
Reasoning About 
Pipelines with Structural Hazards 

Mark Aagaard* and Miriam Leeser 

School of Electrical Engineering 
Cornell University 
Ithaca, NY 14853 

USA 

Abs t rac t .  We have developed a formal definition of correctness for 
pipelines that ensures that transactions terminate and satisfy a func- 
tional specification. This definition separates the correctness criteria as- 
sociated with the pipelining aspects of a design from the functional re- 
lationship between input and output transactions. Using this definition, 
we developed and formally verified a technique that divides the verifi- 
cation of a pipeline into two separate tasks: proving that the pipelining 
circuitry meets the pipelining correctness criteria and that the datapath 
and control circuitry meet the functional specification. The first proof is 
data independent (except for pipelines that use data-dependent control). 
The second proof is purely combinational: there is no notion of time and 
each possible input transaction can be dealt with independently. In ad- 
dition, we have created a framework that structures and simplifies the 
proof of the pipelining circuitry. 

1 I n t r o d u c t i o n  

The work presented here is part  of a larger effort to develop systematic techniques 
for the specification, design, and verification of large-scale, complex pipelined 
circuits [AL93]. We have concentrated on incorporating design features that  
are used in state-of-the-art  high-performance microprocessors: super-scalar in- 
struction issue, out-of-order completion and data-dependent control. These fea- 
tures are found in microprocessors such as the DEC Alpha [McL93], HP PA- 
Risc [AAD+93], IBM RS/6000 [Mis90], and Intel Pentium [AA93] and lead to 
implementat ions that  contain structural hazards. 

Structural hazards increase the difficulty of design and verification, because 
errors related to non-termination and interference between transactions may oc- 
cur. They also complicate the specification of a pipeline, because transactions 
may  have variable latencies (the transit t ime through a pipeline) and may exit 
in a different order than they entered. In pipelines without structural hazards, 
verifying termination and freedom from interference is trivial. Thus, the bulk 

* Now at Department of Computer Science, University of British Columbia, Vancouver, 
BC, Canada 



14 

of the verification effort is concerned with verifying a datapath in which com- 
putations occur over some interval of time. When confronting pipelines with 
structural hazards, even specifying the intended behavior and verifying that all 
transactions will terminate can be a significant challenge. 

1.1 O u r  W o r k  

We often reason about hierarchical pipelines, where the data.paths for the stages 
may themselves be pipelines. We say that  pipelines are composed of segments 
and that  stages are segments that can contain at most one transaction (i.e. they 
are at the lowest level of the structural hierarchy). 

Modern pipelined microprocessors contain: an instruction pipeline that  fetches, 
decodes, and issues instructions; and several execution pipelines (e.g. integer, 
floating-point, and load/store). All of the floating-point pipelines, and most of 
the instruction and integer pipelines that  we have found, contain structural 
hazards. In addition to structural hazards, instruction pipelines have data and 
control hazards. If a pipeline is free from structural conflicts 2 then individual 
transactions are able to proceed through the pipeline correctly. Control and 
data  hazards cause problems with dependencies between transactions. Our belief 
is that before we can discuss dependencies between transactions, we should be 
able to reason effectively about individual transactions. The work presented here 
supports reasoning about structural hazards. Our preliminary efforts to extend 
this work to data  and control hazards appears promising: we believe that  the 
extensions can be added by building on our work with structural hazards. 

We separate the general idea of correctness into two properties: pipelining, 
every transaction that  wishes to enter the pipeline is eventually able to do so 
and there is a one-to-one mapping between transactions that  enter and exit the 
pipeline; and functionality, every output  transaction has the correct value. This 
definition of correctness allows us to separate the verification of a pipeline into 
a pipelining and a functionality proof. The pipelining proof is data-independent 
for almost all pipelines and the functionality proof is purely combinational. 

The pipelining correctness criteria are the same for every pipeline. Because 
of this, even for pipelines which appear to be quite different, there is a great 
deal of similarity in how we verify that  there are no structural conflicts. We have 
organized these similarities into a framework that  captures reasoning common 
to these proofs. Using the framework allows the bulk of the verification of an 

individual pipeline to concentrate on the datapath.  
The framework defines four parameters that are instantiated for individual 

pipelines: Protocol schemes describe how transactions are transferred between 
stages in the pipeline; Arbitration schemes specify how to handle collisions in 
the pipeline; Control schemes determine how transactions are routed through the 
pipeline and how stages know what operation to perform; and Ordering schemes 

-2 Following the terminology of Tahar [TK94], which is based on that of Miluti- 
novic [Mi189], we say that a pipeline is free from structural conflicts if it handles 
its structural hazards correctly or has no structural hazards. 



15 

describe a method for matching up a transaction as it leaves the pipeline with 
the corresponding input transaction. 

We have derived specifications for the parameters and proved that any pipeline 
that meets the specifications is guaranteed to meet our pipelining correctness cri- 
teria. This proof was done on paper using a strongly-typed higher-order logic 
in a style that is compatible with interactive tactic-oriented proof development 
systems such as Nuprl, HOL, PVS, and Coq. Our syntax is based most closely 
on that used in Nuprl and SML. Using the framework divides the proof that a 
pipeline is free from structural conflicts into separate and largely independent 
tasks. The specifications for the parameters are very general, so as to allow for 
innovative design solutions and evolving technology. 

In order to reason about pipelines in general and then apply the results 
to specific pipelines, we developed a model of a pipeline that is composed of 
generic segments. We defined a set of virtual functional units and signals in 
a generic segment and then derived behavioral specifications for these units. 
Using the framework to verify a pipeline is done by defining the correspondence 
between the hardware in the real pipeline and the virtual functional units and 
then proving that the circuits in the real pipeline meet the specifications for the 
corresponding virtual functional units. 

We say the functional units and signals are "virtual," because a given pipeline 
may not implement all of the units in hardware. For example, a uniform-uni- 
functional pipeline (all transactions follow the same path and each segment can 
perform only one operation) does not need any control hardware. The verification 
of such a pipeline would define the virtual functional units for control to be 
constants that produce outputs of type unit, a type that has only one member. 

1.2 Re la t ed  Work 

Previous research on verifying pipelined microprocessors using proof-development 
systems includes Srivas's verification of the Mini-Cayuga using Clio [SB90] and 
Saxe's verification of a very small microprocessor using the Larch Proof Assis- 
tant [SGGH92]. Saxe's example has also been done by Alex Bronstein using 
the Boyer-Moore theorem prover Nqthm [BT90]. Lessons learned from these 
efforts include Srivas's and Bronstein's use of equivalence mappings between the 
behavior of pipelined and nnpipelined microprocessors. 

Windley has developed a methodology for verifying microprocessors based 
on generic interpreters [Win91] and is extending this methodology to handle 
pipelined designs [WC94]. This methodology decomposes verifying a pipeline 
into a series of abstraction mappings between the gate level and the program- 
mer's model. Incorporating pipelining into generic interpreters provides a sys- 
tematic approach for specifying and verifying pipelined microprocessors, but 
complicates the abstraction mappings. 

Tahar is using ttOL to verify Hennessy and Patterson's academic micropro- 
cessor, the DLX [TK93]. As in the work presented in this paper, Tahar also 
separates the verification effort into pipelining and functionality concerns, but 



16 

we have a stronger definition of correctness and have proved that the pipelining 
and functionality concerns can be separated. 

Model checking systems have also been used to verify pipelines. Beatty has 
developed the theory of "marked strings", which provides a basis for the au- 
tomated verification of circuits, including pipelines [Bea93]. Seger has used the 
Voss system to verify an integer pipeline that  is reflective of those in a mod- 
ern RISC microprocessor [Seg93]. The limiting factor in using model-checking 
techniques to verify a pipeline is the size of the state-space. To mitigate this, 
Butch [BD94] has separated the pipelining concerns from the functionality con- 
cerns. His work provides a highly automated approach for verifying pipelining 
circuitry, but he does not reason about composing pipelining and functionality 
correctness results. 

A number of the efforts listed here have dealt with control and/or data haz- 
ards, but none of the pipelines have significant structural hazards. The only 
other formal work we are aware of that  deals with realistic structural hazards is 
Harcourt's use of SCCS to formally specify microprocessors and derive instruc- 
tion schedulers [HMC94]. This work is complementary to ours, in that  Harcourt 
works upward from formal specifications of microprocessors to schedulers and 
we verify implementations against specifications. 

1.3 O u t l i n e  of  P a p e r  

In Section 2 we discuss our formal definition of correctness for pipelines. Sec- 
tion 3 describes how we use the framework to verify pipelines. Sections 4 and 5 
include an introduction to the four parameters to the framework, their specifi- 
cations, and a set of commonly used instantiations of the parameters. Section 6 
contains an overview of how the framework can be used to characterize and ver- 
ify the floating-point pipeline of the Adirondack, a fictitious super-scalar RISC 

microprocessor. 

2 Correc tnes s  

We have defined what it means for a pipeline to be free from structural conflicts 
and to meet a functional specification. This definition ensures that  every trans- 
action that wishes to enter the pipeline is able to do so, every transaction that 
enters the pipeline eventually exits, and every transaction that exits the pipeline 
has the correct data. This definition of correctness is captures in the predicate 
satisfies, shown in Definition 1 and displayed using the symbol ~.  

De f in i t i on  1: Pipeline satisfies a specification 
(Pipe, Match, Constraints) -7 Spec ~- 

VI, 0 . (Pipe I O) & (Constraints I O) & (envOk I O) 
PipeliningOk Match I 0 & 
Yt~, to �9 Match l O t i  to ~ Spec(I t~)  (O to )  



17 

We parameterize satisfies by the implementation of a pipeline ('Pipe), a re- 
lation for matching corresponding input and output  transactions (Match), a 
possible set of constraints on the environment (C0nstraints), and a functional 
specification (Spec). The first part of the definition uses PipeliningOk (Defini- 
tion 2) to ensure that the pipelining aspects of correctness are met. This defini- 
tion is the same for every pipeline, which, as shown in Section 3.2, allows us to 
greatly simplify the pipelining part of the verification. The second part ensures 
that  the functionality aspects of correctness are met. The correctness criteria for 
functionality says that  when Match finds a matching input and output  t ime (ti 
and to), then the input transaction at t~ and the output  transaction at to must 
satisfy the functional specification (Spec). 

We parameterize satisfies by Match, because the temporal  relationship be- 
tween input and output  transactions varies from pipeline to pipeline. Some 
pipelines work correctly only if their environment obeys some constraints, such 
as being always able to receive output transactions. We support this by parame- 
terizing satisfies with Constraints. A functional specification (Spec) is a relation 
over an input transaction and an output  transaction. It defines the computa- 
tion that  the pipeline is meant to perform. It is purely combinational and is not 
concerned with pipelining aspects of correctness. 

In the definition of satisfies, the pipeline (Pipe) interacts with an environ- 
ment through an input stream (/) and an output  stream (O). The predicate 
envOk ensures that  environment conforms to several requirements, such as every 
transaction that wants to exit the pipeline is eventually able to do so. 

A pipeline is free from structural conflicts if: every transaction that  wants 
to enter the pipeline is eventually able to do so, every transaction that enters 
eventually exits, and every transaction that  exits the pipeline has entered. These 
criteria are captured in PipeliningOk (Definition 2). The relation canEnter guar- 
antees that transactions that  wish to enter the pipeline are eventually able to 
do so. In the second clause of PipeliningOk we use the matching relation for the 
pipeline (Match) to simplify the second and third correctness criteria to: Match 
defines a one-to-one mapping between input and output  transactions (isOne- 
ToOne. These properties guarantee that the pipeline is free from deadlock and 
livelock and that  transactions are not created inside the pipeline. 

Definition 2: Pipelining correctness criteria 
PipeliningOk Match I 0 

(canEnter I O) & (isOneToOne Match I O) 

3 Verification of Pipel ines  

In this section we introduce our techniques for formally verifying pipelines using 
satisfies. The process is the same for all pipelines, so we illustrate it with a 



]8 

canonical pipeline (Pipe), matching relation (Match), constraints (Constraints), 
and specification (Spec). We begin with the proof goal that the pipeline, matching 
relation, and constraints satisfy the specification (Equation 1). 
(Pipe, Match, Constraints) ~ Spec (1) 

In a naive proof of Equation 1, we would unfold satisfies to produce two 
goals: one to show that the pipeline is free of structural conflicts and one to 
show that the pipeline and matching relation imply the functional specification 
(Figure 1). These two goals separate the pipelinin9 and functionality aspects 
of the verification, but the implementation of the pipeline (Pipe) appears in 
the functionality goal. This means that the functionality proof must deal with 
pipelining concerns, such as potential collisions and out-of-order termination. 

t- (Pipe, Match, Constraints) ~ Spec 
BY Unfold satisfies (* Definition 1 *) 

�9 (Pipe I O) & (Constraints I O) & (envOk I O) 
l- PipetiningOk Match I 0 

�9 (Pipe I O) & (Constraints I O) & (envOk I O) 
~- MatchlOti  to ~ Spec(Iti) (0 to) 

Fig. 1. Direct verification of canonical example; unfold satisfies 

Rather than following the naive approach just described, we have proved two 
theorems that completely separate the pipe[thing and functionality proofs and 
then greatly simplify the pipelining proof. In Section 3.1 we introduce the combi- 
national representation, which leaves us with a functionality proof that is purely 
combinational and a pipelining proof that is almost always data-independent. In 
Section 3.2 we show how to simplify the pipelining proof using the specifications 
for the four parameters to the framework (protocol, arbitration, control, and 

ordering). 

3.1 Using A Combina t iona l  R e p r e s e n t a t i o n  To Verify A P ipe l ine  

To remove all aspects of pipelining from the functionality proof we use Theo- 
rem 1 to introduce a combinational-logic representation (Comb) of the pipeline. 
A combinational representation captures the input/output functionality but not 
the pipelining aspects of the implementation. This is because it reflects the data- 
path and control circuitry of the implementation, but not the pipelining circuitry. 
As an abbreviation, we package the implementation of our example pipeline 
(Pipe), matching relation (Match), and constraints (Constraints) as PipeRecord 

When using Theorem 1 to verify a pipeline, we introduce the combinational 
representation and have the two goals shown in Figure 2, rather than those 
shown in Figure 1. The first goal, which we refer to as the pipelining goal, is to 



]9 

T h e o r e m  1: Transitivity of satisfies 
t- VPipeRecord, Comb, Spee. 

PipeRecord ~ Comb & 
(VTi, To �9 Comb Ti To ~ Spec T, To) 

PipeRecord ~ Spec 

prove that  the pipeline satisfies the combinational representation. This proof is 
much easier than showing that  the pipeline satisfies the high-level specification 
(Spec), as in Figure 1. The combinational representation is closely related to the 
pipeline and the proof is data-independent (except for pipelines that  use data- 
dependent control). In contrast, specifications are generally unrelated to the 
structure of the pipeline and reasoning about them is highly data-dependent. 
The second goal in Figure 2, which we refer to as the functionality goal, is to 
show that the combinational representation implies the specification. 3 This goal 
is purely combinational and can be solved using standard hardware verification 

techniques. 

~- PipeRecorcl ~ Spec 
BY Theorem 1 

F- PipeRecord ~ Comb (* pipelining *) 

t- VTi, To . Comb Ti To ==~ Spec Ti To (* functionality *) 

Fig. 2. Verification of canonical example; introduce combinational representation 

3.2 Us ing  t h e  F r a m e w o r k  t o  Ver i fy  a P i p e l i n e  

In this section we introduce the framework to simplify the pipelining proof (the 
first goal in Figure 2). We use Theorem 2 to divide the proof that  a pipeline 
satisfies its combinational representation into four subgoals (Figure 3): the core 
(datapath) for each segment is valid (CoresOk), the constraints of the segments 
are met (ConstraintsOk), the combinational representation is an accurate repre- 
sentation of the pipeline (CombOk), and the pipelining circuitry that  glues the 
segments together meets the specifications of the framework parameters (Fwork- 
ParamsOk). 

Because we work with hierarchical pipelines, the core of a segment may itself 
be a pipeline. The core of each segment has an associated matching relation and 
combinational representation. The definition of CoresOk says that  the core of 

3 We use the convention that capital Ts (e.g. Ti and To) are for transactions and 
lowercase Ts (e.g. ti and to) are for times. 



20 

T h e o r e m  2: Pipelines that meet framework specifications satisfy their combina- 
tional representations 

F- V Pipe, Match, Constraints, Comb. 
( CoresOk Pipe) & 
( ConstraintsOk Pipe Constraints) & 
(CombOk Pipe Comb) & 
( FworkParamsOk (Pipe, Match, Constraints)) 

(Pipe, Match~ Constraints) ~ Comb 

~- (Pipe, Match, Constraints) ~ Comb 
BY ThEorem 2 

l- CoresOk Pipe 

~- ConstraintsOk Pipe Constraints 

~- CombOk Pipe Comb 

~- FworkParamsOk (Pipe, Match, Constraints) 

Fig. 3. Verification of canonical example; use framework to show that pipeline satisfies 
combinational representation 

each segment satisfies its combinational representation, the data in an output 
transaction does not change while waiting for its request to be accepted, and 
the combinational representatiott of the core is functional (has equal outputs for 
equal inputs). 

The second goal irl Figure 3 is to prove that the constraints for each segment 
are met. This condition arises because in satisfies a pipeline may put constraints 
on its environment arid t ~  core of ~ segment may be a pipeline. Thus, using a 
segment in a pipeline requires showing that the pipeline meets the constraints of 
the segment. In the third goal, the relation CombOk relates the combinational 
representation (Comb) to Pipe. It requires that Comb is equivalent to compos- 
ing the combinational representations of the segments. For the fourth goa~, the 
framework defines four parameters (protocol, arbitration, control, and ordering) 
that characterize pipelining circuitry. Each of these parameters has an associ- 
ated set of specifications and FworkParamsOk says that the pipeline meets these 

specifications. 

3.3 S u m m a r y  of  Ver i fy ing  a P i p e l i n e  

When verifying a pipeline we use Theorem 1 to introduce a combinational rep- 
resentation and separate the pipelining and functionality aspects of verification. 
We then use Theorem 2 to simplify the pipelining proof. This leaves us with the 

five proof obligations listed ~n Table 1. 



21 

Table 1. Proof obligations when verifying a pipeline 

CoresOk PipeRecord 
Datapaths and control circuitry of segments are valid 

ConstraintsOk PipeRecord 
Constraints of segments are met 

CombOk Pipe Comb 
Combinational representation accurately represents pipeline 

FworkParamsOk PipeRecord Comb 
Pipelining circuitry meets the specifications of the framework parameters 

V Ti, To �9 Comb Ti To ==~ Spec Ti To 
Combinational representation implies specification 

For a stage (a segment that  can contain at most one transaction), the pipelin- 
ing circuitry is so simple that  it is almost always trivial to prove that  it conforms 
to CoresOk. For a segment, we use a theorem (not shown, because it is almost 
identical to Theorem 2) that  says that  if a pipeline meets the four antecedents 
of Theorem 2, then the pipeline meets all of the requirements in CoresOk. This 
means that the pipeline can be used as the core of a segment in a larger pipeline. 
Thus, the first goal is solved in the normal progression through the structural 
hierarchy of a large pipeline (e.g. a microprocessor composed of instruction, in- 
teger, floating-point, and load/store pipelines). 

The second obligation, that  the constraints of the segments are met, is usu- 
ally quite easy to solve. Many segments do not put any constraints on their 
environment. Every constraint that we have found affects only one segment or 
the environment, and the constraints are direct consequences of the behavior of 
the segment or environment. 

The third goal in Table 1 is to prove that the combinational representation 
of the pipeline is equivalent to the composition of the combinational representa- 
tions of the segments. We systematically build the combinational representation 
of a pipeline by composing the combinational representations of the segments 
according to the paths that transactions follow. Thus, just as with the first goal, 
the third goal is solved simply by following our standard techniques. 

The fourth goal is to prove that  the specifications of the framework parame- 
ters are met. The informal specifications of the parameters are given in Section 4. 
In addition, we have found a set of instantiations of the parameters that  is suffi- 
cient to characterize the pipelining circuitry of many microprocessors (Section 5). 
These instantiations guide the proofs that a pipeline meets the specifications of 
the parameters. 

The fifth goal is for the functionality proof. It requires showing that  the 
combinational representation of the pipeline implies the specification. This goal 
is purely combinational and can be solved without any pipeline-related reasoning. 



22 

4 S p e c i f i c a t i o n s  f o r  F r a m e w o r k  P a r a m e t e r s  

The specifications for a protocol scheme ensure that when two segments agree to 
transfer a transaction, the transaction is transferred correctly. In the arbitration 
specifications we check that when one segment wants to transfer a transaction 
to another, the second segment eventually agrees to receive the transaction. By 
combining the protocol and arbitration specifications, we prove that transactions 
make progress and flow through the p~peline. The control specifications require 
that all paths through the pipeline lead to an exit and that  transactions follow 
the same path through the implementation and the combinational representa- 
tion. From this we know that  transactions will traverse the correct path and 
then exit. The ordering specification says that  when a transaction exits, we can 
match it up with its corresponding input transaction. This allows us to check 
that corresponding input and output  transactions meet the functional specifi- 
cation. There are a total of eighteen specifications, of which only six require 
significant effort to prove for most pipelines. To give a flavor of the specifica- 
tions, we describe them textually and show several lemmas that were proved 
using the specifications and the requirements for cores of segments. At the end 
of this section, Table 2 summarizes the specifications. 

4.1 P r o t o c o l  

The purpose of a protocol scheme is to move transactions from one segment to 
the next in a pipeline. In order to transfer a transaction between segments, the 
segment that  is to receive the transaction needs to know that the other segment 
wants to send it a transaction. Conversely, the sending segment needs to know if 
the receiving segment is able to receive the transaction. We have named these two 
properties, the desire to send and the ability to receive, "request" and "accept." 
We use the protocol specifications to prove Lemma 1, which says that  at time 
t, a transfer must occur from segment so to sl if so sends a request to sl and sl 

accepts the request. 

L e m m a  1: Correctness of transfers between segments 
~- V so, s,, t .  (req(so, sl) t) & (ace (so, sl) t) ~ zfv(so, s]) t 

4.2 Arb i t ra t ion  

The specifications for an arbitration scheme are concerned with ensuring that  ev- 
ery request is eventually accepted, as shown in Lemma 2. The predicate holdUn- 
til is used to say that  if req (so, sl) is true at t ime tr, then there is exactly one 
time ta such that  req (so, sl) is true from t~ to ta and ta is the first t ime after 

tr that  ace (so, st) is true. 



23 

L e m m a  2: Every request is eventually accepted 
~- V so, sl, t~ . 3  t~ . holdUntil (req (so, sl)) tr (ace (so, sl)) l~ 

We separate the arbitration specifications into two parts: the highest priority 
request to a segment is eventually accepted and every request to a segment be- 
comes the highest priority request. These two properties are related to deadlock 
and livelock respectively. If the highest priority request to each segment is al- 
ways accepted, then the pipeline can not deadlock. Adding the requirement that  
every request becomes the highest priority request ensures that  every request is 
eventually accepted, and hence livelock is prevented. 

4.3 C o n t r o l  

A control scheme determines how a segment decides what operation to perform 
on each transaction and where to send the transaction when it is done in the 
segment. The control specifications allow us to prove that every path through a 
pipeline leads to an exit and that  transactions follow the same path through the 
implementation and combinational representation of a pipeline. We require that 
every path through a pipeline leads to an exit, because without this requirement 
it would be valid for a pipeline to contain paths that  loop through the same 
set of segments an infinite number of times. Such paths would not produce any 
output  transactions, despite the fact that  the pipeline is working "correctly." 

L e m m a  3: Transactions transfer to the correct next segment 
}- Vs0, sl, to, tl, T .  

match so (to, tl) & 
segComb so (transP so to) (T, Sl) 

xfr (So, 81) t 1 

Lemma 3 says for each step in a path, a transaction will transfer to the same 
next segment and its combinational representation. Formally, the lemma says 
that if a transaction transfers into segment so at time to and the combinational 
representation of so produces a transaction T and selects Sl as the next segment, 
then in the implementation the transaction will transfer from so to sl. We relate 
the combinational representation of so to its implementation by using the input 
transaction to so at to (transP so to) as the input transaction to the combina- 
tional representation and using the matching relation for so to detect when the 
transaction exits from so. 

4.4 O r d e r i n g  

Ordering schemes are used to verify that output  transactions contain the correct 
results. To do this, we match up an output transaction with the input transaction 



24 

that  caused it. For example, if a transaction contains an add instruction, we need 
to check that  the data in the output transaction is the sum of the two operands in 
the input transaction. Each pipeline defines a matching relation (Match), which 
takes two times (to) and ( t , )  and returns true if the input transaction at to 
results in the output transaction at t . .  

The relation isOneToOne, which is part of the pipelining correctness cri- 
teria, says that  a matching relation defines a one-to-one mapping between the 
input and output transactions of a pipeline. The framework uses the ordering 
specification to prove that  a matching relation defines a one-to-one mapping be- 
tween input and output transactions and to prove that  if the matching relation 
matches an input and output transacticm then they satisfy the combinational 
representation. 

Table 2. Summary of major specifications 

Protocol Transactions are transferred between segments correctly 
Arbitration The highest priority request to each segment is eventually 

accepted 
Every request to a segment becomes the highest priority 
request 

Control All paths through the pipeline lead to an exit 
The implementations of the control circuitry imply their 
specifications 
The matching relation for the pipeline finds corresponding Ordering 
input/output transactions 

5 Common Instantiations of Framework Parameters  

We have found a number of commonly used instantiations of the framework 
parameters. These instant~.e~tions are sufficient to characterize the instruction, 
integer, and floating-point pipelines of the DEC Alpha 21064, HP PA-Risc 7100, 
IBM RS/6000, Intel Fentium, MIPS R4000, Motorola 88110, and PowerPC 601. 
At the end of this section, Table 3 summarizes the instantiations. 

5.1 P r o t o c o l  

For some pipelines, we can guarantee that  every request will be immediately 
accepted. These pipelines are free of structural hazards and use a transi~ protocol 
scheme, so called because transactions can "transit" through the pipeline. In 
the second scheme, called general because it matches the general specification 
of protocol correctness, transactions are allowed to proceed until just before a 



25 

collision. When a transaction cannot proceed any further without colliding, it 
stalls until the potential collision is cleared. 

5.2 A r b i t r a t i o n  

In a degenerate arbitrat ion scheme segments receive input transactions from 
only one segment. If  a segment is connected to multiple input segments, but we 
can show that  only request will be active at a time, then we have an exclusive 
arbitrat ion scheme: The name is derived from the observation tha t  each request 
is guaranteed to be the exclusive request to the segment. In this arbi trat ion 
scheme the segment simply selects whichever request is active. 

For pipelines that  allow multiple simultaneous requests to the same segment, 
we need to provide a method for prioritizing the requests. In all pipelines that  we 
have found, we can assign static priorities to requests based upon the segment 
that  the request comes from. 

5.3 C o n t r o l  

If  all transactions use each segment in a pipeline at most  once, and every segment 
sends transactions to another segment or to an exit port,  then we know that  
all paths are finite and reach an exit. We refer to this as a no-loops control 
scheme. The only control schemes that  are non-trivial to verify are those in which 
transactions may use segments multiple times. We need to prove that  none of 
these loops can be repeated an infinite number  of times. In all of the pipelines 
that  we surveyed, there is fixed upper bound on the number  of iterations that  
transactions can pass through each loop. So, in practice, control schemes are 
straightforward to verify. 

5.4 O r d e r i n g  

The ordering schemes described here are listed in order of increasing generality. 
In most cases, it is easiest to use the most specific ordering scheme that  is ap- 
plicable to a pipeline. The simplest way to match input and output  transactions 
is if the pipeline has a uniform latency. In these pipelines all transactions will 
exit the pipeline a given number of cycles after they enter the pipeline. The next 
simplest case is pipelines where transactions exit in the same order that  they 
enter the pipeline. This is an in-order scheme. 

In all pipelines that  we have found where transactions may  exit out of order, 
we can assign tags to transactions in such a way that  there is only one transaction 
with a given tag in the pipeline at a t ime (tags-unique) or transactions with the 
same tag exit in-order (tags-in-order). In the pipelines that  we surveyed, either 
the opcode of the transaction or the destination of the result of the operation 
(e.g. a register or memory  address) is used as a tag. 



26 

Table 3. Instantiations of framework parameters for commercial microprocessors 

Transit 
General �9 �9 
Degenerate �9 
Exclusive 
Static O 
No loops �9 
Loops 
In order �9 
Tags:Unique OI 

~ Tags: In order 

Instruction Integer 

OOO 

O~DIO 

OO 

ooOOOolOO 
�9 �9 �9 O 

OO �9 �9 

g o  �9 �9 IO J o g  
�9 �9 !O 

g o  �9 �9 �9 

Floating Point 

�9 0 0 0 0 0 0 0  

0 Io �9 O0  O 0 0  

i eeeooeee 
OIO : 

O 0  O 0  

6 Floating Point Pipeline 

This section describes the floating-point pipeline from a fictitious RISC super- 
scalar microprocessor, the Adirondack (ADK). The ADK is based primarily on 
the DEC Alpha 21064 [McL93], except for the the floating-point pipeline, which 
is based on the VAX 8600 Model 200 [BBC+89]. We show how the pipeline 
instantiates the framework parameters and discuss how the framework can be 
used to guide the verification of the pipeline. Because we have concentrated 
on developing general techniques for complex pipelines and not on verifying a 
specific circuit, we do not yet have rigorous proofs for this example. 

The floating-point pipeline in the ADK consists of five main stages (Ad- 
dRecode, MultShift, AddNorm, AddRound, and WriteBack) plus the Divide 
stage. Most transactions go through each of the main stages once and go through 
the stages in the same order. The two classes of transactions that are exceptions 
are: multiplies, which use the MultShift stage twice, and divides, which use the 
Divide stage between eighteen and fifty-four Cycles and skip the MultShift stage. 

6.1 I n s t a n t i a t i o n  o f  Framework  P a r a m e t e r s  

This pipeline uses a transit protocol scheme. In a transit protocol scheme, when 
a transaction enters a pipeline it is guaranteed not to encounter any collisions. 
This pipeline contains a circuit at the entrance that only accepts requests from 
the environment if it can guarantee that they will not collide with any transac- 
tion already in the pipeline. The circuit knows what stages will be available in 
the future. Davidson's shift-register based circuit [Dav71], which is described in 



27 

Divide 

AddRecode 

MultShift 

AddNorm 

1 
[ AddRound I 

1 
I Write Back ~ 

1 
Fig. 4. Block diagram of floating-point pipeline of Adirondack microprocessor 

many computer architecture textbooks, is the standard implementation for this 
protocol scheme. 

Because divide transactions have such variable latencies, it would be very 
inefficient to prevent a transaction from entering the pipeline whenever there is 
a chance that  it may collide with a divide transaction. The Divide stage sends a 
request to the protocol unit just before a transaction is ready to transfer from 
the Divide stage to the AddRecode stage. These requests are always accepted 
and the protocol unit updates its state to ensure that  it does not accept any 
incoming transactions that  will collide with the divide transaction. 

Because the pipeline uses a transit protocol scheme, we know that there 
will never be more than one active request per stage, thus the pipeline uses an 
exclusive arbitration scheme. 

For the control scheme, we need to ensure that  the control logic will eventually 
send all transactions to the exit of the pipeline. Most transactions use each of 
the main stages in the pipeline once, and so follow the no-loops scheme, but 
multiplies and divides each contain loops, so in the proof we must show that 
these loops terminate. 

The microprocessor locks the destination register for each transaction when 



28 

its operands are fetched in the instruction pipeline and then unlocks the register 
when the transaction writes its results to the register file. This is an implementa- 
tion of a tags-unique ordering scheme, in that only one transaction with a given 
tag (destination register) is in the pipeline at a time. 

6.2 P repa r ing  the  F loa t lng-Poin t  Pipel ine  for Verification 

Before we verify the pipeline, we need to define the combinational-representation, 
specification, matching function, and constraints. 

Defini t ion 3: Combinational representation of ADK floating-point pipeline 
FloatComb Ti To 

3Td, Ts, T1, T2, Ts, r3, T4. 
case (opcode Td 

of AddF 
((AddRecode subExps T~ T1) & (MultShifl align TI T2) 
(AddNorm add T2 T3) 
( WriteBack T4 To)) 

& 

& (AddRound round T3 T4) & 

DivF 
( ( varloop 54 
( AddReeode 
(AddRound 

SubF 
MuIF ~ ... 

decVal Divide Ti Td) & 
add Td Ts) & (AddNorm add Ts T3) 
round T3 T4) & ( WriteBack T4 To)) 

& 

The combinational representation of the pipeline (FloatComb) is shown in 
Definition 3, which for conciseness only includes the addition and division op- 
erations. We begin by existentially quantifying on the internal signals in the 
pipeline and then do a case split on the opcode of the input transaction. Each 
path describes the stages that the transaction goes through and the operation 
that the stages perform. Addition transactions go through the five main stages, 
performing the subEzps operation in the AddRecode stage, etc.. The path for 
division transactions includes a data-dependent loop with the Divide stage. The 
varloop function initializes the loop counter to fifty-four and decrements it a 
data-dependent amount (one, two or three - -  corresponding to the number of 
bits of the quotient that were calculated) each iteration, until it reaches zero. 
The amount is calculated by applying the function dec Val to the transaction in 

the stage. 
The specification for the pipeline (FloatSpec, Definition 4) checks that the 

destination register of the output transaction is the same as that for the input 
transaction, does a case split on the opcode of the input transaction and then 
checks that the result (getResult To) is correct for the input operands (getIOps 



D e f i n i t i o n  4: Specification of A D K  
FloatSpec Ti To ~- 

getDestReg Ti = getDestReg 
case (opcode T~) 

of AddF =~ AddFSpec 
[ SubF ::r SubFSpec 
I MulF ~ MulFSpec 
I DivF ~ DivFSpec 

29 

floating-point pipeline 

To & 

(getIOps Ti) (getResult To) 
(ge~IOps TO (getResult To) 
(getIOps T 0 (getResult To) 
(getIOps Ti) (getResult To) 

The pipeline uses a tags-unique ordering scheme, where transactions are 
tagged with their destination register. Each ordering scheme has an associated 
generic relation that  is used as the basis of the matching relations for pipelines. 
The generic matching relation for a tags-unique scheme is tagsUnique, shown in 
Definition 5. It  is a relation over an input s t ream and an output  s t ream of tags, 
requests and accepts. Tags are only significant when a transaction transfers into 
or out of the pipeline, so we use the request and accept signals to detect transfers 
into and out of the pipeline. 

In Definition 7 the matching relation for the floating-point pipeline (Float- 
Match) is defined in terms of tagsUnique and mkTagFloat, which extracts the 
destination register for a transaction. 

Defini t ion 5: Matching with unique active tags 
tagsUnique I 0 ti to ~- 

let ( TagP, ReqP, AccP) ~ map split3 I 
( TagN, ReqN, AecN) -~ map split3 0 

in 
(ReqP ti & AccP ti) & 
nextTimeTrue (At. (TagN t = TagP ti) & (ReqN t) & (AccN t)) ti to 

end 

Defini t ion 6: Function to calculate tags for ADK floating-point pipeline 
mkTagFloat ( Trans, Req, Acc) "-- (getDestReg Trans, Req, Acc) 

Defini t ion 7: Matching relation for ADK floating-point pipeline 
FloatMatch I 0 ti to "-- 

tagsUnique (map mkTagFloat I) (map mkTagFloat O) ti to 

To guarantee that  the tags in the pipeline are unique, the pipeline imposes the 
constraint on the the environment that  a transaction does not begin to request 
the pipeline if the previous transaction with the same tag has not yet exited. This 
is captured in FloatConst (Definition 8), which says that  if a transaction enters 
the pipeline at t~ and exits at to, then the next t ime ( t / )  that  a transaction with 
the same tag requests the pipeline must  be after to. 



30 

Definit ion 8: Constraints for ADK floating-point pipeline 
FloatConst (I as ( TagP, ReqP, AccP)) 0 -~ 

V t,, to . 
FloatMatch I 0 ti to & 
(next Time True 

(At. (mkTagFloat (I t)) = (mkTagFloat (I ti)) & (ReqP t)) 
( t i+ l )  t,') =:~ 

to ~ ti I 

6.3 Verification of Floating-Point Pipel ine 

Following the process described in Section 3 We begin the verification of a 
pipeline by saying that the implementation, matching relation, and constraints 
satisfy the specification (Equation 2). 

(Floateipe, FloatMatch, FloatOonst) ~ FloatSpec (2) 

We use Theorem 1 to introduce the combinational representation of the 
pipeline (FloatComb) and separate the proof into pipelining and functionality 
goals. We then apply Theorem 2 and simplify the pipelining proof. This leaves 
us with the five proof goals that were listed in Table 1: the cores of the segments 
are valid, the constraints of the segments are met, the combinational represen- 
tation accurately represents the pipeline, the specifications of the framework 
parameters are met, and the combinational representation implies the specifica- 

tion. 
Because the segments in this pipeline are just stages and we derived the 

combinational representation using the standard algorithm, the first and third 
goals are easily solved. None of the stages impose any constraints on the pipeline, 
so the second proof obligation from Table 1 is also trivially solved. 

The fourth obligation is to prove that the framework specifications are met. 
The pipeline uses Davidson's shift-register circuit to maintain the current state 
of the pipeline and guarantee that transactions do not collide. This is a valid 
implementation of a transit protocol scheme and so takes care of the protocol 
specifications. Because we are using a transit protocol scheme, we know that  
transactions will always be immediately accepted, and so the arbitration speci- 

fications are met. 
For the control scheme, we need to prove that all paths through the pipeline 

lead to an exit. Multiply transactions use the MultShift stage exactly twice, and 
therefore these loops terminate. For divide transactions, we begin with a finite 
upper bound (fifty-four) on the loop counter for the divide stage and decrement 
the counter each iteration until we reach zero. For the tags-unique ordering 
scheme, the pipeline constrains the environment such that transactions do not 
request to enter the pipeline if the previous transaction with the same tag has 
not yet exited. We combine this with a lemma that  a transaction's tag does not 
change as it traverses the pipeline and prove that  the tag of each transaction in 

the pipeline is unique. 



31 

The fourth and final proof obligation is to show that FloatComb implies 
FloatSpec. This proof is still a significant challenge, but it is far simpler than it 
would have been without the framework. The floating-point datapath is complex 
and the abstraction gap between the implementation and specification is very 
large, but the proof is purely combinational and does not need to reason about 
pipelining concerns. 

7 Conclusion 

The work presented here is aimed at developing general techniques for apply- 
ing formal methods to pipelined circuits. We began with a formal definition of 
correctness for pipelines that guarantees that transactions are able to traverse 
through the pipeline and will exit with the correct data. This definition allows us 
to separate the pipelining and functionality related parts of the verification into 
two proofs. The pipelining proof is data-independent (except for pipelines that 
use data-dependent control) and the functionality proof is purely combinational. 
We simplified the pipelining proof by introducing a framework with four param- 
eters (protocol, arbitration, control, and ordering) that characterize pipelines. 
Each parameter has an associated set of specifications that are used to verify 
the correctness of the pipelining circuitry. We have found a set of commonly 
used instantiations of the framework parameters that sufficient to characterize 
and the guide the verification of a number of commercial microprocessors. 

Acknowledgments 

We are deeply indebted to the Semiconductor Engineering Group at DEC, who 
have provided a great deal o f  useful information and feedback. Mark Aagaard 
is supported by a fellowship from the Digital Equipment Corporation. Miriam 
Leeser is supported in part by NSF National Young Investigator Award CCR- 
9257280. 

References 

[AA93] 

[AAD+93] 

[AL93] 

[BBC+89] 

D. Alpert and D. Avnon. Architecture of the Pentium microprocessor. 
1EEE Micro, 12:11-21, June 1993. 
T. Aspre, G. Averill, E. DeLano, R. Mason, B. Weiner, and J. Yetter. Per- 

formance features of the PA7100 microprocessor. IEEE Micro, pages 22-35, 
June 1993. 
M. D. Aagaard and M. E. Leeser. A framework for specifying and designing 
pipelines. In ICCD, pages 548-551. IEEE Comp. Soc. Press, Washington 
D.C., October 1993. 
B. J. Benschneider, W. J. Bowhill, E. M. Cooper, M. N. Gavrelov, P. E. 
Gronowski, V. K. Maheshwari, V. Peng, J. D. Pickholtz, and S. Samudrala. 
A pipelined 50-MHz CMOS 64-bit floating-point arithmetic processor. IEEE 
Jour. of Solid-State Circuits, 24(5):1317-1323, October 1989. 



32 

[BD94] 

[Bea93] 

[BT90] 

[Dav71] 

[ttMC94] 

[McL93] 

[Mi189] 

[Mis90] 
[SB90] 

[Seg93] 

[SGGH92] 

[TK93] 

[TK94] 

[WC94] 

[Win91] 

J. R. Burch and D. L. Dill. Automatic verification of pipelined micropro- 
cessor control. In CAV, July 1994. 
D. L. Beatty. A methodology for formal hardware verification, with appli- 
cation to microprocessors. PhD thesis, Computer Science Dept, Carnegie 
Mellon Univeristy, 1993. 
A. Bronstein and C. L. Talcott. Formal verification of pipelines. In L. J. M. 
Claesen, editor, Formal VLS1 Specification and Synthesis, pages 349-366. 
Elsevier, 1990. 
E. Davidson. The design and control of pipelined function generators. In 
Proceedings 1971 International 1EEE Conference on Systems, Networks and 
Computers, pages 19-21, January 1971. 
E. Harcourt, J. Mauney, and T. Cook. From processor timing specifications 
to static instruction scheduling. In Static Analysis Symposium, September 
1994. 
E. McLellan. Alpha AXP architecture and 21064 processor. IEEE Micro, 
13(3):36-47, June 1993. 
V. Milutinovic. High Level Language Computer Architecture. Comp. Sci. 
Press Inc., 1989. 
M. Misra. 1BM RISC System/6000 Technology. IBM, 1990. 
M. Srivas and M. Bickford. Formal verification of a pipelined microproces- 
sor. IEEE Software, pages 52-64, September 1990. 
C.-J. Seger. Voss - -  A formal hardware verification system user's guide. 
Technical Report 93-45, Dept. of Comp. Sci, Univ. of British Columbia, 
1993. 
J. B. Saxe, S. J. Garland, J. V. Guttag, and J. J. Horning. Using trans- 

formations and verification in circuit design. In Designing Correct Circuits, 
Lyngby 1992, 1992. 
S. Tahar and R. Kumar. Implementing a methodology for formally verifying 
RISC processors in HOL. In J. Joyce and C. Seger, editors, Higher Order 
Logic Theorem Proving and Its Applications, pages 283-296, August 1993. 
S. Tahar and R. Kumar. Implementation issues for verifying RISC-pipeline 
conflicts in HOL. In J. Camelleri and T. Melham, editors, Higher Order 
Logic Theorem Proving and Its Applications, August 1994. 
P. J. Windley and M. Coe. A correctness model for pipelined microproces- 
sors. In Theorem Provers in Circuit Design. Springer Verlag; New York, 
1994. 
P. J. Windley. The practical verification of microprocessor designs. In IEEE 
COMPCGN, pages 462-467. IEEE Comp. Soc. Press, Washington D.C., 
February 1991. 


