


calculation, therefore remeshing is only concerned with
the determination of the nodal coordinates.

The ALE method has been developed in ¯uid
mechanics [5, 6] to treat ¯uid structure interaction and
large boundary motions [7]. Later, the extension

towards nonlinear solids has been made [8]. In forming
processes, the ALE method has proven
successful [9, 10]. More recently, the extension towards

localisation analyses has been made [11, 12]. This
approach is also followed here. Remeshing is carried
out such that nodes are concentrated in the failure

zones. To this end, a new remesh indicator is proposed
that starts being e�ective when yielding is likely to
occur, thus anticipating on the formation of the yield
lines. The description of the yield zones is therefore

improved, while the total number of degrees of
freedom remains relatively low.
The paper starts with an overview of plastic analyses

of plates, considering both analytical and numerical
examples. Then, the implementation of the ALE
method is treated brie¯y. Main issues are the formu

lation of a suitable remeshing strategy and the trans
port of the state variables after remeshing. Special
emphasis is paid to the formulation of a proper remesh

indicator. Examples are presented to show the e�ec
tiveness of the ALE method with regard to computer
costs and accuracy of the solution.

2. Plastic behaviour of plates

Plasticity theory has successfully been applied to

plate structures [2, 3] and enables failure analyses of
both concrete slabs and steel plates, for instance.
Furthermore, good agreement with experimental
results can be obtained [2, 3]. The ideal rigid plasticity

assumption together with a square yield criterion (that
is, yielding is assumed to take place when the maxi
mum in an absolute sense of the bending moments

in the principal directions exceeds the plastic bending

moment [2, 3]) combines a conceptual simplicity with
the availability of analytical upper and lower bounds

for the maximum admissible load level. These analyti
cal solutions have been treated extensively in the

literature [2, 3]. Upper bounds can be obtained by
assuming a speci®c yield line pattern at which a mech

anism occurs, whereas lower bounds can be derived
from an assumption for the distribution of bending

and twisting moments at which the structure is in equi
librium and where the plastic bending moment is not

exceeded. For instance, consider a rectangular plate
with aspect ratio b/ar1, simply supported on all sides

with a uniformly distributed load q (see Fig. 1).
Assuming a yield line pattern as shown in Fig. 2, one

obtains an upper bound qupper for the load expressed
as [2, 3]

qupper 8

b

a
� 1

4
tan b

b

a

1

3
tan b

0B@
1CA t2sy

3d2
�1�

where b is the angle between the smaller sides and the

yield lines departing from the sample's corners (see
Fig. 2), t is the thickness of the plate which is assumed

to be constant, and sy is the yield stress of the
material. For a certain aspect ratio, qupper can be

found by minimization of Eq. (1) with respect to b.
Taking b 2a, for instance, leads to b 528 and thus

qupper 3.54 t 2sy/a
2. Assuming a distribution of bend

ing moments per unit length mij as [2, 3]

Fig. 1. Rectangular plate, simply supported on all sides, uni

form load.

Fig. 2. Yield line pattern.

Fig. 3. Sign convention for bending and twisting moments.
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with mij as given in Fig. 3, a lower bound qlower for the

maximum load can be derived as [2, 3]

qlower 8
a2

b2
� a

b
� 1

�
t2sy
4a2

:

�
�5�

Taking again b 2a, we obtain qlower 3.50 t 2sy/a
2.

Obviously, the range between the upper bound and the

lower bound is very narrow, so that it can be con

cluded that the failure behaviour for this plate and for

this material model is predicted accurately. An import

ant observation is the dependence of the inclination

angle b on the aspect ratio of the sample, which fol

lows from Eq. (1). This angle ranges from 458 for a

square plate to 608 for a semi in®nite plate. From an

engineering point of view it is important to be able to

predict the yield line pattern correctly. When using the

®nite element method instead of analytical methods, it

is therefore necessary to use a su�ciently ®ne mesh, as

will be shown by an example.
We have analysed the rectangular plate mentioned

above (see Fig. 1) with a uniform load q 112 kN/m2.
The sizes of the plate read b 2a 8 m. The thickness

of the plate is t 0.05 m. A von Mises yield criterion
with isotropic strain hardening has been used. The ma

terial parameters are taken as Young's modulus
E 2�108 kN/m2, Poisson's ratio n 0.2, the yield

stress sy 2�105 kN/m2 and the hardening modulus
h E/200. Thus, the applied load equals q 3.58
t 2sy/a

2. This value deviates slightly from the analytical

upper bound, which is due to the di�erent yield cri
terion and the little hardening that is incorporated.

For reasons of symmetry, only the upper left quarter
of the plate is considered. The applied element is the

so called discrete Kirchho� triangle (DKT) [1, 13], see
also the Appendix. Two updated Lagrangian analyses

have been performed, one with 64 elements and one
with 1024 elements. The load displacement curves for

the two meshes are shown in Fig. 4. The global struc
tural behaviour of the two meshes is the same.

However, it can be seen in Figs 5 and 6 that the yield
line pattern predicted by the two meshes is di�erent. It

is interesting to see that with the ®ner mesh the same
inclination angle of 528 is obtained as with the above
mentioned analytical method. Assuming that the ®nite

Fig. 4. Load [kN/m2] vs displacement [m] for the ®ne mesh� and the coarse mesh w.
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element solution will not change upon further re®ne
ment of the mesh, it can be said that this angle is the

exact one. For the coarser mesh the inclination angle is
di�cult to distinguish. It must be concluded that this
mesh is not ®ne enough for the determination of the

yield lines, and a ®ner mesh must be used to capture
the yield line pattern. However, the computational

e�ort involved with the 1024 element mesh is enor
mous when compared to the 64 element mesh. To cir

cumvent the use of such very ®ne meshes, we have

used the arbitrary Lagrangian Eulerian (ALE) method
for the analyses of plates.

3. The ALE method

To be able to describe yield lines with a low number
of elements, we detach the nodes of the elements from
the material particles. Thus, nodes are able to

move independently from the material, and can be

Fig. 5. Contour plot of equivalent plastic strain, ®ne mesh (dashed lines denote axes of symmetry).

Fig. 6. Contour plot of equivalent plastic strain, coarse mesh (dashed lines denote axes of symmetry).
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concentrated in yield lines. Basically, this is an appli

cation of the arbitrary Lagrangian Eulerian approach,

in which nodes and particles can move independently

in space.

Since nodes are no longer attached to particles, this

approach is not Lagrangian, and since nodes are not

necessarily ®xed in space, it is not Eulerian either.

While the material motion in space is described in the

usual terms of mechanics, a second, kinematical frame

work must be formulated to treat the mesh motion.

This leads to the standard ALE equation [5, 6, 12, 14]

in which a material property is coupled to a mesh

property:

@f

@t

����
x

@f

@t

����
w
�cj @f

@xj
�6�

where X denotes a material particle and w denotes a

node. The notation va means ``keeping a ®xed''. In

Eq. (6), xj are the spatial coordinates, while cj are the

components of the so called convective velocity, which

is the relative velocity of the material with respect to

the mesh:

cj
@xj
@t

����
x

@xj
@t

����
w
: �7�

In the current implementation, only small defor

mations are considered, so that the ®rst term on the

right hand side of Eq. (7) cancels. The second term in

Eq. (7) denotes the mesh velocity, which is set by the

mesh displacement. In fact, c is never computed in our

implementation: only the mesh incremental displace

ments are calculated. These mesh displacements follow

from the remeshing strategy. The remeshing strategy

determines in which zones nodes should be concen

trated, and in which zones elements are allowed to

remain large. The remeshing is carried out in two

steps. Firstly, a remesh indicator is computed. This

remesh indicator, which is denoted K, takes large

values in zones where elements should be small and

vice versa. Secondly, the remesh indicator is equidis

tributed over the whole domain, that is, the product of

element size times remesh indicator must yield the

same value for each element:

Ki � Oi Kj � Oj 8i; j �8�
where i and j denote element numbers and O rep

resents the element size. Eq. (8) can be translated

to [11]

@

@wi
K
@xj
@wi

�
0

�
�9�

which can be solved by applying a Galerkin's vari

ational principle, e.g. [12, 15]. Together with a suitable

de®nition of the remesh indicator, Eq. (9) fully deter

mines the mesh displacement. Formulation of the

remesh indicator will be topic of the next section.

From Eq. (6) it can be seen that the convective vel

ocity c and, thus, the mesh incremental displacement,

appears when time derivatives of f are involved.

Within a quasistatic nonlinear framework, which is

chosen here, these convective terms only appear in the

constitutive relations [16] (on the other hand, if a tran

sient analysis is carried out convective terms also

appear in the equations of motion [12, 16]). For non

linear materials, stresses and strains are history depen

dent, that is, stress and strain ®elds are not only

determined by displacement (and/or temperature)

®elds, but also by the previous states. Since history is

stored in the material particles and integration points

are related to the mesh, convective terms appear in the

constitutive update. This follows from applying Eq. (6)

on the general constitutive update:

@Z
@t

����
x

@Z
@t

����
w
�ci @Z

@xi
f�Z� �10�

where Z is a stress component or a state variable, and

f is a general term given by the constitutive equations.

Note that f is a function of Z, which emanates from

the nonlinear material behaviour. From Eq. (10) it can

be seen that spatial derivatives have appeared through

the ALE formulation, which is due to the fact that in

tegration points do not always coincide with the same

material particles throughout the computation.

We have applied a split step algorithm [16, 17] to

solve Eq. (10). Firstly, the stresses and the state vari

ables are updated at a material level, that is, no con

vection is taken into account and the constitutive

update is in fact fully Lagrangian. This results in an in

termediate value of Z, denoted ZL, which is updated in

time but evaluated at material particles that no longer

coincide with the integration points. Therefore, the

®rst step of the update from time t up to time t+Dt
reads

ZL Z�t� � fDt: �11�
Secondly, Z L is transported from the integration points

of the mesh before remeshing towards the (same) inte

gration points of the mesh after remeshing. In this

stage, no time integration is involved but pure convec

tion is considered. The ®rst step is the same as the con

stitutive update in a standard Lagrangian ®nite

element algorithm. Therefore, only the second, trans

port stage has to be added to a ®nite element algor

ithm. We have used the Godunov method [14 18] to

perform the transport of the stresses and the state vari

ables. This method is especially suitable for the trans

port of piecewise constant ®elds, which is exactly the

case in ®nite elements with piecewise linear displace

ment ®elds and constant stress and strain ®elds.
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However, an extension towards higher order elements

has been made [17], which has proven to give accurate

results. The basic idea is to consider an element with

multiple integration points as a con®guration of subele

ments, each sub element being the domain of exactly

one integration point (see Fig. 7). Within a sub el

ement, Z is assumed to be constant. The Godunov

method for the transport of Z at each integration point

then reads [15 17]

Z�t�Dt� ZL � 1

2O

XN
G 1

FG�ZL ZL
a ��1 sign�FG�� �12�

where O is the volume of the considered sub element,

N is the number of sides of the sub element, the sub

script a in Z denote the value of Z in an adjacent sub

element, and FG at side G is given by

FG

Z
G

Dxijwni dG �13�

with Dxvw the mesh incremental displacement and ni
the components of the outward normal to side G. The
presented formalism for the transport is applicable to

every element type in which sub elements can be ident

i®ed. For the DKT element, which is used in the cur

rent study, this results in both transport between sub

elements of the same element as well as transport

between sub elements of adjacent elements. More

speci®cally, two so called internal transports have to be

carried out, as well as one external transport in case

an adjacent element exists. For instance, consider sub

element A of the right element in Fig. 8. Internal trans

port is carried out between sub elements A and B and

between sub elements A and C, whereas external trans

port takes place between A and sub element E of the

left element.

Provided that a formulation of the remesh indicator

is given, the ALE framework is completed through

Eqs. (9) and (12), and can be added to a ®nite element

algorithm.

4. Formulation of the remesh indicator

The crucial question is, therefore, in which zones the

elements must be concentrated. Inherent in our pro

blem statement, which is the analysis of yield patterns
in plates, small elements are needed in the yield lines.

Furthermore, it is preferable to have small elements in
zones which are close to plasti®cation, since excessively

large elements may delay the onset of plasti®cation. In
other words, the ®nite element mesh should be able to

anticipate the formation of new yield lines, as well as

to describe present yield lines accurately. Thus,
remeshing is carried out in both the elastic and the

plastic stage of the analysis. We have translated this
into the following criteria for the remesh indicator:

1. Integration points that are not plasti®ed and that

are not ``likely at all'' to plastify are assigned a pre

de®ned minimum value of the remesh indicator.
2. Integration points that are at the point of plasti®ca

tion are assigned a prede®ned fraction of the maxi

mum possible value of the remesh indicator.
3. Integration points that undergo plastic deformations

are assigned a larger value of the remesh indicator

than the elastic integration points, and the larger
the plastic deformation, the larger the value of the

remesh indictor.

4. The remesh indicator should be continuously depen
dent on the state variables. Speci®cally, this means

that the value of the remesh indicator at the end of
the elastic stage is equal to the value of the remesh

indicator at the beginning of the plastic stage.

With a remesh indicator that obeys these criteria,

remeshing can be carried out. In a remeshing process,
one can distinguish between direction and magnitude.

The former tells to which zones nodes should move,
while the latter indicates to which extent this node

should move in this direction. In order to uncouple

magnitude and direction of remeshing, we have used
the following de®nition of K [11, 12, 15]:

Fig. 8. Transport between integration points.

Fig. 7. The DKT element, nodes w and integration

points� (left), and subdivision for use of Godunov method

(right).
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K aR� 1 �14�
where a is a parameter that adjusts the magnitude

of the remeshing process with respect to variations

of R over the domain, and R determines the direc

tion of remeshing. The term 1 on the right hand

side is added to avoid numerical problems that may

arise through ill conditioning of Eq. (9) when K 0.

The parameter R depends on the state variables. The

de®nition of R is such that R varies between 0 and

1, where low values of R correspond to low desired

mesh densities and high values of R account for

large mesh densities. Since 0R RR1, the following

inequalities hold: 1R KR a+1. Equidistribution

then leads to a ratio of maximum element size over

minimum element size equal to a+1/1 for the one

dimensional case [11, 12]. This can be understood by

considering that equidistribution of the remesh indi

cator is equivalent to requiring that K times element

size yields the same value for each element [cf.

Eq. (8)].

The criteria for the remesh indicator formulated

above are now imposed on the de®nition of R, since

R drives the direction of the remeshing process. The

de®nition of R must be suitable for the prediction of

newly appearing yield lines as well as for the

description of the already formed yield lines.

Therefore, we distinguish between integration points

that are purely elastic and integration points that

have plasti®ed.

For elastic integration points R ranges between 0

and a (0R aR1), whereas R takes values between a
and 1 for plastic integration points. a is a parameter

that determines how much of the remeshing should be

carried out in the elastic stage. In other words, for a

given value of a, a determines the element size at the

onset of plasti®cation.

For each integration point, R is de®ned as

if purely elastic R a
seq
�s0

�15�

else R 1 �1 a� �s
E�E

�16�

where seq Z3J2 is the equivalent stress with J2 the

second invariant of the deviatoric stress tensor, �s is the
current yield stress, �s0 is the initial yield stress, and �E is
the equivalent total strain associated with �s [see Fig. 9].

Note that non generalised stresses are used in Eqs. (15)
and (16), whereas most ®nite element packages use

generalised stresses for plate elements.

Eq. (15) can be understood by considering that the

yield function in von Mises plasticity is stated as
seq �sR0. Therefore, the ratio seq/ �s0 denotes how

close an integration point is to yielding. The �s/E�E fac
tor in Eq. (16) denotes the ratio of the secant sti�ness

over the initial sti�ness, and gives information on the

amount of plastic strain with respect to the total
strain [15].

Hence, two parameters have appeared that deter

mine the magnitude of the remeshing process, namely

a and a. The parameter a sets the maximum possible
element size over the minimum possible element size.

Through a, the ratio of the minimum possible element
size in the elastic regime over the minimum possible el

ement size in the plastic region is set. Our numerical

tests indicate that taking a10.2 gives the best results.

Fig. 9. Hardening curve.

Fig. 10. Remeshing and transport added to a ®nite element al

gorithm.
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Estimation of the parameter a can be done when con
sidering Eq. (8). The remesh indicator K is assumed to
be constant within each element. We desire a certain

element size Odes for a certain value Kdes. The values
for Kdes and Odes usually follow from the material
model; see Eqs. (15), (16) and Refs. [19, 20], respect

ively. According to Eq. (8) it holds that
Kdes�Odes Kmin�Omax, where Omax is the element
size for the minimum value of K. In this study,

Kmin 1 [cf. Eq. (14)]. The value for Omax is not
known in advance, but in the case of a uniform initial
mesh Omax>Oinit. It can then be written that [21, 22]

Kdes

1

Omax

Odes
>

Oinit

Odes
�17�

from which a value for a can be extracted. The ratio
between Omax and Oinit depends on how many elements

are drawn towards the yield lines. If this number is
relatively high, then the number of elements that have
to cover the remainder of the domain is relatively low,
and Omax will be signi®cantly higher than Oinit. On the

other hand, the di�erence is less pronounced if a rela
tively low number of elements is concentrated in the
yield lines.

5. Examples

To test the e�ectiveness of the framework developed
above we have implemented the ALE method in the
object oriented ®nite element code Castem2000 [23].

Remeshing and transport are executed consecutively at
the end of each load increment (see the algorithm
shown in Fig. 10).

5.1. Rectangular plate

As a ®rst example, the rectangular plate of Section 2

has been analysed. The same ®nite element con®gur

ation and the same material set as the coarser mesh

from Section 2 has been used. We desire an approxi
mate element size Odes 0.04 m2 for a value of the

equivalent plastic strain Epl 0.001. Since the initial el

ement size equals 0.125 m2, Eq. (17) results in an ap

proximate lower bound for the remesh parameter a as

a>3.1, where a 0.2 has been taken. Since the plasti

fying part of the domain is relatively large, it is

expected that Omax is substantially larger than Oinit.

Therefore, we have taken a 14. Again, only one
quarter of the plate has been analysed. In Fig. 11 a

Fig. 12. Pro®les of equivalent plastic strain along y x.

Fig. 11. Contour plot of equivalent plastic strain, ALE mesh (dashed lines denote axes of symmetry).
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contour plot of the equivalent plastic strain is depicted.

Comparison with Fig. 5 shows that basically the same

yield line pattern as with the ®ne Lagrangian mesh is

predicted with the ALE analysis. On the other hand,

compared to the coarse Lagrangian mesh (cf. Fig. 6) a

much better solution has been achieved with the same

number of elements. For a better comparison between

the two Lagrangian solutions and the ALE solution,

pro®les of the equivalent plastic strain along the line

y x and along the line x 3 (see Fig. 1) have been

plotted in Figs 12 and 13, respectively. It can be con

cluded that the ALE solution gives a good approxi

mation of the peak values of the equivalent plastic

strain, as well as of the width of the yield lines. To in

vestigate the e�ect of carrying out remeshing in

both the elastic and the plastic stage, subsequent

meshes have been plotted in Fig. 14. At the onset of

plasti®cation (at load level 0.7�ultimate load level) el

ements have already been moved according to the

Fig. 13. Pro®les of equivalent plastic strain along x 3.

Fig. 14. Initial mesh (top), mesh at onset of plasti®cation

(center), and ®nal mesh (bottom).

Fig. 15. Pro®les of equivalent plastic strain along y x for

di�erent values of a.

Fig. 16. Pro®les of equivalent plastic strain along x 3 for

di�erent values of a.
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yield lines that are to be formed. Since a 0.2, rela

tively little remeshing is carried out in the elastic stage,

but the forming of the yield lines is not delayed. When

remeshing is only performed in the elastic stage

(a 1.0) or only in the plastic stage (a 0.0), results

are obtained as shown in Figs 15 and 16, which show

the pro®les of the equivalent plastic strain along y x

and along x 3, respectively. It can be seen that

results obtained with a 0.2 are better than with

a 0.0 or a 1.0. Both the width of the yield line and

the peak value of the equivalent plastic strain are pre
dicted best when remeshing is carried out in the elastic

stage as well as in the plastic stage. Especially in the
case where a 0.0 inferior results are shown. Here, the
yield line emerging from the sample's corners has

shifted compared to the ®ne Lagrangian mesh, and the
yield line at the sample's center is underestimated.

5.2. Hexagonal plate

The second example is a hexagonal plate, simply

supported along three non adjacent sides (see Fig. 17).
Each side has a length of 4 m. The plate thickness is
10 cm, while the same material set as for the ®rst

example has been used. A uniform load equal to 169
kN/m2 has been applied, which is slightly smaller than
the load level at which total collapse occurs. Yield
lines start to form at the free edges, and propagate

towards the center of the plate with increasing load
level. Figs 18 20 show contours of the equivalent plas
tic strain for a Lagrangian mesh of 1538 elements, a

Lagrangian mesh of 96 elements and an ALE mesh of
96 elements, respectively. Again, we desire an element
size Odes 0.04 m2 for Epl 0.001. The initial element

size Oinit10.433 m2, therefore according to Eq. (17)
a>16 (with a 0.2). We have taken a 25. From the
contour plots it can be concluded that 96 elements is
too low a number when a Lagrangian analysis is car

Fig. 17. Hexagonal plate problem statement.

Fig. 18. Contour plot of equivalent plastic strain, Lagrangian, 1538 elements.
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ried out. Compared to the ®ne mesh solution of

Fig. 18, the yield line pattern is very irregular. The

slight distortion of the mesh highly in¯uences the yield

line pattern, while the forming of the yield lines is
delayed by the too large sizes of the ®nite elements.

Furthermore, the yield lines have not propagated

towards the center of the plate. On the other hand,

with the ALE algorithm, the 96 element mesh predicts

a yield line pattern similar to the ®ne Lagrangian

mesh. It can be seen that the mesh has been orientated

along the yield lines, thus avoiding the strong irregula

rities that occurred with the Lagrangian mesh.

Further, the yield lines have fully developed. In Fig. 21,
pro®les of the equivalent plastic strain along the line

y 2.5 m have been plotted. This ®gure shows in more

detail the in¯uence of the mesh distortion on the coar

ser Lagrangian mesh, and the aligning according to the

yield lines exhibited by the ALE solution.

Fig. 19. Contour plot of equivalent plastic strain, Lagrangian, 96 elements.

Fig. 20. Contour plot of equivalent plastic strain, ALE, 96 elements.
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5.3. Rectangular plate with eccentric square hole

The last example deals with a rectangular plate with

an eccentric square hole. All sides are simply sup

ported, and the dimensions are shown in Fig. 22. A

uniform load equal to 125 kN/m2 has been applied.

The plate thickness reads 5 cm and the material set

from the previous examples has been taken.

Lagrangian analyses have been carried out using 3714

and 400 elements, as well as an ALE analysis with 400

elements. With Odes 0.04 m2 for Epl 0.001 and

Oinit10.11 m2 the ALE remesh parameters have been

taken as a 5 and a 0.2. The contour plots of the

equivalent plastic strain are shown in Figs 23 25.

Compared to the ®ne Lagrangian mesh, the coarse

Lagrangian mesh has di�culties capturing the main

yield lines departing from the upper left corner and the
lower left corner towards the center of the plate. On

the other hand, the ALE solution does not show this
de®ciency. Elements are being aligned along the yield
lines during the remeshing procedure. A closer inspec

tion of the upper left yield line is shown in Fig. 26.
Here, an excellent agreement between the Lagrangian
solution with the ®ne mesh and the ALE solution can

be seen. Yet, due to the dominance of the yield lines in
the left part of the plate, nodes around the square hole
are attracted towards the left. Together with the ®xed

connectivity of the elements, this has resulted in very
large aspect ratios of the elements around the corners
of the square hole. This may in¯uence the quality of
the solution locally. However, since the major import

ance is put on the description of the main yield lines
that appear at the left part of the plate, this locally
poor quality is acceptable.

6. Conclusions

Plates are common structure types in engineering
practice. The failure analysis of plates requires robust
and e�cient numerical tools. Plasticity models have

proven to be very suitable for the description of the
failure behaviour of plates. The description of the yield
line pattern that occurs with plastic failure of plates is

of major importance. However, the yield line pattern
heavily depends on the geometry of the plate, as can
be seen from both analytical and numerical calcu

lations. To capture the yield line pattern correctly,
usually very ®ne meshes must be used. Yet, this poses
severe requirements on the computer capacities. To cir
cumvent the use of these very ®ne meshes, mesh adap

Fig. 21. Pro®les of equivalent plastic strain along y 2.5.

Fig. 22. Rectangular plate with square hole problem statement.
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tion can be applied. In this study we have used the

arbitrary Lagrangian Eulerian (ALE) technique as a

continuous and automatic mesh adaptivity method.

Remeshing is carried out during the computation such

that the ®nite element description is automatically

re®ned at the yield lines. Within an ALE formulation,

Fig. 23. Contour plot of equivalent plastic strain.

Fig. 24. Contour plot of equivalent plastic strain.
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both the element connectivity and the number of
applied elements remain constant throughout the

analysis.

To be able to describe both newly appearing yield
lines and already formed yield lines, we have formu

lated a remesh indicator that concentrates elements in
zones which are close to yielding as well as in zones

that are already plasti®ed. Numerical analyses show
that, with the ALE technique, yield lines can be

described with an accuracy competitive with very ®ne

standard Lagrangian meshes. If the same number of el

ements as in the ALE analyses are used within a
Lagrangian formulation, the yield line pattern is heav
ily determined by the orientation of the mesh, and the
proper propagation of the yield lines is delayed. These

de®ciencies are overcome with the ALE technique.
Therefore, the ALE technique allows for solutions that
are both accurate and cheap (cheap in terms of compu

ter time), which makes this approach attractive for use
in large scale computations.
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Appendix A

A.0.1. The discrete Kirchho� triangle

The discrete Kirchho� triangle (DKT) that is used

throughout this work combines a rapid convergence
and a robust behaviour with relatively low computer
costs [1, 13].

Fig. 25. Contour plot of equivalent plastic strain.

Fig. 26. Pro®les of equivalent plastic strain along y x+3.
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The thin shell assumption is made, i.e. it is assumed
that the transverse shear deformations gxz and gyz van
ish:

�
gxz
gyz

� �
fx

fy

�
�

@w

@x

@w

@y

2664
3775 0

0

��
�18�

where fx and fy are the rotations of the normal along
the x and y axis, respectively, and w is the normal dis

placement of the plate (i.e. in the z direction), see
Fig. 27.

In discrete Kirchho� theory, the Kirchho� assump

tion [Eq. (18)] is only ful®lled at discrete points.
Normally, point collocation is used. The resulting
equations are then used to reduce the number of nodal

unknowns [1]. As a consequence, the DKT element has
only three unknowns per node, namely w, fx, and fy.

References

[1] Zienkiewicz OC, Taylor RL. The ®nite element method.

In: Solid and ¯uid mechanics, dynamics and non linear

ity, volume 2. 4th ed. Berkshire: McGraw Hill, 1991.

[2] Johansen KW. Yield line theory. London: Cement and

Concrete Association, 1962.

[3] Wood RH. Plastic and elastic design of slabs and plates.

London: Thames and Hudson, 1961.

[4] Belytschko T, Kennedy JM. Computer methods for sub

assembly simulation. Nuclear Engineering and Design

1978;49:17 38.

[5] DoneÂ a J. Arbitrary Lagrangian Eulerian ®nite element

methods. In: Belytschki T., Hughes T.J.R., eds.

Computational methods for transient analysis, ch. chap.

10. New York: Elsevier, 1983.

[6] Hughes TJR, Liu WK, Zimmermann TK. Lagrangian

Eulerian ®nite element formulation for incompressible

viscous ¯ows. Computer Methods in Applied Mechanics

and Engineering 1981;29:329 49.

[7] Huerta A, Liu WK. Viscous ¯ow with large free surface

motion. Computer Methods in Applied Mechanics and

Engineering 1988;69:277 324.

[8] Liu WK, Belytschko T, Change H. An arbitrary

Lagrangian Eulerian ®nite element method for path

dependent materials. Computer Methods in Applied

Mechanics and Engineering 1986;58:227 46.

[9] Schreurs PJG, Veldpaus FE, Brekelmans WAM.

Simulation of forming processes, using the arbitrary

Eulerian Lagrangian formulation. Computer Methods in

Applied Mechanics and Engineering 1986;58:19 36.

[10] HueÂ tink J, Vreede PT, Van der Lugt J. Progress in

mixed Eulerian Lagrangian ®nite element simulation of

forming processes. International Journal for Numerical

Methods in Engineering 1990;30:1441 57.

[11] Pijaudier Cabot G, BodeÂ L, Huerta A. Arbitrary

Lagrangian Eulerian ®nite element analysis of strain

localization in transient problems. International Journal

for Numerical Methods in Engineering 1995;38:4171 91.

[12] BodeÂ L. StrateÂ gies numeÂ riques pour la preÂ vision de la

ruine des structures du geÂ nie civil. Dissertation, E.N.S.

de Cachan/CNRS/UniversiteÂ Paris, 1994.

[13] Prat M., Bisch Ph, Millard A., Mestat Ph, Pijaudier

Cabot G. La modeÂ lisation des ouvrages. Paris: HermeÁ s,

1995.

[14] Huerta A, Casadei F. New ALE applications in non lin

ear fast transient solid dynamics. Engineering

Computations 1994;11:317 45.

[15] Askes H. Mesh adaptivity methods: the ALE technique

for localisation. Technical report 03.21.1.31.09, Delft

University of Technology, 1997.

[16] RodrõÂ guez Ferran A, Casadei F, Huerta A. ALE stress

update for transient and quasistatic processes.

International Journal for Numerical Methods in

Engineering 1998;43:241 62.

[17] Huerta A, Casadei F, DoneÂ a J. ALE stress update in

transient plasticity problems. In: Owen D.R.J., OnÄ ate E.,

editors. Computational plasticity IV, fundamentals and

applications. Swansea: Pineridge Press, 1995:1865 76.

[18] LeVeque RJ. Numerical methods for conservation laws.

2nd ed. Basel: Birkhauser, 1992.

[19] Sluys LJ, Cauvern M, de Borst R. Discretization in¯u

ence in strain softening problems. Engineering

Computations 1995;12:209 28.

[20] Huerta A, Pijaudier Cabot G. Discretization in¯uence on

the regularization by two localization limiters. ASCE

Journal Engineering Mechanics 1994;120:1198 218.

[21] Askes H, Sluys LJ. A remeshing strategy for 3D crack

propagation with a regularised continuum model. In: de

Borst R, BicÂ anicÂ N, Mang H, Meschke G, editors. Euro

C 1998, Computational modelling of concrete structures.

Rotterdam: Balkema, 1998:391 7.

[22] RodrõÂ guez Ferran A, Askes H, Huerta A. Arbitrary

Lagrangian Eulerian analyses of plastic failure in

plates. In Idelsohn, SR, OnÄ ate E, Dvorkin EN,

editors. Fourth world congress on computational mech

anics, new trends and applicaitons, CD ROM proceed

ings. Barcelona:CIMNE, 1998..

[23] Castem2000, Manuel d'utilisation. Technical report 88/

176, Laboratoire d'Analyse meÂ canique des Structures,

Commissariat aÁ l'EÂ nergie Atomique, Saclay, France.

1988.

Fig. 27. Sign convention for plate rotations.
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