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A METHODOLOGY FOR ADAPTIVE MESH REFINEMENT
IN OPTIMUM SHAPE DESIGN PROBLEMSY
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Modulo Cl, Campus Norte UPC, Gran Capitan s/n, 08034 Barcelona, Spain

Abstract--This work presents a methodology based on the use of adaptive mesh refinement (AMR)
techniques in the context of shape optimization problems analyzed by the Finite Element Method (FEM).
A suitable and very general technique for the parametrization of the optimization problem using B-splines
to define the boundary is first presented. Then, mesh generation using the advancing front method, the
error estimation and the mesh refinement criteria are dealt with in the context of a shape optimization
problems. In particular, the semsitivities of the different ingredients ruling the problem (B-splines, finite
element mesh, design behaviour, and error estimator) are studied in detail. The sensitivities of the finite
element mesh coordinates and the error estimator allow their projection from one design to the next, giving
an “a priori knowledge” of the error distribution on the new design: This allows to build up a finite element
mesh for. the new design with a specified and contrelled level of error. The robustness and reliability of
the proposed methodology is checked out with some 2D examples.

1. INTRODUCTION

From a mathematical poiat of view the treatment
of an optimization or an inverse problem can be
viewed as the minimization of a function f(x) depend-
ing on a set of variables x and subjected to some
constraints.™? The general form of such a problem is

minimize: f(x); x = {x,},

i=1,...,n,

with: g ={g®}% j=1....m,

verifying: g{(x) <0; Jj=L...,m,
a,<x<b; z'=1,...,.n, -

where f is the objective function, x; are the design
variables and g; are inequality constraints which, for
structural problems, are normally expressed in terms
of stresses or displacements.’? The values a; and b;
define lateral constraints. Each set of values x defines
a structiral design and the problem consists of
finding the values of x defining the best design.
The algorithms for the solution of the minimiz-
ation problem are typicaily iterative, and they
involve the computation of the derivatives (semsi-
tivities) of the objective function and comnstraints
with respect to the design variables.” Besides, in
each step of.the protcess the values of f and g and
their sensitivities are needed. In many cases, as those
considered in this work, the computations are per-

+ This paper was presented at the “Structural Optimiz-
ation’ Session of the Second U.S. National Congress on
Computational Mechanics held Washington, DC, U.S.A.,
16-18 August 1993.
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formed via a finite element analysis which provides
the behaviour of each design, and a methodology:
to compute the corresponding senmsitivities. The
definition of each design in terms of the x variables
is called “parametrization” of the optimum design
problem. g :

There are many existing codes and different
methodologies to solve the optimization problem
defined in Eq. (1).> However, some problems still
remain unsolved in this context, e.g. the inclusion of
robust parametrization procedures for definition of
each design and the control of the error associated
with finite ¢lement computations and its influence on
the solution of the optimization problem. Usually,
once the optimization procéss is finished there is no
guarantee of the accuracy of the final design. Sore-
times a more accurate analysis would reveal that the
final design is unfeasible, as one or more of the
constraints imposed are violated.

With a view towards solving this problem a general
methodotogy for structural shape optimization
problems should include the following features:

e general parametrization procedures in order to
deal with different structure types with the same
structural optimization code. The definition of
any design would only need then a small number
of design variables;

e casy treatment of boundary conditions;

spasy and general definition. of the objective
function and constraints;

e automatic, robust and flexible mesh generation;

saccurate and inexpensive estimation of the
discretization grrors;

o effective, reliable and not too expensive sensitivity
analysis;
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« efficient optimization procedures;

e automatic adaptive remeshing procedures with-
out a large increase of the total cost; and

e control over the quality of the meshes used for
each design, i.e. distorted elements should be
avoided when significant changes of the structural
shape are expected.

In this paper we present a general methodology for
optimization problems including all the above men-
tioned features. In the following sections we describe

the parametrization of the optimum design problem,

the procedure for automatic mesh generation and

error estimation, the sensitivity analysis, and the.

adaptive remeshing strategy used. In the final part of
the paper some examples showing the efficiericy of
the methodology proposed are presented. A different
methodology including some of the abovementioned
features can be found in Refs 3 and 4,

2. THE PROPOSED METHODOLOGY

A flow chart summarizing the proposed method-
ology is shown in Fig. 1. This consists of a series of
modules each one corresponding to a specific task.
Some of these modules are discussed in detail in the
next sectjions. '

Each design step requires computation of the sen-
sitivities of the objective function and constraints.
The sensitivity analysis is performed step by step
following the same path as the finite element analysis.
This path indicates the dependence of each quantity
used in the analysis with respect to the rest of the
quantities previously employed. For example, the
expression of the stiffness matrix depends on
the nodal coordinates, so that, following the chain
rule for derivatives,. the stiffness matrix sensitivities
can be expressed in terms of the nodal coordinate
sensitivities. Thus, it is necessary to compute these

Definition of the initial design, design varizbles =, objective
function f and constraints g (parametrization of the preblem).
4

Mesh generation using an advancing front technique. The
characteristics of the mesh are specified on a background mesh.

Sensitivity analysis of the nodal coordinates of the mesh.

Finite element apalysis. Computation of the
error estimator norm 7 and the energetic norm {vf. | |
4

Sensitivity analysis of the objective function,

constraints and the error estimator.
i

Design enhancement via optimization techniques. | .

il

Projection of the coordinates and the error estimator

. into the next design using the computed sensitivities.
Definition of the mesh characteristics for the new design.

4
Convergence.

Fig. 1. General scheme for the proposed methodelogy. ‘

sensitivities {mesh sensitivities) prior to that of the.
stiffness matrix sensifivities.

First-order and second-order sensitivity analyses
have been used in the implementation of the pro-
posed methodology. The sensitivity analysis provides
directional derivatives of any quantity. In the next
paragraphs -s. will denote a unit vector in the
design variables space (X ={x;, Xa, .- -, Xi; - -5 X 1)y
and derivatives will be computed in the s dl!‘ECtIOIl.
For instance, to obtain the sensitivities with respect
to a specific design variable x,, s has to be the
unit vector corresponding to the x; direction (i.e.
s={0,0,...,1,...,0}.

The sensitivities of any quantity will be used to
project its value from one design into the next one
when the design variables are modified. For example,
let us assume that f{x*) is the ohjective function
value at the kth iteration of the optimization process.
If the design variables are meodified in the form
xF+1=x* + f%* the value of the objective function
can be projected into the next design by means of a
standard Tayler expansion:

S =f(x + 0%") = f(x)

+0F i

&
satit®sm @

The same applies to any other magnitude to be
projected.

3. PARAMETRIZATION OF THE PROBLEM

Each. design geometry is represented by using
“definition points” which specify some interpolation
curves. The curves used here are parametric. B-splines.
The general expression of a clesed B-spline for g
points is:™

r(l}hfmi TN () (3

where r(z) is the position vecter depending on
a parametric variable f. The coordinates of the
definition points are recovered wsing ¢ =0,1,2,...
(see Fig. 2). The curve is expressed as a linear
combination of ¢+ 1 normalized fourth-order
(cubic) B-sphines.!* The r, coefficients are the coordi-
nates of the so called polygon definition points'? and
they are found by using the coordinates of the
definition points. The degree of continuity of a cubic
B-spline is C*. By using Eq. (3), the coordinates of the
definition points and some additional conditions
about slopes and curvatures, the following equatlon
systermn can be derived: :

V = NR, )]
where V is a vector containing the imposed con-

ditions at the definition points, N is a matrix contain-
ing some terms corresponding to the values of the
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T,

Fig. 2. Definition points and pelygen definition points of a B-spline.

polynomials that define each B-spline, and the R
vector contains the coefficients r; to be computed.
Details  of this process can be found in Refs 1
and 5.

The first- and second-order senmsitivities of R
along a direction s in the design variable space are
given by: )

?,.E: N-—i(ﬁ _ER)’

s ds  0s

'R 8%V &N dNZR -
RN TR 20 T g5
ast (653 s’ ds Bs) ®

The derivatives of V with respect the coordinates
of the definition points chosen as design variables can
be easily computed. Vectors 9R/ds and 3°R/ds* will
contain the terms ar,/és and &%r,/0s%, respectively.'

Finally, the sensitivities of the coordinates of any
point on the interpolation curve corresponding to a
constant value of r are obtained by:

or(t) L or,
s =3 B—NM“(I)’

i=0

w

() & 8%
ds? _,;0 ds*

Newa(8). ()

4. MESH GENERATION. AND SENSITIVITY
ANALYSIS

The mesh generation algorithm chosen is the
well known advancing front method. This tech-
nique is ideal to generate non structured triangular
meshes.®”’ :

The characteristics of the desired mesh are specified
via a background mesh over which nodal values -of
the size parameter & are defined and interpolated
using the shape functions. The background mesh
* for the first design has o be defined by hand. For

subsequent  designs the background mesh will

coincide with the mesh projected into this design from
the previous one. This projection will be described
later. .

Once the sensitivities of the coordinates of each |
boundary node are known, it is.also possible to
compute the sensitivities of the coordinates of each
internal nodal point (mesh sensitivities). These sensi-
tivities are used to asses how the mesh evolves when
the desiga variables change. ]

There are many different ways to define the evol-
ution of the mesh in terms of the design variables.
1t is possible to consider a simple analogous elastic
medium defining the mesh on movement. This is the
case of the “spring analogy™ where each clement side
is regarded as a spring connecting two nodes. The
force produced by each spring is proportional to its
tength. The solution of the equilibsium problem in the
spring analogy is simple but expensive and it involves
to solve a linear system of equations with two degrees
of freedom per node.

In this work the spring analogy problem has been
solved iteratively using a Laplacian smoothing. This
technique is frequently used to improve the quality
of non-structured meshes. It consists on the iterative
modification of the nodal coordinates of each interior
node by placing it at the center of gravity of adjacent
nodes. The expression of the new position vector of
each node 1, for each iteration is given by:

r=421) . (7

where r; are the position vectors of the m; nodes
connected with the ith node.

The solution of the spring analogy problem with
a prescribed ‘error tolerance requires checking the
solution after each smoothing cycle. Taking into
account that the described iterative process is only
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" a way to obtain mesh sensitivities, rather than the
solution of the equilibrium problem itself, rigorous
convergence conditions are not needad. For this
reason the number of smoothing cycles to be applied
can be fixed « priori. In the examples presented below
we have checked that 50 iterations are enough to
ensure a good quality of results.

The first-order and higher-order mesh sensitivity
analyses along any direction of the design variables
space, s, are obtained by differentiating Eq. (7) with
respect to s for cach cycle, ie.

i

ar;
ar _ £

ds m;
m;-aer
o 2Ee

st m,

it

‘5, FINITE ELEMENT ANALYSIS

In this paper we will consider oniy the solution of
structural problems governed by the standard elliptic
equations:® : ‘

Ln=S8DSe=vin O &)
with appropriate boundary conditions.® Applications
.of the proposed methodology to other elliptic prob-
lems like incompressible potential flow models can be
found in Refs 9 and 13. _

Discretization of Eq. .(9) leads to the standard
linear system of equations:* o .

CK=YK,

K, J B'DB dQ,
Q.

q=Y q,.

Ka=q withj 4. =dg, + 4z, + 9z, 10y .
' _qQ=J Nb 40,
f &, '
qrcmj NTedl, .
Ie
' L‘({Pc’_‘ZNTP:

where K, a and q dendte, as usual, the. stiffness
matrix, the nodal displacement and the equivalent
nodal force vectors. Vectors b, t and p correspond
to the body, surface and point loads, respectively.
Matrix B = SN is used to obtain the strains at each
point as ¢ = Ba and the constitutive matrix I relates
strains with stresses as ¢ = De. )

G. Bugepa and E."ORate

In our work, nodal stresses 6* are recovered using
a global least squares smoothing technique:!!'*?

[ o* =Y Nigr =Nig*,

&*=M"'®,

' qi:zj.- T da, \
¢ Je amn

M=3M,, ‘

M, = j KT,
“ Q.

Other procedures for nodal stress recovery, such as
the one recently proposed by Zienkiewicz and Zhu,"?
can be used.

6. ERROR ESTIMATION

. The error associated with each finite element
solution is evaluated for each element using the
Zienkiewicz and Zhu error estimator as:''!?

HeEE.zs,zn§=J (6* ~6) D (g* —0)dQ. (12)
o

The global error estimator #? is found by addition
of all the elemental contributions #* = Z,x2 The
energy nmorm can be defined and estimated from
the expression:

l!uIIi«=J 6D lg dQ mf ™D~ dQ
. . jo} [e]

+nf=a"Ka+7n% (13)

This error estimator has been found to be quite
robust, reliable and inexpensive, especially for linear
elements. The element sizes for a new mesh are
obtained using an adequate remeshing strategy. ™+
This issue will be dealt with in a following section.

'7.-SENSITIVITY ANALYSES OF THE OBJECTIVE
FUNCTION, THE CONSTRAINTS AND
THE ERROR ESTIMATOR

The objective function will be usually expressed in

. -terms of a cost function which is normally related to
" .the volume of the structure. Constraints are typically

related with strains, stresses or displacements. There-

fore it is necessary to evaluate the sensitivities of the

structural volume, strains, stresses and displacements

to compute the sensitivities of the objective function

and the restrictions. This requires the computation of -
the sensitivities of all the magnitudes involved in the

analysis.

" The exact sensitivity analysis of all the element

expressions can be obtained by direct derivation of
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Egs (10). This provides the sensitivities of all magni-
tudes in terms of the mesh sensitivities previously
obtained (details of this process are described in
Refs 1, 2 and 19). The sensitivities of an integral
expression are computed after its transformation into
the isoparametric domain'*"* which shape does not
depend on the design variables. The jacobian of this
transformation |J| can be expressed in terms of the
nodal coordinates, so that, it can also be differenti-
ated in order to know the integral sensitivities. Using
the techniques developed previously the sensitivities
of the element stiffness matrix can be obtained as:**

sK BT 7))
i —DBJ BT —BjJ
as Lf[a 131+ 2 Bl

BTD E.I[+

e, 0

where the sensitivity of the jacobian is: -

21J] _,8d
Tos =1le (J as)

In Eg. (14) matrix B depends on the nodal co-
ordinates, so that dB/0s can be obtained from the
mesh sensitivities.

Normally, the sensitivities of D will be zero unless
a design variable affects the mechanical properues of
the material.

This technique allows to obtain ﬁrst—order and
higher-order sensitivities of the stiffness matrix K,
the nodal forces vector q and of any other integral
expression involved in the computations. The
detailed expressions for the first-order and higher-
order sensitivity analysis can be found in Refs 1, 2
and 19.

Equation (14) allows one to obtain the sensitivities
of the displacement vector a as:

da dq JK
PRt [5* EJ

2 2 2
a_ - [aq IZ?K.£l

(15)

i

as’ s 0§ ds Os

3K 2
2 2 3] © a6
Equation (16) show that the inverse of the stiffness
matrix is needed for the semsitivity computations.

If & direct solver is used this matrix kas aiready been

factorized and each new sensitivity analysis involves .

oniy a new backsubstitution process. Moreover it
is not necessary to assemble the sensitivities of the
stiffness matrix because they always appear multiply-
ing a vector and these products can be computed in
an element-by-element manner.

The strain and stress sensitivities can be computed
as:

6£ éB +B6

85 3s ds’

2% O°B 4Boa 8% -
— = B—. 17
W st

50’__61)6 +D de

ds 08 as’

8% 8 _éDde 8%

2 2l D, 1
st g¢* €t as 6s+ o5’ (18)

The sensitivities of the smoothed stresses are com-
puted in terms of the sensitivities of the mass matrix
M and the @ vector of Eq. (11). The techniques
discussed above for the integral expressions are also
used to compute these sensitivities. Finally, the sensi-
tivities of the smoothed stresses are obtained as:

05+ @ oM _,
_GQ—_M I:as s ]

a%* R Y | dM oéF
= g e D — — | 19
e M [85 EISRFE 65:1 (19)
do * 60‘ R 62"
e 2
ds Bs . as Nr 20)

The same comments about the factorization of the -
stiffness matrix apply now to the mass matrix.

Following a similar procedure the first-order
sensitivity of the error estimator is obtained [rom
Eqg. (12) as:

an? do¥  Be\T .
2y
' 1
tet—ar e a3
+ (6t —g) D! fo'_*_ﬁﬁ jJi
ds  Js

+(g* ;G)TD_l(G* —o)|Jitr

oJ
(JA P )} d&, dgs.

In order to use an adaptive mesh refinement
strategy it is also mecessary to compute the element
and total strain enmergy. The values of this strain
energy and its first- and second-order sensitivities can
be approximated from the finite element solution as:

2))

luii3, ~aK,a + 7, (22)
tﬁ’i’;llisc aazzTKe +a’ a;g“a+aTKea;§
+2§;—:a;§"a+2wa~;£ e%



96 (. Bucepa and E. ONaTe

8. DESIGN ENHANCEMENT

The objective function sensitivities are used to get
improved values of the design variables by means of
" a minimization method. Depending on the optimiz-
ation algorithm it may be necessary to use second
order sensitivities. The design variables correspond-
ing to the improved design are found as:
= x* 4 sk (25)

where 8% is an advance parameter. :

The direction of change s* has been obtained
here using a BFGS quasi-Newton method which only
requires first-order sensitivities of the objective func-
tion. The value of 6% is obtained by a directional
second-order sensitivity analysis in the s* direction.
The objective function f can be approximated along
this direction using a second-order Taylor expansion
simifar to Eq. (2) which minimization provides the
value of #% Details of this a!gonthm can be found in
Ref. 2.

9. PROJECTION TO THE NEXT DESIGN AND
DEFINITION OF THE NEW MESH

Once the new design has been defined, the new
values of the error estimator, the “energy” and the
coordinates of the mesh can be projected from the
previous solution into the next design as:

(o) = (e )+ sk(ax a—y)

ds’ s
HH@ZZ, g i ) 26)
n"+“mn"2+9"aa—12+%6"’a;:;, 27
putge = fupg o210y pe T8I o
The - projected values provide the nécessary

information to perform a remeshing over the next -

design, even before any new computation is per-
formed. In that sense, the error estimator computed
“a posteriori” is transformed into an “a priori” error
estimator.

This projection is very important because it
allows the quality control of the mesh for each
design prior to any new computation. The projected
values are used to create the background mesh
information needed to generate the mesh for the
new design. This closes the iterative process which
will lead to the “enhanced” optimum design after
convergence.

The generation of every new mesh in the remeshing
procedure requires the definition of a “mesh optimal-
ity criterion”™. In this work a mesh is considered as

optimal when the error density is equally distributed
across the volume, ie. when fe|2/Q, = |e||¥/Q is
satisfied. The justification of this mesh optimality
criterion can be found in Refs 1, 14—18.

The combination of the mesh optimality criterion
and the error estimation allows the definition of the
new elerment sizes. Previously, it is necessary to define
the allowable global error percentage v as:

ffell i

=100 — —_— (29)
flu 1+ (a'Ka)
The target error level for each element is:
1 et
lel: _IGO Ilnii\/—' (30)

The new element sives A, can be computed in terms

. of the old sizes /i, using the expression:

it g, Lele

ho= =
g fefy

Gh

where p is the order of the shape function poly-
nomials. For further detajls see Refs I, 14-18.

The value of £, is limited to 1.5 in order to avoid
a too-fast diminution of the size of the elements in
two consecutive iterations. Numerical -experiments
show that intermediate designs requiring a large
number of elements are, often, far away from the
optimal one, and'it is not useful to dedicate a Tot of
computational effort to compute them.

Fig. 3. Hook optimization problem. Initial shape and
parametrization.
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10. EXAMPLES

Two application examples are presented below.
The first one is a structural shape optimum design
problem where the design of a hook is optimized.
The second example shows the application of the
presented methodology to an optimum aerodynamic
shape problem where incompressible potential flow
equations instead of structura] equations are used.

10.1. Optzmzzatzon of a hook

This example consists in the opmmzatmn of the
shape of a hook in order to minimize its weight.
The initial shape, the applied load and the geometry
definition points are shown in Fig. 3. Twelve points
are allowed to move for improvement of the
shape, Le. nine of them can move horizontally,
one can move vertically’ and the rest have been
enforced to move along a straight line inclined 45°
(see Fig. 3).

A parabolic vertical load has been applied over the
inner part of the hook, as shown in Fig. 3, with a
resulting load of 630 kg. The material properties are:
Young's modulus E =21 GPa and -Poisson ratio

v = 0.3. A plane stress model with six node triangular

elements has been used. The global error level has
been limited to 1%.

The objective function is the weight of the hook
The maximum value of the Von Mises stresses have
been constrained to 20 MPa. This constraint has been
applied to all the nodes placed along the boundary.
The minimum thickness of the spike of the hook as
been limited to 0.5¢ cm.

The algorithm converges after 130 iterations.
Figure 4 shows the successive meshes and the designs
corresponding to iterations 0, 10, 20, 30, 40, 50, 60,

75, 90, 105, 120 and 130. It can be observed how the
optimization process displaces the vertical part of the
hook until it coincides with the resultant of the load
forces. This is due to the absence of bending moments
over this part. and thus its width can be considerably
reduced. The curved part of the hook is thicker
because of bending action producing high stresses on
the boundaries.

The evolution of the obiective function is presented
in Fig. 5. After an initial increase of weight to obtain
a feasible design there is a fast drop with a good

_behaviour of the optimization algorithm. The initial

weight of 167 kg is reduced to 82kg.

The evolution of the global percentage of error
and the number of elements for each mesh are
presented in Figs 6 and 7, respectively. Figure &

shows how the global percentage of error is main-
‘tained below the prescribed 1% limit after the first

two fterations. The whole problem has taken arocund
3.0 CPU hours on a Silicon Graphics Indige R4000
workstation.

The sensitivity analysis corresponding to each
design variable requires around an additional 10%
of the CPU cost of the standard FEM analysis. The
second-order sensitivity anatysis needs an additional
10% CPU time. For this particular example {12
design variables) this means that the total CPU cost
for each iteration of the optimization process takes
around 230% of the cost of a single FEM analysis.
This cost can be compared with that of a standard
optimization approach using a complete adaptive
remeshing procedure for each design. This will
require at least two FEM analyses for each design
and a complete sensitivity analysis for the last one.
This means that each new design would require at
least 330% of the CPU cost of a single FEM analysis.
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These simple figures show that the use of the method-
ology presented can save more than one-third of the
cost of a standard optimization procéss linked to an
adaptive refinement strategy.

10.2. Flow inverse problem

-test cases defined for the workshop on “Optimum
Design in Aeredynamics” held in Barcelona in June
1992 A detailed description of the application of
the presented methodology to uncompressible flow

problems can be found in Ref. 9. Note that there s

a big analogy between the incompressible potential
flow and the structural models studied here due to the
linear elliptic nature of both.

This problem consists in recovering the Ko
airfoil at an angle of attack 0°. The target pressure
coefficient -C*** has been obtained by a direct ‘com-
putation of the Korn - airfoil with a finite element
code using adaptive remeshing and a meximum

| ‘NM“VV -
E@Nﬂﬂﬁﬁg@
SERRY YW
_ %%’Wﬁ%

Fig. 8. Kom reconstruction problem. Initial shape, initial
mesh and definition of the design variables.

global error of 0.1%. The infinite boundary is placed
a distance 10 chords from the profile. The initial

“design. corresponds to a NACA 64A410 profile.

The inverse problem has been solved using a
minimization approach. The cost functional to be

_ ) . minimized has been defined as:
This application example corresponds to one of the ’

f= J (C,(x) — CE=)2 d. (32)
i)

This integral is extended around the profile and
the integration variable is the arc s and not the

x coordinate so that all the boundary is equally

weighted. If the x variable is used, the cost function
tends to put more weight on the medium part of the
profile and less on the edges.

The geometry of each design has been defined
using 25 design variables. These variables are the
y coordinates of:25 points distributed around the
profile which are used to interpolate a B-spline.
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Fig. 9. Korn reconstruétion problem. Final shape and final
: mesh. '
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Fig. 10. Korn reconstruction problem. Evolution of the objective function.

Figure § shows the initial shape and the finite element
mesh of 158 quadratic triangles {six nodes) used for
the injtial design. The 25 points used to define the
shape of each design are all the nodes lying on the
profile in Fig. § with the exception of the trailing edge
which is fixed. The maximum global error has been
limited to 0.1% of the total potential norm.

The iterative process has converged after 50
iterations. The final shape and the final mesh of 495
quadratic triangles can be observed in Fig. 9. The

whole problem has taken arcund 3.5 hours of CPU
on 4 Silicon Graphics Indigo R4000 workstation.

The evolution of the normalized cost functional
during the process can be seen in Fig. 10. Figure 11
shows the evolution of the L2 difference norm
between the solution prefile and the design profile.
This norm has been computed as the L2 difference
norm between each design and the final one since
no information on the exact definition of the Kom
airfoil using the 25 control points was available.
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Fig. 11. Korn reconstruction problem. Evolution of the global L2 difference norm.
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Fig. 12. Korn reconstruction problem. Evolution of the global perceﬁtage of error.

In faét it is not possibie to define exactly the Korn
airfoil using the 25 interpolating points. Figure 12
shows the evolution of the global error dusing the
minimization process. The evolution of the number of
finite elements used for each design is very similar to
the first example, it uses between 1300 and 1400
elements. Figure 13 shows the C, distributions for the
initial profile, the target profile and the last design
obtained. ‘

Figures 10 and 11 show a good convergence of
the minimization process. The cost functional has
been reduced almosé two orders of magnitude in
50 iterations. ‘

The global error involved in the finite element
computations has been controlled. In fact it is.
very low compared with the 0.1% Iimitation. This.is
because the efror is concentrated around the profile,
but a little bit far away the flow is almost uniform and

the error is almost null. This explains why the global

“error is'small. The important issue, in fact, is how the

error is distributed around the profile. Figure 9 shows
how the mesh concentrates many more eletnents
around the Jeading edge where the gradients of the
potential are higher. :

The comparison between the target and the
computed C, values shown in Fig. 13 is quite good
although some differences are still noticeable. On the
other hand Fig. 10 shows that the process seems to
be converged, and it is not possible to get a solution
closer to the target one. The reason is that probably
it is not possible to get a better definition of the Kom
airfoil using 2 B-splines interpolation with 25 points.
In fact the computations over the Korn air-
foil have shown that it is extremely sensible to little
changes in-its shape. In order to get a better final
solution it would be necessary to use more design

Cp
1 g T T T T
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"initial.cp" -
0.8 ¢ "solution.ep” y

~0.

-G.

-0.

-0.8 L -
0 0.z . 0.4

C.6 ’ 0.8 1 %

Fig. 13. Korn reconstruction prbblem. Distribution of C, for the initial profile, the target design and the
computed design. .
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variables to enhance the B-spline interpolation, but
this would considerably increase. the total cost.

11. CONCLUSIONS

A new methodology for the resofution of optimiz-
ation and inverse problem has been developed and
assessed. This methodology is able to optimize the
design and the analysis mesh together in order to
produce a final design computed with a proper mesh.

Good quality results are obtained using a single
mesh for each design without any remeshing. This
considerably reduces the additional cost of the mesh
control.

The presented methodology. has provided excellent
results for all the application examples analyzed
leading to an accurate final solution with a good final
mesh.
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