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Abstract. A displacement field a pressure field and a velocity field describe the behavior of 

hybrid materials that is not covered by a single solid or liquid state approach. A primary 

analysis that is represented by a functional and its associated principle is based on a two states 

analysis consisting of a solid part and a pressure part. The pressure part is related to a velocity 

field in a secondary analysis. With respect to granulates the interaction at the walls is directed 

towards the avoidance of tension. Equilibrium is achieved separately for area and boundary. 

The distribution of the specific weight on solid and liquid parts depends on the first stress 

invariants. 
 

1 INTRODUCTION 

A static solid and a steadily flowing liquid are postulated at the same time in the same 

place. Internal forces interact between both components. Solutions are presented for loads and 

boundary conditions that oppose mere solid or mere liquid behavior.  

Preferred application is an infinite high tube [4]. The static solid state requires constant 

vertical strain with respect to continuity. Coulomb friction represents the interaction with the 

walls. The steady liquid state requires constant velocities and pressures in the vertical 

direction. The interaction with the walls aims towards avoidance of cavitation. Unique 

solutions are presented for distribution of partial specific weight according to the relation of 

the first stress invariants and nonlinear distribution of boundary load over the cross section. 

Permitted solutions must avoid tension and negative partial specific weight (bracing). 

The involved attributes are displacements, velocities, pressures, and partial specific 

weights. Displacements, pressures, and partial specific weights result from the primary 

analysis. Velocities result from the secondary analysis that also redefines the displacements. 

Load and pressure are coupled on one side, displacements, velocities, and partial specific 

weights are coupled on the other side. 

Every physical process is time dependent. If the modifications by time are very small, a 

time independent approach is appropriate. Evolving avalanches and landslides, overloaded 

foundations and plastic steel hinges belong to the prospected applications of the solid liquid 

two states analysis. The related processes are in the range between time independent static 

analysis and time dependent liquid analysis which in the limit approaches steady state 

behavior. Loads and boundary conditions determine the specific weight distribution in the 

area, and the interacting forces between solid and liquid components in the area and at the 

boundaries. 
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2 GENERAL SPECIFICATIONS 

The area and boundary loads p and b consist of a solid and a liquid part. 
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Figure 1: Displacements, pressure, loads and boundary conditions for the hybrid analysis of a silo 
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Solid and liquid parts are in equilibrium separately. The derivations of the solid stresses are 

in equilibrium with the solid area load pS. The derivations of the liquid stresses are in 

equilibrium with the liquid area load pL. 

Equilibrium equations [1][6]: 

1 2T T

S S

2 1

0
x x

0
x x

  
    
  
 

  

D σ = p D  (3) 

T

L L
D σ = p  (4) 

Linear elastic stress strain relations are applied to the solid part. Stress velocity relations 

for incompressible, slowly moving, viscous liquids without inertia and without convection are 

applied to the liquid part. The liquid pressure c appears as an additional unknown. 

Solid stresses: 
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Liquid stresses: 
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L 22,L
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 
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Incompressibility: 

11,L 22,L
c     (7) 

Viscosity: 

1 2
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v v
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 (8) 

Natural boundary conditions: 

At the loaded boundary Bb the stresses of the single parts are in equilibrium with the loads 

bS and bL of the single parts. 
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b M σ M   

b
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T
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b
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Forced boundary conditions: 

At the restricted boundary Bu no displacements and velocities are possible. 

u 0    
u

Bx  (11) 

v 0    
u

Bx  (12) 

Mixed boundary conditions: 

At the part Bm of the boundary the tangential load is related to the normal stress according 

to Coulomb friction for the solid part. Tangential load and normal stress are set equal for the 

liquid part with respect to the avoidance of tension. No movement is possible normally to the 

boundary. The matrix Q represents the influence of the direction of the boundary. The transfer 

load bT rules the distribution of the boundary load on solid and liquid parts. 

 
T 2 3

TS S T 1 2 2

m t 3 2

1 1 2n

n n n 0
B sign u

n n n 0u 0

     
   

   

b Q σ b
x Q  (13) 

L T

T

L

n
v 0

 


 

σb Q b
 

m
Bx    

t
sign v  (14) 



M. Göttlicher 

 4

3 FUNCTIONALS AND PRINCIPLES 

Primary analysis: 

The primary analysis includes displacements and pressure fields. Based on the constitutive 

equations a functional is postulated for plane continua [5, 6]: 

m m b

T T T T T T T

A B B A B

1 1
dA dB dB dA dB

2 2
          ε Eε u Q Eε u Q c u p u b  (15) 

An elastic solid interacts with an incompressible liquid which is represented by a pressure 

field. Associated principle: 

 
m b

T T T T T

A B A B

dA dB dA dB 0            ε Eε u Q E c u p u b  (16) 

Secondary analysis: 

The vertical area load (specific weight) is distributed according to the relation of the first 

stress invariants to solid and liquid. The principle for the resulting secondary analysis includes 

an additional velocity field: 

m m

T T T T T

12 12

A A B B

1 1 1
dA dA dB dB ...

2 2 2
           ε Eε u Q Eε v Q cɺ ɺ

b b

T T T T

S L S L

A A B B

... d A dA dB dB      u p v p u b v b  
(17) 

Independent variations of displacements and velocities result in two coupled principles: 

Solid principle: 

 
m m b

T T T T T T

T S S

A B B A B

dA dB dB dA dB 0               ε Eε u Q Eε c u b u p u b  
(18) 

Liquid principle: 

m b

T T T

12 12 T L L

A B A B

dA dB dA dB 0           v b v p v bɺ ɺ  
(19) 

3.1 Infinite high tube 

Functionals and principles are restricted to the special case of an infinite high tube. 

 

Primary analysis: 

Functional: 

     
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Principle: 
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T
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x


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Secondary analysis: 

Functional: 
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Coupled Principles: 

       
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 
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4 APPROXIMATION 
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Figure 2: Nodal values for the interpolation functions 

A fourth order approximation of the vertical displacement 
1

u  in the horizontal direction 

and a linear approximation in the vertical direction require six degrees of freedom with 

respect to the symmetry of the tube. A single degree of freedom is required for a cubic 

approximation of the horizontal displacement 
2

u  since it is assumed to be constant in the 

vertical direction and to be zero in the center and at the walls of the tube. This degree of 

freedom is the horizontal strain 
2

u in the center which is the first derivation of the horizontal 

displacement 
2c

u . The digits t and b of the nodal values refer to the top face and the bottom 

face. The digits c and w refer to the center and the walls (Figure 2). 
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Displacement at the walls: 

T 1 1

w w tw bw

H x x
u u u

H H



  h u  (37) 

Restriction of the vertical tube: 

bw
u 0  (28) 

tc bc tw
u u u   (29) 

tw bw
u u   (30) 

Strain interpolation matrix: 

T
B DF  (31) 

The liquid pressure c is assumed to be constant in the vertical direction and quadratic in the 

horizontal direction. Due to symmetry two degrees of freedom are required. These degrees of 

freedom are the liquid pressure cc in the center and cw at the walls (Figure 4). 

T
c  g c  (32) 

The boundary load b acts at the top face and the bottom face of the slice. The quadratic 

distribution of the vertical component b1 depends on values bc at the center and bw at the 

walls. The linear distribution of the horizontal component b2 depends on the value 
2w
b  at the 

walls. It is zero in the center. 

Integration of area load: 
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The horizontal area load is an interaction between solid and liquid parts: 

2,L 2,S
p p   (34) 

Integration of partial area load: 
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2w,S
p      Solid part (S) of the horizontal force 

2
p  at the walls (w) 

A fourth order approximation of the vertical velocity requires three degrees of freedom 

with respect to symmetry. For absent convection, the horizontal velocity is zero. 

T
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It follows for the principles (23 and 24): 

m m
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1 v v 1 b b 1 S v

A A

dA v P dA        v b b v v f 0  (40) 

The two principles are appropriate to determine displacements and velocities. The 

additional two liquid pressures result from the two displacement restrictions (zero at the 

bottom of the wall and constant vertical strain). The additional constant partial specific S 

weight results from the velocity restriction (zero at the bottom of the wall). 

5 APPLICATION 

Specific weight, Poisson’s ratio, and coefficient of wall friction in the applications 

represent grain [2]. The modulus of elasticity is chosen according to [3] (e.g. peat). 

 

 = 0,009 MN/m2     specific weight 

E = 1,000 MN/m3    Young’s modulus 

 = 0,375                  Poisson’s ratio 

 = 0,001 MNs/m2   viscosity 

 = 0,4                      coefficient of wall friction 

L = 1,00 m               width 

H = 20,00 m             height 

5.1 Constant distribution over the cross section 

Mere solid solution (Fig. 3a): 

2

11
0,01875 MN / m   (41) 

Mere liquid solution (Fig. 3d): 

2 2

11
0,0045 MN / m c 0,0045 MN / m    (42) 

In the center of a very high tube constant distribution of loads and stresses is likely. For 

linear increasement of the boundary load from the mere liquid state to the mere solid state, the 

liquid pressure declines linear and the horizontal stress increases linear. However, the relation 

of the first stress invariants, that characterizes the contribution of solid and liquid parts, is 

highly nonlinear (Table 1). Solid stresses, displacements, velocities, and partial specific 

weights follow the nonlinear relation of the first stress invariants (Table 2). 
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Figure 3: Transformation from the solid state (a, red) by the hybrid states (b, dark red and c, violet) to the liquid 

state (d, blue) 

Table 1: Boundary load, stresses, relation of liquid and solid parts 

Nr. b 22 c I1L/I1 Pb 

1 0,004500 0,004500 0,004500 1,00000 0 

2 0,007350 0,005850 0,003600 0,54545 -0,0990 

3 0,010200 0,007200 0,002700 0,31034 -0,0540 

4 0,013050 0,008550 0,001800 0,16667 -0,0270 

5 0,015900 0,009900 0,000900 0,06977 -0,0126 

6 0,018750 0,011250 0,000000 0,00000 0 

Table 2: Partial specific weight, displacements, and velocities 

Nr. 11,S 22,S S L ubc vc 

1 0,00000 0,00000 0 0,0090 0 1,125 

2 0,00375 0,00225 0,0041 0,0049 0,001392 0,61875 

3 0,00750 0,00450 0,0072 0,0028 0.002166 0,33750 

4 0,01125 0,00675 0,0085 0,0015 0.002623 0,16875 

5 0,01500 0,00900 0,0094 0,0006 0,002877 0,07875 

6 0,01875 0,01125 0,0090 0,0000 0,003094 0 

5.2 Nonlinear distribution over the cross section: 

For prescribed nonlinear boundary load, and for prescribed partial specific weight 

distribution according to the primary analysis, the resulting stresses, deformations, and 

velocities are unique (Table 3). 

 

Lower pressure in the centre: 
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Starting from the mere solid case only a decline of the vertical stresses in the center is 

possible to avoid tension. For lower vertical stresses in the center (Figure 4b) the partial solid 

stresses dominate in the center (red color). At the walls, the liquid stresses finally exceed the 

solid stresses (violet color) If the vertical stresses in the center continue to decrease the solid 

stresses at the walls enter the not permitted tension range. 

 

Figure 4: Primary solid behavior at the walls and nearly liquid behavior in the center (a, left). Primary liquid 

behavior at the walls and nearly solid behavior in the center (b, right). 

Lower pressure at the walls: 

Starting from the mere liquid case only an increase of the vertical stresses in the center is 

possible. For higher vertical stresses in the center (Figure 4a) the partial liquid stresses 

dominate in the center (blue color). At the walls, the solid stresses finally exceed the liquid 

stresses (red color). 

Table 3: Stresses, principal stresses, relation of stress invariants, strains, horizontal area load, displacements, 

and velocities 

Figure: 4a 4b 

x2 0,5 0,25 0,0 0,5 0,25 0,0 

11 0,008775 0,001198 0,013050 0,007350 0,006994 0,005925 

22 0,010125 0,010125 0,010125 0,006375 0,006375 0,006375 

c 0,000750 0,008766 0,011437 0,003250 0,005922 0,006812 

p2 0,042750 0,021375 0 -0,014250 -0,007125 0 

12 0,00450 0,00225 0 0,00450 0,00225 0 

I1,L/I1 0,793 0,079 0,987 0,733 0,316 0,158 

ub 0 0,000116 0,000464 0 0,000774 0,003094 

v 0 0,23906 0,95625 0 0,25781 1,03125 

 

Transformation: 

The mere solid solution (Figure 3a) turns to the hybrid solution (Figure 4b) if the constant 

stress function turns to a concave stress function. While the stress level decreases it 

approaches the mere liquid solution (Figure 3d). While the constant stress function turns into 

a convex stress function (which is barely possible) it turns to the hybrid solution (Figure 4a). 
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While the stress level increases it finally approaches the mere solid solution again (Figure 3d). 

 

Table 4: Transformation from the solid state (Fig. 3a) by the hybrid state (Fig. 4b) to the liquid state (Fig. 3d) 

and back to the solid state by the hybrid state (Fig. 4a), (x2=0,5) 

Fig.: 3a 4a 3d 4b 3a 

11,c 0,01875 0,013050 0,004500 0,005925 0,01875 

ubc 0,003094 0,000464 0 0,003094 0,003094 

vc 0 0,95625 1,12500 1,03125 0 

11,w 0,01875 0,008775 0,004500 0,007350 0,01875 

22 0,01125 0,010125 0,004500 0,004650 0,01125 

c 0 0,000750 0,004500 0,004400 0 

p2 0 0,042750 0 -0,014250 0 

12 0,00450 0,00450 0,00450 0,00450 0,00450 

I1,L/I1 0 0,793 1,00 0,733 0 

Pb 0 -0,126 0 -0,150 0 

 

Table 4 shows the development at the walls (x2 = 0,50 m) during this process. (The related 

vertical stress in the center (x2 = 0) is shown in the first line.) 

5 CONCLUSIONS 

- The computational method presented in this paper covers a wide range of possible 

applications. It is based on the simultaneous interaction of two materials in the same 

place at the same time. The linearity of the analysis is preserved. 

- The unavoidable nonlinear effects are covered by obvious a priori considerations as 

usual in engineering. Further research is directed towards more general applications 

and the investigation of the usefulness of the numerical analysis that has been 

developed for an infinite high tube. 
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