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Abstract. The focus of this contribution is laid on different aspects and instances related
to porous media fracture under non-isothermal conditions. This includes the extreme case
of fracturing due to pore-fluid freezing, where the micro-cryo-suction plays an important role
in generating the required stresses for crack onset. This also includes studying the instances
related to hydraulic fracturing and heat transfer under non-isothermal conditions. In all cases,
the continuum mechanical modeling of the induced fractures is based on macroscopic porous
media mechanics together with the phase-field method (PFM) for fracture modeling. For the
micro-cryo-suction in saturated porous media, the water freezing is treated as a phase-change
process. This is modeled using a different phase-field approach, in which the thermal energy
derives the phase change and, thus, leads to the occurrence of micro-cryo-suction. Two numerical
examples are presented to show the effectiveness of the proposed modeling frameworks.

1 INTRODUCTION

Under non-isothermal conditions, several interesting processes happen in multiphase porous
materials. In the underlying contribution, two of them are briefly addressed within a numerical
framework; the pore-fluid freezing with the possible onset of cryosuction-induced fracturing and
the topic of non-isothermal hydraulic fracturing and heat exchange in the convection-dominated
regime.

1.1 Porous media freezing

The freezing of fully-saturated and partially-saturated porous materials, such as ground freez-
ing, is considered a challenging problem for structures in cold regions. However, this can also be
applied as a supporting technology in the construction of tunnels using artificial ground freezing
(AGF), see, e.g., [36, 37, 34] for references. Modeling the mechanical responses in porous media
freezing requires understanding and investigations at different scales. In this, laboratory exper-
iments with special boundary conditions can be applied to validate the numerical results as can
be found in, e.g., [37]. During pore-fluid freezing and fluid-solid interaction, one can distinguish
between two states, i.e. the thermal transient state with ice penetration in the domain and the
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steady-state, where the cryosuction plays a major role in the fluid flow towards the ice-water
interface and the evolution of ice lenses.

In the modeling of porous media freezing with the accompanying thermo-hydro-mechanical
(THM) processes in this work, a continuum mechanical framework is applied, which combines
the following aspects: (1) A macroscopic porous media model, which is capable to describe the
multi-physical THM processes [5, 8, 9, 22, 23, 12, 13, 16, 27, 19, 6, 3, 7]. (2) A phase-field model
for capturing the freezing as a phase-change process [20, 38, 4, 32, 2]. (3) A phase-field model
for capturing the possible onset of fracturing and ice lenses formation [1, 29, 11, 18, 31, 19, 30,
26, 14, 17, 15]. (4) A constitutive model that captures the cryo-suction effects [39, 37].

1.2 Non-isothermal porous media fracture

Hydraulic fracturing under non-isothermal conditions and the fluid flow in the fracture net-
work together with the heat exchange with the surrounding ambient are very important events
in many engineering fields, such as in geothermal energy systems. If the targeted rock layers of a
geothermal system have naturally low permeability, then the application of hydraulic fracturing
to enhance this is an unavoidable solution, see, e.g., [28, 15] for review. Within this topic, the
aim of the underlying contribution is to briefly highlight the modeling aspects of the thermal
energy exchange between a low-temperature injection fluid and a high-temperature fractured
and intact porous surrounding. While the fracture network can be modeled using the phase-
field method (PFM), see, e.g, [19, 15, 26, 33], the heat exchange can be modeling following the
fundamentals of the theory of porous media (TPM) with distinct temperatures for the solid and
fluid phases, see, e.g., [21, 10, 35, 24, 36].

1.3 Content overview

To give an overview, the theoretical fundamentals related to the topic of freezing in saturated
porous media and non-isothermal processes in hydraulic fracturing are briefly introduced in
section 2. This is followed by a short description of the applied numerical schemes and challenges
in section 3. Two numerical examples will then be presented in section 4, which is followed by
the conclusions in section 5.

2 THEORETICAL FUNDAMENTALS

2.1 Development of the multiphase continuum porous media frost action model

A mathematical model that describes the major physical processes in saturated-soil freezing
is applied in this work. In this, we proceed from a saturated porous material φ, consisting of an
immiscible solid phase φS and a fluid phase φF . The pore-fluid therein can be found in a liquid
state (φL), in an ice state (φI), or in a liquid-ice mixed state; φF =

⋃
α φ

β = φL ∪ φI . Within
this continuum mechanical approach, one defines the volume fractions nα, the partial densities
ρα, and the intrinsic densities ραR for each constituent, where ρα := nαραR and α ∈ {S, F}.
The variation of the solid volume fraction can be expressed in terms of the initial solidity nS

0

and the solid displacement uS as nS ≈ nS
0 (1 − divuS). Moreover, the density of the assumed

barotropic fluid constituent ρFR is formulated as a function of the fluid compressibility κF and
the effective pore pressure p. For the kinematics, a Lagrangian description is applied for the
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solid phase deformation using the solid displacement uS and velocity vS , whereas an Eulerian
description is considered for the fluid phase motion via the seepage velocity wF = vF −vS . The
reversible water/ice phase exchange is captured using a diffusive phase-field method (PFM) for
phase-change materials. In this, a scalar-valued phase-field variable ϕF (x, t) is used to indicate
the states, i.e., ϕF = 1 for the liquid and ϕF = 0 for the ice states. Moreover, employing the
PFM allows for a unified kinematic treatment of the ice and water phases. The formation of
the ice phase is associated with the onset of cracks, which can be modeled using a phase-field
fracture approach. For this, a scalar-valued phase-field variable dS(x, t) is defined to indicate
the states, i.e., dS = 1 for the cracked state, dS = 0 for the intact material state, and 0 < dS < 1
for the diffusive interface.

In the freezing process, the micro-cryo-suction is responsible for driving the pore liquid to-
wards the frozen zone. The realization of this effect within continuum mechanics is done through
a phenomenological retention-curve-like formulation. In this, the cryogenic suction due to the
ice/water interface tension, i.e., Scryo := pIR−pLR, can be expressed by the following relationship

Scryo = pIR − pLR = N
[
(χL)−

1
m − 1

]1−m
with pFR = pLR +

(
1− χL

)
Scryo , (1)

where pLR and pIR are the pressures of the liquid water and the ice crystals, respectively, and
pFR is the net pore pressure. N and m are model parameters and the liquid water saturation
χL is represented by ϕF within this unified water/ice kinematics treatment. More details can be
found in [36, 37]. Assuming quasi-static, non-isothermal process and negligible body forces, the
governing balance relations are (1) Overall momentum balance, (2) Fluid mass balance,
(3) Fluid momentum balance, (4) Mixture energy balance, (5) Phase-field equation
for the phase-change process. (6) Phase-field equation for the fracture process. In the
soil freezing example, an equilibrium thermal model is employed, where Kelvin’s temperatures
of all constituents are equal (θS = θF = θ). Moreover, simplifications are made for the energy
balance and phase-field evolution by neglecting some non-significant terms.

In constitutive modeling, the principle of effective stresses is applied, where the total stresses
are split into an effective term and a pressure-dependent term. The solid effective stress σS

E of the
initially linear elastic brittle material is formulated as a function of the phase-field variable dS to
capture the stiffness degradation due to crack onset and propagation. The stiffness degradation
together with the realization of the cryo-suction effects allows for capturing the formation of ice
lenses, as will also be shown in the numerical examples. The fluid effective stress is formulated
in a way that the parameters, like viscosity, are functions of the phase-field variable ϕF . More
details about the constitutive models can be found in [36, 37].

2.2 Modeling of hydraulic fracturing and heat transfer under non-isothermal con-
ditions

The continuum mechanical framework herein proceeds from the assumption of biphasic ma-
terial with materially compressible pore fluid and incompressible solid phase. Unlike the model
of porous media freezing, the underlying non-isothermal hydraulic fracture model assumes dis-
tinct temperatures of the solid and the fluid phases, i.e. the two-phase porous material is under
local thermal non-equilibrium conditions. Additionally, no mass exchange takes place between
the phases and the assumption of quasi-static processes is adopted. The governing equations to
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describe such processes are the following: (1) Overall momentum balance, (2) Fluid mass
balance, (3) Fluid momentum balance, (4) Fluid energy balance, (5) solid energy bal-
ance, (6) Phase-field equation for the fracture process. More details about the governing
equations and the related constitutive models can be found in, e.g., [25]. Of very important
topics in this is the definition of intrinsic permeability, which becomes strongly anisotropic in
the presence of cracks, the definition of Fourier’s law of heat conduction for both the solid and
fluid phases, and the definition of the energy production term that governs the heat exchange
between the constituents. The energy production is a function of the specific heat transfer
surface area parameter, which is formulated in terms of the phase-field damage parameter to
capture the change in the contact areas between the fluid and solid in the fractured zones. For
simplicity, the latent energy is neglected in this treatment.

3 NUMERICAL TREATMENT AND STABILITY CHALLENGES

The finite element method (FEM) is used in the numerical solution of initial-boundary value
problems (IBVPs) of both freezing-induced fracture in porous media and heat flow within the
non-isothermal hydraulic fracture. For the freezing-induced fracture problem, the primary vari-
ables to be figured out are ξFreez(x, t) := [uS p uF vF θ ϕF dS ]T . For the heat flow within
non-isothermal hydraulic fracture, the primary variables are ξHydF(x, t) := [uS p θF θS dS ]T ,
where the fluid velocity vF is computed in a strong form via the Darcy’s law and using the com-
puted pressure. In the derivation of the weak formulation, boundary conditions are considered
for each of the variables. Thus, considering B as the spatial domain with ∂B as its boundary,
this is split for each variable into Dirichlet (∂BD) and Neumann (∂BN ) boundaries, whereas
∂BD ∪ ∂BN = ∂B and ∂BD ∩ ∂BN = ∅ . For the time discretization of the coupled equations,
the second-order implicit Backward Difference Formula (BDF2) is used, which is available in
the considered FE package FlexPDE 7.16. For the spatial discretization, triangular, equal-order,
quadratic shape functions are applied for all variables.

A number of numerical stability challenges can be identified in solving such problems, which
are connected to the limits of very low permeability, very low compressibility of the fluid, high
fluid viscosity, near crack-domain interfaces, next to drained boundaries, and for high fluid flow
regimes. In this, it is crucial to fulfilling the inf–sup condition to get a stable and unique solution,
see, e.g., [36]. To overcome the challenges connected with low permeability, high fluid viscosity,
and incompressible pore fluid, the approach of quasi-compressibility is applied. In this, the
stability is enforced by adding a stabilization term of the form div(αst grad ṗ) to the fluid mass
balances with αst > 0 as a small scalar-valued stabilization parameter. For the other source of
instability, i.e., with high fluid flow in the cracks and convection-dominated heat transport, a
different numerical treatment needs to be implemented. To better understand the problem, the
fluid energy balance can be written as a simple convection-diffusion equation as

AwF · grad θF︸ ︷︷ ︸
Convective transport

− D div grad θF︸ ︷︷ ︸
Diffusive transport

+B = 0
(2)

with A, B, D being scalar-valued terms that can be determined based on the comparison with
the energy balance equation. In the convection-dominated state, a stabilization technique based
on adding an artificial thermal diffusivity term D can be applied. In particular, D is added to
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the original thermal diffusivity term D and chosen as small as possible to enhance the stability
but not significantly deteriorate the accuracy.

4 NUMERICAL EXAMPLES

Two related numerical examples are presented in the following discussion and solved in the
FE package FlexPDE 7.16 .

4.1 Freezing and ice-lenses formation in saturated porous media

The objective of this example is to show the capabilities of the proposed model in capturing
important THM responses during the phase transition of the pore fluid from liquid water to ice
and the ability to model the onset of fracture and the formation of ice lenses. The geometry
and boundary conditions are illustrated in Figure 1, left. In this, the bottom temperature is
kept above freezing temperature and constant (θb=278[K]), whereas the upper temperature is
reduced gradually from θt=273[K] to θt=253[K] within 25[h]. The initial temperature is set
to θ0=278[K]. The material parameters in this example are mostly taken from [37]. In this,
we consider a heterogeneous distribution of the initial solid volume fraction nS

0S in the range
[0.56, 0.68] and for the elasticity modulus ES in the range [656600, 683400]N/m2 as illustrated in
Figure 1, middle. The frost heave evolution during the freezing process is illustrated in Figure 1,
right.
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Figure 1: The considered geometry and boundary conditions in the numerical modeling of top freezing
problem (left), the heterogeneous distribution of the elastic modulus and initial porosity (middle), and
the frost heave evolution (right).

While the temperature decreases at the boundary and in the domain over time, the ice
penetrates the domain as illustrated in Figure 2. In this, it is also interesting to see the formation
of ice lenses at several intervals, which are captured via the phase-field variable dS .
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Figure 2: The temperature distribution θ, the phase change state ϕF , and the phase-field fracture
variable dS at two different times, i.e. t1 = 10.8 [h] and t2 = 25.0 [h].

4.2 Heat transport and exchange in porous media fracture network

The aim of this numerical example is to show the capability of the proposed non-isothermal
TPM-PFM model (details in [25]) in capturing heat transfer and heat exchange in the fractured
porous material. The crack topology is realized using the phase-field evolution equation by
setting a higher value of the crack driving force in the cracked zone, while this driving force
is set to zero in the intact zone. This is illustrated together with the overall geometry and
the boundary conditions in Figure. 3. The material parameters are taken mainly from [25],
whereas the intrinsic permeability of the intact zone KS

0S = 1 · 10−14m2, for the horizontal
cracks KS

0S = 1 · 10−8m2, and for the inclined cracks KS
0S = 1 · 10−9m2. For the boundary

conditions, qθS = 0 is applied at all boundaries and zero fluid heat flux qθF = 0 together with
p = 0 are applied at all boundaries except for the left boundary. In the cooling process, a
pressure of p = 1000N/m2 is applied at the left-side boundary together with a fluid heat influx
of qθF = 230.5 (θF − θF0)W/m2 with θF0 = θS0 = 328 [K] as the initial temperature of the fluid
and solid phases, respectively.

Figure 4 shows the average fluid flow rate over time on the left (inlet) and right (outlet)
boundaries of the domain together with the average temperature change over time on the left
(inlet) and right (outlet) boundaries. This shows the gradual reduction of the outlet fluid
temperature due to the heat exchange with the surrounding. Moreover, Figure 5 shows the
contour plots of the fluid temperature θF in the domain (cracks and surrounding porous material)
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Figure 3: The geometry and boundary conditions considered in the numerical modeling of heat transmis-
sion in a fractured porous domain. The pre-existing cracked zone is colored blue, whereas the horizontal
cracks have bigger width than the inclined cracks and, thus, higher permeability. For the boundary condi-
tions, the upper and lower boundaries are fixed in the vertical direction (uS2 = 0), the lateral boundaries
are fixed in the horizontal direction (uS1 = 0), zero solid heat flux qθS = 0 at all boundaries, and zero
fluid heat flux qθF = 0 and undrained condition p = 0 at all boundaries except for the left boundary.

at four sequential time points, which is in agreement with the heat exchange process.
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Figure 4: Average fluid flow rate over time on the left (inlet) and right (outlet) boundaries of the
domain, where the upper and lower boundaries of the domain are open (left). Average fluid temperature
change over time on the left (inlet) and right (outlet) boundaries of the domain (right).
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Figure 5: Contour plot of the fluid temperature θF in the domain at four time points, t1 = 0.2 [h],
t2 = 1.97 [h], t3 = 16.4 [h], t4 = 50 [h]. These plots are connected to the numerical solution with the
non-isothermal TPM-PFM approach with a stabilization parameter D = 10.

5 CONCLUSIONS

Within the topics of non-isothermal processes in porous media, two events have been high-
lighted in this contribution. These are the freezing of the pore fluid of saturated porous media
with the accompanying damages and micro-cryo-suction, and the heat transport and exchange
within porous media hydraulic fracture. For the modeling, a continuum mechanical framework
within the theory of porous media is presented. Two phase-field methods are introduced to
model the phase-change process in freezing and to capture the onset of fractures and the topol-
ogy of the predefined cracks. The numerical treatment is carried out using the finite element
method, where a special focus is laid on the numerical challenges in extreme cases, such as
the limits of very low permeability, very low compressibility of the fluid, high fluid viscosity,
near crack-domain interfaces, next to drained boundaries, and for high fluid flow regimes with
convection-dominated heat transport. Two numerical examples are also presented to show the
capabilities of the proposed modeling framework and the stability of the solution algorithms.

Several topics remain open for future works, which include presenting more efficient solution
algorithms, extending the models to accurately capture the different effects, and validating the
models via comparison with experimental data.
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