account for the pretension forces
due to the curvature of the tendons additional lateral forces
are applied to the slabs, as shown in Figure 16, In the
analysis the pre-tension and the self-weight load of 25000
N/mm? are applied as initial loads and kept constant during the
incrementation of the concentrated loads.
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Table 3 Material properties for the Illinois slab-colemn

St sz
CONCRETE
Young's modulus, Ec = 129000. 24000, N/mm2
Poisson's ratio, v = 0,15 0.15
Ultimate compressive stress, f‘; = 50.0 43.0 N/mm2
Ultimate compressive straim, L. = 39,0035 ¢4.0035
Cracking tensile stress, fé = 3,67 3.15 Nl'm:n2
Mapanonraic Fracture energy, Gf = 0.10 0.10 N/mm
shear reduction, k= 0.50 6.50
asanuaral strength reduction, A kz = 0.50 0.50
) elasticity limit, ay = 0.30 0.30
22721 sTrEL
Young’s modulus, E_ = 200000, 200000, N/mmz
Yield stress, fy = 500, 500, N/mm

Both analyses are performed using the KI'l method with
line search, A tolerance of 1 per cent on the norm of the
residual forces is adopted.

The meshes used for the analyses can be seen in Figures '
18 and 19, respectively. Both meshes consist of twenty,

20-node elements.

The material properties wused for the analyses are
summarized in Table 3,

In Figure 17 the moment—deflection relations obtained
from the numerical computations are compared with the test
results, The moment is obtained by multiplying the total
applied load by the distance from the load to the face of the
column, The initial moment caused by the self-weight of the
slab is 288 KN.cm. The deflections shown are the additional
values due to the concentrated loads and de not include the
deformatien caused by either the dead load or the pre—tension,
The deflection is measured at the east edge of the slab, and on
the axis of symmetry.

In the experiment, slab S1 failed in a flexzural mode,
while slab 52 collapsed due to a dominant shear crack, Figure
17(a) shows that both the initial stiffness and the
progressively nonlinear response of slab 81 are accurately
predicted by the analysis, The failure load 1is very well
predicted. Results for slab 82 , shown in Figure 17(b), arze
also in <close agreement with the experiment, although a
slightly 1less ductile behaviour at failure than in the
experiment is observed.

Figures 18 and 19 show the spread of the cracking on the
tension side of the slabs (top surfaces) for different load

levels. As expected, cracking is mostly confined to the part
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Figure 18. Crack patterns for sltab S1 at different load levels.
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Figure 19. Crack patterns for slab SZ at different load levels.
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of the slabs between the support and the location of the loads.
In both cases, cracks start to form close to the column, where
tensile stresses are larger, and gradually spread towards the
loads and through the thickness. Some double—cracking is
observed around the column in both cases.
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