
X International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2023

M. Papadrakakis, B. Schrefler and E. Oñate (Eds)

ACCELERATING THE FLOWSIMULATOR: IMPROVEMENTS
IN FSI SIMULATIONS FOR THE HPC EXPLOITATION AT

INDUSTRIAL LEVEL

Marco Cristofaro∗†, Jonathan Alexander Fenske†, Immo Huismann†, Arne
Rempke† and Lars Reimer‡

† Institute of Software Methods for Product Virtualization
German Aerospace Center (DLR), Zwickauer Straße 46, 01069 Dresden, Germany

e-mail: Marco.Cristofaro@dlr.de, web page: https://www.dlr.de/sp

‡ Institute of Aerodynamics and Flow Technology
German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Brunswick, Germany

Key words: CFD, CSM, High–Performance Computing, Mesh Deformation, Mesh Partition-
ing

Abstract. High–performance computing systems enable the use of computationally intensive
models in aircraft design simulations, but challenges arise with communication times and mem-
ory consumption as the number of cores scales up. This paper presents improvements to the
mesh partitioner and mesh deformation methods for highly parallelized simulations within the
FlowSimulator framework. The results are obtained for a simple wing test case, a full–aircraft
configuration and an aircraft research model. Improvements to the mesh partitioner are pre-
sented that allow for even larger and more parallelized simulations than was previously possible
in the framework. In addition, scaling results from a mesh deformation method based on the
elastic analogy are presented, which shows superior scalability compared to the conventional
radial basis function method. This improves the overall suitability of the toolchain for large
parallelization and highlights its potential for industrial applications. The results demonstrate
a step forward towards an optimal exploitation of high performance computing systems for
solving coupled simulations in the aerospace industry.

1 INTRODUCTION

The European Green Deal aims to achieve climate neutrality by 2050, with an interim target
of reducing greenhouse gas emissions by at least 55% by 2030. In 2017, aviation accounted
for 3.8% of total EU CO2 emissions and 13.9% of transport emissions, second only to road
transport1. Despite these seemingly small percentages, the increasing number of flights, largely
driven by developing countries, emphasizes the importance of innovations in cleaner aircraft to
contribute significantly to reducing aviation pollution.

The new aircraft need to be designed and thereafter certified. The aircraft design process of
today relies heavily on simulation tools to reduce the need for expensive and time–consuming

1https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_

en [retrieved July 14, 2023]

1

https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_en
https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_en


M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

prototyping. The availability of accurate and fast simulation results can drastically improve the
time–to–market and the quality of final designs. For this reason, industrial–grade simulation
tools, together with a robust computing infrastructure, should provide high–fidelity solutions
with acceptable run times. Continuous advances in hardware and software enable increasingly
accurate results, with the same time–to–solution. These advances include improvements in
computing power, memory bandwidth, software scalability, and node–level performance, as
well as evolution of existing algorithms and development of entirely new ones.

This paper presents recent method improvements aimed at increasing the scalability of stan-
dard pipelines for aircraft simulation, using the FlowSimulator environment maintained by
DLR (Deutsches Zentrum für Luft– und Raumfahrt e.V.). In particular, the new developments
in the repartitioning steps allow to obtain a number of partitions larger than what was previ-
ously possible. These developments are demonstrated using a CFD mesh of an aircraft research
model provided by NASA. Furthermore, the simulation of fluid–structure interaction exposes
new challenges when a high degree of parallelization is applied, in particular in regards to the
CFD mesh deformation process. The steady aeroelastic fluid–structure interaction simulation
toolchain is applied on a simple wing and on a full aircraft configuration. The scaling results
of the mesh deformation method based on the elastic analogy are then compared to the con-
ventional radial basis function method. The results about the LANN wing test case show how
the elastic analogy method is faster for extreme parallelism (≈ 300 nodes/MPI–rank and be-
low) due to the superior scalability characteristics. When applied to the larger XRF1 mesh,
although the elastic analogy method is much slower compared to the conventional radial basis
function method, substantial improvements come from algebraic multi–grid methods and from
the use of hybrid parallelization techniques (i.e. MPI + OpenMP). These reduce the gap in
the computational cost, while keeping the method robustness even for complex cases.

2 THE FLOWSIMULATOR

Since 2005, Airbus and DLR have been working together to develop a unified environment
for parallel flow simulations. This is called the FlowSimulator and it aims to improve the inter-
operability between different simulation methods with a common simulation layout supported
by a shared data–exchange layer.

The FlowSimulator DataManager (FSDM ) serves as a library within the FlowSimulator en-
vironment to provide storage and access to mesh–based data for all simulation blocks, while
also offering a range of useful functionalities [1]. This allows different simulation tools to ex-
change information in both fluid and structural domains, as well as the interpolation between
different regions. Each instance of FSDM can store multiple meshes and each mesh can contain
multiple datasets based on node, face or cell elements. For coupled Fluid–Structure Interaction
(FSI) simulations, two separate meshes can be stored in a single FSDM instance, along with
interpolation matrices for the interface. In addition, FSDM offers a wide range of utilities
that can be used in any part of a simulation toolchain to simplify and extend the capabilities
of each simulation block. Among others, common tasks such as mesh import, export, and
partitioning (for structured, unstructured and hybrid meshes), geometry and boundary condi-
tions handling and dimensionalization, are available with an increasing variety of options and
continuous support. While the underlying functionalities are implemented in C++ for fast
processing of large data (e.g. mesh data), a Python wrapper using SWIG is adopted for all
higher–level operations and the surrounding plugins in order to speed–up the users learning

2



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

curve. The combination of a Python wrapper and the C++ sub–layer, allows easy access for
the implementation of simulation control scripts, without affecting the performance of critical
processes. Among them, the partitioning of mesh data structures is at the core of the paral-
lelization concept for distributed memory systems: runtime is drastically reduced by dividing
the whole simulation domain among MPI–ranks and allowing them to work as independently
as possible on a reduced portion of the domain. This is important on any hardware, but it
becomes critical when exploiting High Performance Computing (HPC) systems.

Several high–fidelity flow solvers are directly integrated in the FlowSimulator (e.g. CODA [2],
DLR TAU [3], and TRACE) and plugins are available for accessing proprietary structural codes
(e.g. Nastran). A recent alternative for structural simulation is the direct access of DLR’s
B2000++ [4] to the FlowSimulator. The direct access to the various simulation data structures
avoids the cost of writing and reading input files from disk for each coupling step, by relying
on in–memory data transfer.

Furthermore, for fluid–structure interaction simulations, a mesh deformation tool is required
to adapt the computational grid to the new deformed solid state. Within the FlowSimulator, two
methods are available: one based on radial–basis functions and one that implements the elastic
analogy method [5] using PETSc [6] and Spliss [7] as underlying linear solver libraries. Although
the radial–basis functions method is the most widely employed, elastic analogy methods may be
advantageous when using HPC systems due to the availability of linear solvers that are already
optimized to run highly parallelized.

3 PARTITIONING

Efficient execution of large–scale simulations relies on workload balancing across processes.
Although FSDM distributes mesh data during import for faster processing, it may not achieve
optimal load balancing. Consequently, repartitioning the mesh data becomes necessary to
ensure optimal workload distribution. FSDM offers built–in methods such as Recursive Coor-
dinate Bisection (RCB) [8], a direct interface to the library ParMETIS [9], as well as a plugin
providing an interface to the library Zoltan [10], for mesh repartitioning. The standard ap-
proach for repartitioning the mesh within FSDM is composed by three steps: prepartitioner,
graph extractor and graph partitioner.

To enhance the efficiency of the graph extraction process and mitigate potential memory
and communication overhead, prepartitioning the mesh is essential. In this regard, FSDM em-
ploys the RCB method, which rapidly partitions the grid by recursively bisecting it based on
vertex coordinates. To address excessive memory usage with a large number of processes, the
RCB method has been improved by leveraging the MPI Allreduce routine to simultaneously
collect and distribute cut data, ensuring efficient memory utilization. In the following step, a
mesh graph is extracted that accurately represents the grid’s connectivity. FSDM incorporates
a built–in functionality for mesh graph extraction, which makes the graph accessible to the
partitioning library. In this study, the graph extraction process has been enhanced by storing
data from only one other process at a time and promptly deleting the data after checking for
neighborhood relationships. This significant reduction in memory requirements during graph
extraction helps avoid the risk of encountering out–of–memory errors. Finally, given the gen-
erated mesh graph, the graph partitioning methods provided by ParMETIS or Zoltan libraries
are accessed for generating the final partitioning.

3



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

4 THE STEADY AEROELASTIC TOOLCHAIN

The FlowSimulator applications range from steady–state flow simulations to complex un-
steady simulations of maneuvering aircraft. The Python user interface allows complete simula-
tion chains to be defined by automatically updating the simulation parameters that change dur-
ing the toolchain. This work highlights the utilization of the FlowSimulator for fluid–structure
interaction through the simulation of steady aeroelastic equilibrium of an aircraft. Figure 1
illustrates the iterative toolchain process involving two distinct domains: the surrounding flow
simulated using Computational Fluid Dynamics (CFD), and the internal structure modeled
with Computational Structural Mechanics (CSM). These domains are alternately simulated,
exchanging load and displacement information.

compute
CSM loads

interpolate
loads to

CSM mesh

static
structural
deformation

interpolate
deformation
to CFD mesh

deform
CFD mesh

non-linear
CFD solve

converged?
No Yes

Figure 1: Iteration of the fluid–structure interaction simulation: graphical representation (above) and flow
chart (below).

As preliminary steps, the CFD and CSM meshes are imported and repartitioned among the
number of processes. Then, after an initial CFD solution is obtained, the pressure acting on
the aircraft surface is interpolated to the structural nodes of the CSM model with the Finite
Interpolation Elements (FIE) approach [11]. The displacements computed from the CSM sim-
ulation, are then interpolated back to the CFD mesh with the same FIE approach. The CFD
volume mesh is then deformed according to the new structural state, employing the elastic
analogy method [5]. Unlike its conventional use of repairing the bad quality cells (e.g. nega-
tive volumes) arising from the Radial Basis Functions (RBF) method [12], the elastic analogy
method serves as the primary deformation method in this study, providing a more robust mesh
deformation method and offering potential scalability on HPC systems. Following the mesh
deformation, the flow is recalculated based on the modified mesh, using the previous solution
as a initial condition. This process is repeated until the relative change in forces, moments,
and displacements falls below a specified threshold. In order to stabilize the convergence rate,
a under–relaxation factor of 0.7 is applied to the displacements before interpolation, while
respecting the principle of preserving virtual work.

4



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

5 TEST CASES

5.1 The LANN wing

The LANN wing is a well–established research test case originally developed to analyze
transonic flow regimes in wind tunnels. The wing has a semispan of 1 m, an area of 0.25 m2,
and a chord varying between 0.361 m at the root and 0.144 m at the tip. It also features a 25◦

sweep angle at 1/4–chord and a linear twist of 4.8◦ [13]. In this work, the Reynolds–Averaged
Navier–Stokes (RANS) equations are used to model the turbulent flow around the wing, while
the structure of the aircraft is modeled with linear elasticity.

The structural deformation is computed using a modal CSM solver. The modeshapes and
eigenfrequencies are computed in an offline preprocessing step using Nastran from a cantilever
wing model with 1, 260 nodes, and the lowest 13 elastic modes are considered during the aeroe-
lastic coupling. An extra load of 2 kN in the direction of the lift force is applied on the wing
tip during the FSI coupling to increase the overall wing bending. The flow simulation consid-
ers fixed upstream Mach number M = 0.82, angle of attack α = 0.6◦, and Reynolds number
Re = 5.43 × 106 based on a characteristic length of 0.36 m. The flow solution is computed
with DLR TAU using the Spalart–Allmaras turbulence closure model (with negative formula-
tion) [14]. The overall CFD mesh counts 1.85 × 106 cells, from which 1.05 × 106 are prisms
in the boundary layer refinement zone and 0.80× 106 are tetrahedra in the remaining external
volume. A symmetry boundary condition is defined on the plane perpendicular to the wing
span direction (xz–plane).

The CFD solver is set to run 300 outer iterations of the non–linear multigrid solver of DLR
TAU for the initial CFD solution, while 200 iterations for the intermediate CFD simulations
during the coupling steps and the final solution. The iterations number of the CFD solution also
defines the switching frequency between simulation domains. This should be a trade–off choice
between not computing unnecessarily accurate intermediate CFD solutions, while not spending
too much computation time in the interpolation and mesh deformation procedures. In this case,
12 CFD–CSM coupling steps are necessary to reach a steady aeroelastic converged solution (i.e.
a relative change of the forces, moments and displacements below the set residuum of 1×10-6).
Figure 2 presents the CFD and CSM meshes together with the aerodynamic pressure coefficient
at the final steady aeroelastic equilibrium deformation state. The values are plotted on the wing
surface and on the symmetry plane. The undeformed wing surface is also shown as reference.

Figure 2: LANN wing case: CFD mesh (left), CSM mesh (center), and final pressure coefficient (right).

5



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

5.2 The XRF1 aircraft

A further case used in this work has been provided by Airbus as an industry relevant model
and it represents a ”standard” configuration for a single–deck long haul passenger aircraft.
Industrially relevant geometries are essential to link the research topics with the real needs of
industry and to enable the collaboration between differently founded–parties in the development
and application of physical modeling techniques. The geometry used in this work is called the
eXternal Research Forum (XRF1) [15]: it is a full aircraft configuration, including powered
engines. A similar setup to the LANN wing case presented in the previous section is adopted
solving the RANS equations for the flow, and a linear elasticity model for the structure.

For the XRF1 case, modeshapes and eigenfrequencies of the unrestrained (free–free) struc-
tural model made of 18, 362 nodes are computed and the lowest 30 elastic modes are considered
during the aeroelastic coupling. The main flow parameters are the upstream Mach number
M = 0.85, the angle of attack α = 2◦, and Reynolds number Re = 60.7×106 based on the mean
aerodynamic chord length of 9.096 m. From the 104.8 × 106 cells that make the CFD mesh,
38.6× 106 are prisms in the boundary layer region and 65.4× 106 are tetrahedra modeling the
remaining volume. The wing chord is discretized with ≈ 100 elements and the first cell layer
close to the wing as a characteristic height of 5× 10-6 m, corresponding to a y+ < 2 (approxi-
mated from the RANS solution as y+ = y/ℓτ ≃ y · uτ/ν, where uτ is the friction velocity, y is
the distance from the wall, and ν is the kinematic viscosity of the fluid). Three different images
with increasingly zoomed view of the CFD mesh are shown in Fig. 3.

Figure 3: Longitudinal cuts of the CFD mesh of the XRF1 aircraft with increasing zoom level.

In this case 1, 000 outer iterations are set for the initial and final CFD solution, and 250
during the coupling steps. The aeroelastic equilibrium converged state is reached after 14 CFD–
CSM coupling steps. Figure 4 shows the resulting equilibrium state: on the left the deformation
in the normal axis (z–direction) and, on the right, the aerodynamic pressure coefficient on the
external surface of the aircraft and on a longitudinal plane–cut.

Figure 4: Final results of aircraft in static aeroelastic equilibrium: deformation in the normal direction (on
the left) and pressure coefficient computed by CFD (on the right).

6



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

5.3 The CRM aircraft

The numerical grid used to present the improvements about the partitioning is based on the
high–lift version of NASA’s Common Research Model (CRM). This mesh poses a significant
challenge during the repartitioning phase due to the large cell and node counts. In this work, it
serves as a demonstration of the capabilities of the repartitioning method when dealing with very
large number of processes. Geometrical details were provided at the 4th High Lift Prediction
Workshop [16]. The considered mesh family is the 103–ANSA–Unstructured–hiA–Yplus1 for
external aerodynamic analyses and the mesh files are provided by BETA CAE Systems SA.
Among the available options, the largest mesh was selected, with about 723 million cells and
629 million nodes, as depicted in Fig. 5.

Figure 5: High–lift CRM mesh.

6 RESULTS

6.1 Computational setup

The performance measurements are conducted on DLR’s high–performance computer CARO.
Each computational node consists of two AMD EPYC 7702 CPU with 64 cores each (compris-
ing 16 dies with shared L3 caches) and 256 GB DDR4 RAM. To prevent frequency scaling (e.g.
boost mode or thermal throttling) from affecting the measurements, a fixed clock frequency
of 1.8 GHz is imposed during all simulations. Time measurements of the different toolchain
simulation blocks are obtained by summing the values over all coupling steps. This reduces
the impact of initialization procedures time over the whole measurements, and it provides the
actual simulation block contribution to the overall toolchain runtime.

6.2 High–lift CRM: partitioning

In previous studies, the partitioning of the mesh was identified as a bottleneck of the sim-
ulation chain [12]. Not only did the runtime of the partitioning increase with the number of
processes, the memory requirements also became prohibitive. Depending on the mesh, using
the RCB method was not possible for more than 2, 000 processes, precluding the usage of a
capable prepartitioner and further raising the overall partitioning runtime.

To study the gains from the improvements in FSDM partitioning, the CRM mesh from
Figure 5 was repartitioned with FSDM – once with version 2022.07 and once with version
2023.03. As the partitioned mesh can be employed in simulation toolchains that can take
advantage from hybrid parallelization (e.g. during mesh deformation, see Sec. 6.4, and with
the flow solver CODA) and because the dies with shared L3 caches in CARO’s architecture
consist of four cores, four threads are used per process. This raises the amount of available

7



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

memory per process compared to previous studies by a factor of four [12]. Figure 6 depicts the
runtimes of the partitioning process decomposed into three phases: the RCB prepartitioning,
the extraction of the graph, and lastly the graph partitioning with ParMETIS using the default
ParMETIS V3 PartGeomKway algorithm. A missing datapoint in the plot stands for a failing run
– in most cases due to memory requirements.

Figure 6: Partitioning runtime comparison between the old (on the left) and new (on the right) FlowSimula-
tor versions when scaling from 512 cores to 131, 072 cores. Missing data points stand for failing runs.

The old version of FSDM was capable of running the RCB method up to around 32, 768
cores, and the graph extraction up to around 8, 192. The improvements presented in Section 3
lower the memory requirements from an accidental O(N2) to O(N). This allows to pass the
previous limit from ≈ 10, 000 cores and perform partitioning up to ≈ 130, 000 – it is to be noted
that this limit is only of currently available hardware, CARO was simply not large enough to
allow larger runs. Furthermore, the overall partitioning time was reduced due to changes in the
RCB implementation, as seen in the data for 8, 192 and 16, 384 cores. However, it is important
to acknowledge that limitations persist: here, a setup with four threads per process was shown.
With pure MPI, however, the mesh partitioning still encounters out–of–memory errors for a
number of processes near 30, 000 cores.

6.3 LANN wing: steady aeroelastic toolchain

The scaling performances of the LANN wing steady aeroelastic simulation toolchain are
presented in this section. Figure 7 shows the contribution of the main simulation blocks (i.e.
CFD, CSM and mesh deformation) to the overall toolchain runtime and cost (in CPU hours)
of the LANN wing test case using the RBF mesh deformation method. The simulations are
executed MPI parallel only. As expected, CFD takes the longest time in all cases, but, for
large number of cores, the relative contribution of the RBF mesh deformation method becomes
relevant.

Figure 7: Steady aeroelastic toolchain scalability with RBF mesh deformation method in the LANN wing case:
runtime (on the left) and CPU hours (on the right).

8



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

The corresponding analyses using the Elastic Analogy (EA) mesh deformation is also pre-
sented in Fig. 8. The linear problem of the elastic analogy method is solved with the PETSc
library using the BiConjugate Gradient Stabilized (BiCGStab) as iterative method with Suc-
cessive OverRelaxation (SOR) as preconditioner [6]. When applying the EA mesh deformation
method, the time spent in the deformation process is significantly larger than RBF with low
number of cores, but it scales well with increasing parallelization: at 4, 096 cores, corresponding
to ≈ 300 nodes/MPI-domain from the CFD mesh, less than 3% of the total runtime is spent
in the mesh deformation process.

Figure 8: Steady aeroelastic toolchain scalability with EA mesh deformation method in the LANN wing case:
runtime (on the left) and CPU hours (on the right).

Figure 9 compares the two mesh deformation methods alone in terms of runtime, CPU hours,
speed–up, and parallel efficiency. From these results, it can be seen that the RBF method re-
quires ≈ 15 s regardless of the number of cores, while the EA method scales almost perfectly,
providing a uniform cost of ≈ 5 CPU hours, near–ideal speedup, and parallel efficiency consis-
tently above 80% and peaking at 121%. Superlinear speed–up (i.e. efficiencies above 100%) can
appear due to cache effects (less memory per process is required for increased numbers of cores)
or a different load balance obtained from the partitioner, while still not being affected by large
communication overhead. Although the provided case shows a time benefit of using EA only
above 1, 024 cores, this can be expected to out–pace the RBF method for larger parallelization.

Figure 9: Scaling performance of the elastic analogy mesh deformation method compared to RBF in the LANN
wing case. From left to right: runtime, CPU hours, speed–up, and parallel efficiency.

9



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

6.4 XRF1: mesh deformation

This section investigates the scaling performances of the mesh deformation part of the XRF1
steady aerolastic simulation toolchain. For large and complex cases, the newly developed
algebraic multigrid linear solver implemented in the Spliss library provides an ideal solution.
It simultaneously reduces the computational cost of solving sparse linear systems, improves
the overall solution procedure’s robustness, and utilizes hybrid parallelization. Since recent
efforts in enhancing CFD solver performances in HPC have concentrated on taking advantage
from hybrid parallelization techniques (e.g. CODA [17]), it is crucial to have mesh deformation
methods that can also take advantage of such techniques. This becomes highly important in
improving the overall performance of FSI toolchains. This section presents then the benefits of
using MPI + OpenMP compared to pure MPI for the mesh deformation process. The results
are presented with reference to the number of cores, corresponding to the number of MPI–ranks
multiplied by the number of OpenMP threads.

Figure 10 compares the RBF method against the EA method with pure MPI and MPI +
OpenMP parallelization. The EA linear system is solved using the iterative method BiCGStab
preconditioned by an algebraic multigrid procedure, which applies Gauss–Seidel as smoother on
each level. The usage of hybrid parallelization significantly improves the scaling characteristics
for a large number of cores. However, in this case, the EA method consistently exhibits slower
runtimes and higher computational cost than the RBF method. It should be noted that using
the RBF method for mesh deformation around complex geometries can lead to problems such
as the appearance of poor–quality cells, which may cause the CFD solver to diverge and make
the simulation impossible to proceed [1]. In contrast, the EA method, which assumes the mesh
volume and its constituent cells to behave as elastic solid bodies, rarely presents such problems
once the linear system solution has converged. Therefore, the elastic analogy mesh deformation
method may still be preferred for industrial applications due to its robustness. Furthermore, at
4, 096 cores, the hybrid parallelized EA solution scales with a parallel efficiency of 70%, while
the RBF method achieves only 17%. It is worth mentioning that, as the RBF method does not
implement multithreading (OpenMP parallelization), the runtimes are solely dependent on the
number of MPI–ranks. For the sake of brevity, these results are not presented here. Similar
to the results obtained for the LANN wing, these findings suggest that the EA method may
deliver better performance when large degrees of parallelization are employed.

Figure 10: Scaling performances of the elastic analogy mesh deformation method with the algebraic multi–grid
approach using pure MPI and MPI + OpenMP (4 threads) in comparison with RBF in the XRF1 case. From
left to right: runtime, CPU hours, speed–up, and parallel efficiency.

Compared to a single–grid approach, the multigrid method offers a drastic reduction in the
number of iterations required by the linear solver, resulting in decreased runtime and CPU

10



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

hours, while providing an equally converged solution to the linear problem. However, the
multigrid method requires additional computational effort during the initial steps of the linear
solver to generate the coarse grid levels. Figure 11 illustrates the runtime scaling performances
of the EA mesh deformation method, divided into the preparation phase and the actual iterative
solution phase (”Solving”), with pure MPI and MPI + OpenMP parallelization. The graphs
demonstrate that the solving runtime scales with the number of cores for both parallelization
techniques, with parallel efficiencies always above 60%, with a negligible effect from hybrid
parallelization. In contrast, the preparation time significantly increases with large number of
cores in the pure MPI case, whereas it scales better when 4 OpenMP threads are utilized,
achieving a parallel efficiency of 86% at 4, 096 cores. The reason for this discrepancy lies in
the fact that, in this case, the preparation time does not scale well for a number of MPI–
ranks above 1, 024, thus the runtime significantly improves when these are reduced due to the
OpenMP threads.

Figure 11: Preparation and linear solver runtime of the elastic analogy method in the XRF1 case. Pure MPI
parallelization approach (on the left) and MPI + OpenMP with 4 threads (on the right).

The overall result is a significant improvement in the scaling performances of the EA mesh
deformation method when MPI + OpenMP is employed. Consequently, hybrid parallelization
extends the maximum number of cores for which the simulation runtime continues to decrease,
thereby enhancing the utilization of HPC infrastructures.

7 CONCLUSIONS

The work presented here demonstrates recent developments in FlowSimulator toolchains
aimed at improving method scalability in HPC systems. The recent improvements in the
repartitioning of meshes make it possible to run simulations with above 100, 000 cores when
hybrid parallelization, MPI and OpenMP, is used. This opens up the possibility to greatly
reduce the runtime of numerical simulations due to a much greater degree of parallelization.
The runtime of the repartitioning takes in the order of a few minutes, even for a large number of
processes, which can be considered acceptable in comparison with typical simulation runtimes.
Furthermore, the elastic analogy method for mesh deformation has been implemented in the
steady aeroelastic toolchain, and the scaling performance has been analyzed for two test cases.
Compared to the radial basis function method, this approach exhibits good scaling character-
istics, making it a promising candidate for highly parallelized simulations. Additionally, since
it relies strictly on the solution of a linear problem, it can take advantage of developments in
linear solver libraries such as Spliss, with respect to algebraic multigrid, hybrid parallelization,
as well as GPU exploitation (not presented here). In the near future, this method may represent
a superior choice for mesh deformation in terms of both robustness and speed.

11



M. Cristofaro, J. A. Fenske, I. Huismann, A. Rempke and L. Reimer

Acknowledgements The authors thank Airbus for supplying the industrial–relevant XRF1
testcase and BETA CAE Systems SA for providing the CRM mesh. This research was funded
in parts via the DLR–internal projects COANDA and HighPoint.

REFERENCES

[1] L. Reimer, R. Heinrich, S. Geisbauer, T. Leicht, S. Görtz, M. R. Ritter, and A. Krumbein, “Virtual aircraft
technology integration platform: Ingredients for multidisciplinary simulation and virtual flight testing,” in
AIAA SciTech Forum, Januar 2021.

[2] T. Leicht, J. Jägersküpper, D. Vollmer, A. Schwöppe, R. Hartmann, J. Fiedler, and T. Schlauch, “DLR-
project Digital-X – next generation CFD solver ’Flucs’,” in Deutscher Luft- und Raumfahrtkongress 2016,
2016.

[3] L. Reimer, “The FlowSimulator – a software framework for CFD-related multidisciplinary simulations,” in
NAFEMS European Conference: Computational Fluid Dynamics (CFD) – Beyond the Solve, 2015.

[4] M. Petsch, D. Kohlgrüber, C. L. Munoz, and T. Rothermel, “Integration of the structural solver B2000++
in a multi-disciplinary process chain for aircraft design.” Conference presentation at DLRK2020, In Ger-
man, September 2020.

[5] R. P. Dwight, “Robust mesh deformation using the linear elasticity equations,” in Computational Fluid
Dynamics, pp. 401–406, 2006.

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism in object
oriented numerical software libraries,” in Modern Software Tools in Scientific Computing (E. Arge, A. M.
Bruaset, and H. P. Langtangen, eds.), pp. 163–202, Birkhäuser Press, 1997.

[7] O. Krzikalla, A. Rempke, A. Bleh, M. Wagner, and T. Gerhold, “Spliss: A sparse linear system solver
for transparent integration of emerging HPC technologies into CFD solvers and applications,” in STAB-
Symposium 2020, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 635–645, Springer
International Publishing, Juli 2020.

[8] M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform problems on multiprocessors,”
IEEE Transactions on Computers, vol. 36, no. 05, pp. 570–580, 1987.

[9] G. Karypis, “METIS and ParMETIS,” pp. 1117–1124, 2011.

[10] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, “The Zoltan and Isorropia parallel toolk-
its for combinatorial scientific computing: Partitioning, ordering, and coloring,” Scientific Programming,
vol. 20, no. 2, pp. 129–150, 2012.

[11] A. Beckert, “Coupling fluid (CFD) and structural (FE) models using finite interpolation elements,”
Aerospace Science and Technology, vol. 4, no. 1, pp. 13–22, 2000.

[12] I. Huismann, L. Reimer, S. Strobl, J. R. Eichstädt, R. Tschüter, A. Rempke, and G. Einarsson, “Acceler-
ating the FlowSimulator: Profiling and scalability analysis of an industrial–grade CFD–CSM toolchain,”
in IX. International Conference on Coupled Problems in Science and Engineering, Juli 2021.

[13] G. C. Firth, “LANN wing design,” NASA. Langley Research Center Cryogenic Wind Tunnel Models, 1983.

[14] S. R. Allmaras and F. T. Johnson, “Modifications and clarifications for the implementation of the Spalart-
Allmaras turbulence model,” in Seventh international conference on computational fluid dynamics (IC-
CFD7), pp. 1–11, 2012.

[15] N. Kroll, M. Abu-Zurayk, D. Dimitrov, T. Franz, T. Führer, T. Gerhold, S. Görtz, R. Heinrich, C. Ilic,
J. Jepsen, et al., “DLR project Digital-X: towards virtual aircraft design and flight testing based on high-
fidelity methods,” CEAS Aeronautical Journal, vol. 7, no. 1, pp. 3–27, 2016.

[16] “4th AIAA CFD High Lift Prediction Workshop (HLPW-4),” 2022.

[17] I. Huismann, S. Fechter, and T. Leicht, “HyperCODA – extension of flow solver CODA towards hypersonic
flows,” in New Results in Numerical and Experimental Fluid Mechanics XIII, pp. 99–109, 2021.

12


	INTRODUCTION
	THE FLOWSIMULATOR
	PARTITIONING
	THE STEADY AEROELASTIC TOOLCHAIN
	TEST CASES
	The LANN wing
	The XRF1 aircraft
	The CRM aircraft

	RESULTS
	Computational setup
	High–lift CRM: partitioning
	LANN wing: steady aeroelastic toolchain
	XRF1: mesh deformation

	CONCLUSIONS

