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Abstract. In this paper the topic of the safety assessment of masonry arches based upon their 
geometry is investigated. The theoretical background is the Heymanian master safe theorem 
along with the no-tension assumption of masonry. The continuous arch is analyzed 
considering a discrete pattern of vertical loads, such as those of the self-weight and 
superimposed loads. Among all the lines of thrust contained within the profile of the arch, the 
one closest to the geometrical axis can be considered to be the best one thanks to the 
minimum bending moment and shear force present in each cross section. A 
numerical procedure for computing the line of thrust closest to the geometrical axis of an arch 
subject to its self-weight has been recently formulated by the authors. This procedure 
accounts for this line of thrust by minimizing the distances between the geometrical axis of 
the arch and the thrust line. In order to consider the action of both vertical loads and 
horizontal forces proportional to the vertical ones, such as those provoked by an 
earthquake, an extension of this procedure is herein presented. The safety of the arch is 
finally assessed by computing a domain of equilibrium thrust lines within the profile of the 
arch which provides, in analogy with the Heymanian geometrical factor of safety, the 
full range factor of safety. The procedure is described in the paper and illustrated with 
regards to the analysis of arches subject only to vertical loads and arches subject to also 
horizontal forces. 

1 INTRODUCTION 

In the literature, the mechanical behaviour of masonry arches is investigated using 

different approaches. With the purpose of computing the actual stress state in an arch, 

some authors have proposed methodologies that are strictly connected to the need of 

assessing the properties of masonry and estimating its actual “deformation capacity” [1]. 

Conversely, other authors, to assess the safety level of an arch or, vice-versa, the 

vulnerability level, have 
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formulated methodologies based on the limit analysis principles. 

In the context of limit analysis, two approaches can be used: the thrust line method [2-6], 

based on the static theorem, and the mechanism method [7-12], based on the kinematic 

theorem. Leaving aside the mechanism method, which requires all the kinematically 

compatible mechanisms to be defined and which is, therefore, a very computationally 

expensive method, the thrust line method assesses the safety searching for the existence, 

within the profile of the arch, of any line of thrust in equilibrium with the loads acting on it, 

according to the famous assumptions formulated by Heyman [13]: no tensile strength, infinite 

compressive strength, sliding failure cannot occur due to the presence of friction. Under these 

assumptions, the material can be considered non-deformable and the arch can be modelled as 

an assemblage of rigid blocks. 

Recently the authors of this paper have formulated a method for the analysis of masonry 

arches based on the detection of the line of thrust closest to the geometrical axis [14,15], 

checking at a later stage that it is also within the profile. Among the ∞3 likely lines of thrust 

which depict the equilibrium condition between loads and abutment reactions, this is the best 

one because it corresponds to an internal stress state of almost only compression. Unlike other 

methods present in the literature, such as that proposed by Heyman in [13], which computes 

the line of thrust closest to the geometrical axis of an arch exploiting an iterative method that 

proceeds by trial and errors, and those capable of computing the thrust network or the thrust 

surface closest to the mid-surface of a 3D-vault [16-20], the method presented herein is a one-

step procedure that provides the exact solution in “closed-form”, thus reducing the 

computational time. 

In this paper the above mentioned procedure is reformulated and extended in order to 

account also for a set of horizontal forces, proportional to the vertical ones, capable of 

simulating the action of an earthquake. Such horizontal forces are computed, in an innovative 

way, with a reverse method, exploiting the analogy between an inclined plane, on which the 

structure is “virtually” placed, and the inclination of the resultant actions of the vertical and 

horizontal loads, thus avoiding the need of inputting them directly in the mechanical model of 

the structure. The safety of the arch is assessed extending the Full-Range Factor Method (FRS 

Method) formulated by the authors in [14,15] for the vertical load case to the combination of 

this load case with the set of horizontal forces, and it is exploited to also compute the seismic 

factor. 

2 LINE OF THRUST CLOSEST TO THE GEOMETRICAL AXIS 

Let us consider a continuous arch, subject to a discrete pattern of ‘n’ vertical loads F1, 

F2,…, Fn. Let us subdivide the arch into ‘n’ elements (Fig. 1a), in such a way as to apply each 

load Fi (1 ≤ i ≤ n) to the centroid Gi of each element. In so doing, in case of a rigid block 

structure, the elements correspond to the rigid blocks and the lines of separation between the 

elements correspond to the actual joints. 

For the assigned load condition, a family of ∞3 funicular polygons can be drawn, each one 

describing a specific condition of equilibrium between loads and abutment reactions. 

Furthermore, since these funicular polygons must describe the flow of internal forces between 

the elements of the arch, they are, de facto, the polygons of successive resultants and, 

therefore, are referred to as lines of thrust as well. 
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In order to draw a specific line of thrust, three parameters or conditions must be fixed. In 

the present approach, the parameters that have been fixed are the ordinate of points A and B, 

through which the first and the last side of the line of thrust must pass respectively, and the 

value H of the thrust, which is everywhere constant throughout the arch due to the solely 

presence of vertical loads. 

Referring to the generic node ‘i’ of the line of thrust (Fig. 1b), the equilibrium condition of 

the vertical forces is provided by Eq. 1: 
 

     (tan α − tan β) =
Fi

H
     (1) 

 

where α and β are the angles of inclination of the two sides of the line of thrust connected to 

the node ‘i’.  

 

Figure 1: a) Reference discrete arch model; b) detail of the generic node ‘i’ of the line of thrust 

It is worth noting that the equilibrium condition of the horizontal forces is meaningless 

because, as aforementioned, the thrust H is constant. 

The tangents of angles α and β can be expressed, in geometrical form, by Eq. 2: 
 

     
tan 𝛼 =

𝑌𝑖−𝑌𝑖−1

ℎ𝑖

tan 𝛽 =
𝑌𝑖+1−𝑌𝑖

ℎ𝑖+1

      (2) 

 

As a consequence, putting hi = xi – xi-1 the variable horizontal distance between the 

centroids of two generic subsequent elements ‘i-1’ and ‘i’, that is between the directions of 

the load vectors Fi-1 and Fi acting on such elements, Eq. 1 can be replaced by Eq. 3: 
 

    (
−1

ℎ𝑖
) ∙ 𝑌𝑖−1 + (

ℎ𝑖+ℎ𝑖+1

ℎ𝑖∙ℎ𝑖+1
) ∙ 𝑌𝑖 + (

−1

ℎ𝑖+1
) ∙ 𝑌𝑖+1 =

𝐹𝑖

𝐻
   (3) 

 

Extending Eq. 3 to all nodes of the thrust line, the following system of linear equations is 

obtained: 
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 (

−1

h1
) ∙ Y0 + (

h1+h2

h1∙h2
) ∙ Y1 + (

−1

h2
) ∙ Y2 =

F1

H

(
−1

h2
) ∙ Y1 + (

h2+h3

h2∙h3
) ∙ Y2 + (

−1

h3
) ∙ Y3 =

F2

H
……………………………………………… . .

(
−1

hi
) ∙ Yi−1 + (

hi+hi+1

hi∙hi+1
) ∙ Yi + (

−1

hi+1
) ∙ Yi+1 =

Fi

H
……………………………………………… . .

(
−1

hn
) ∙ Yn−1 + (

hn+hn+1

hn∙hn+1
) ∙ Yn + (

−1

hn+1
) ∙ Yn+1 =

Fn

H

    (4) 

 

where the ordinates Yi of the nodes ‘i’ of the line of thrust and the thrust H are the unknowns 

to be computed. 

System of Eq. 4 shows the indeterminacy of the problem of equilibrium of the arch, which 

is indeed a statically indetermined structure to third degree: there are three more unknowns 

than the number of equations. 

System of Eq. 4 is then rewritten, in matrix form, in such a way as to isolate the three 

redundant unknowns from the general system, i.e. the thrust H and the ordinates Y0 and Yi+1 

of points A and B respectively, and to define three vectors: 

- vector T1, whose entries are the values of loads Fi, which is then multiplied by the 

constant K=H-1; 

- vector T2, whose only non-null entry is the coefficient 1/h1 of the unknown Y0; 

- vector T3, whose only non-null entry is the coefficient 1/hn+1 of the unknown Yn+1. 

Finally, defining D as the matrix of the coefficients of the unknowns, Eq. 4 becomes: 
 

   [D]{Y} = {T1} ∙ K + {T2} ∙ Y0 + {T3} ∙ Yn+1     (5) 
 

where: 
 

D = 

[
 
 
 
 
 
 
 (
h1+h2

h1∙h2
) (

−1

h2
) 0 0

(
−1

h2
) (

h2+h3

h2∙h3
) (

−1

h3
) 0

… … … …

0 (
−1

hi
) (

hi+hi+1

hi∙hi+1
) (

−1

hi+1
)

… … … …

0 0 (
−1

hn
) (

hn+hn+1

hn∙hn+1
)]
 
 
 
 
 
 
 

 ,    Y =  

{
 
 

 
 
Y1
Y2
…
Yi
…
Yn}
 
 

 
 

 ,  

            (6) 

  T1 = 

{
 
 

 
 
F1
F2
…
Fi
…
Fn}
 
 

 
 

 ,   T2 =

{
 
 

 
 
1/h1
0
…
0
…
0 }
 
 

 
 

 ,   T3 =

{
 
 

 
 

0
0
…
0
…

1/hn+1}
 
 

 
 

 

 

Putting {R1} = [D]−1{T1}, {R2} = [D]
−1{T2}, {R3} = [D]

−1{T3}, the solution of Eq. 5 provides the 

ordinates of the line of thrust, collected in the entries of vector Y: 
 

   {Y} = {R1} ∙ K + {R2} ∙ Y0 + {R3} ∙ Yn+1     (7) 
 

Eq. 7 provides the ordinates of the nodes of all ∞3 funicular polygons associated to the load 

condition expressed by vector T1, depending on the three redundant unknowns mentioned 

above. Therefore, in order to compute the ordinates of the nodes of the line of thrust closest to 

the geometrical axis, the three redundant unknowns shall be firstly calculated in such a way as 
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to respect the above requirement of “closeness”. To calculate them, a procedure that 

minimizes the distances between the nodes of the researched thrust line and the centroids of 

the elements, is formulated. 

In order to make the negative signs of this difference irrelevant in the minimization 

procedure, the proposed method computes the function S that expresses the square of the sum 

of the distances ∆Yi between the ordinates Yi of the nodes ‘i’ and the ordinates YGi of the 

centroid Gi of the elements, as follows: 
 

  S = ∑ (∆Yi)
2 =n

i=1 ∑ (Yi − YGi)
2 = ({R1} ∙ K + {R2} ∙ Y0 + {R3} ∙ Yn+1 − {YG})

2n
i=1  (8) 

 

Function S is minimized by expressing the partial derivatives of it, with respect to the three 

unknowns, equal to zero: 
 

     

∂S

∂K
(Y0, Yn+1, K) = 0

∂S

∂Y0
(Y0, Yn+1, K) = 0

∂S

∂Yn+1
(Y0, Yn+1, K) = 0

     (9) 

 

Inputting Eq. 8 into Eq. 9 and solving the partial derivatives, leads to the system of three 

linear equations that follows: 
 

  {

{R1}
2 ∙ K + {R1}{R2} ∙ Y0 + {R1}{R3} ∙ Yn+1 − {R1}{YG} = {0}

{R2}
2 ∙ Y0 + {R1}{R2} ∙ K + {R2}{R3} ∙ Yn+1 − {R2}{YG} = {0}

{R3}
2 ∙ Yn+1 + {R1}{R3} ∙ K + {R2}{R3} ∙ Y0 − {R3}{YG} = {0}

   (10) 

 

which can be rewritten in matrix form as: 
 

  [

{R1}
2 {R1}{R2} {R1}{R3}

{R1}{R2} {R2}
2 {R2}{R3}

{R1}{R3} {R2}{R3} {R3}
2

] ∙ {
K
Y0
Yn+1

} = {

{R1}{YG}

{R2}{YG}

{R3}{YG}
}    (11) 

 

or, more compactly as: 
 

     [N]{P} = {W}      (12) 
 

The solution of Eq. 12 provides the value of the three redundant unknowns, stored in 

vector P: 
 

     {P} = [N]−1{W}      (13) 
 

At this stage, entries of vector Y are reversely computed inputting the values of the three 

unknowns provided by Eq. 13 into Eq. 7. 

Finally, to plot the line of thrust closest to the geometrical axis the abscissa of point A, the 

abscissas of the centroids Gi of the elements and the abscissa of point B are collected, in 

sequence, in vector X and the size of vector Y is expanded by concatenating the ordinate Y0 

of point A, inputted in the first entry, the entries stored in the original vector, and, finally, the 

ordinate Yn+1 of point B, inputted in the last entry (Eq. 14): 
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  X =  

{
 
 

 
 
X0
X1
…
Xi
…
Xn+1}

 
 

 
 

,   Y =  

{
 
 

 
 
Y0
Y1
…
Yi
…
Yn+1}

 
 

 
 

,     (14) 

 

The line of thrust is graphically obtained plotting the poly-line of vertices (Xi,Yi). 

3 EXTENSION TO THE HORIZONTAL LOAD CASE 

In the approach of both linear and nonlinear static analysis, the effect of an earthquake can 

be represented through a pattern of horizontal forces proportional to the vertical ones. The 

procedure that computes the line of thrust closest to the geometrical axis of an arch under 

vertical loads is herein extended in order to also consider such horizontal forces. 

The procedure takes into account the effect of the horizontal forces by exploiting the 

analogy between an inclined plane, on which the structure is “virtually” placed, and the 

inclination of the resultant actions of the vertical and horizontal loads, thus avoiding the 

horizontal forces to be inputted directly into the mechanical model. According to this analogy, 

the effect of an horizontal load acting together with a vertical one can be accounted for by 

rotating the structure at the same angle as that which corresponds to the action line of the 

resultant. 

 
Figure 2: Analogy between inclined plane and seismic effect 

Put simply, let us refer to Fig. 2, which shows the generic element ‘i’ of the mechanical 

model. Fig. 2a shows the actual position of the element, while Fig. 2b shows the same 

element placed on an inclined plane rotated at angle α. 

In the actual position (Fig. 2a), the element is subject to the joined action of the vertical 

force Fi and the horizontal action Hi provoked by the earthquake, the horizontal force 

proportional to the vertical one being computed as: 
 

     Hi = λFi      (15) 
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where λ is the seismic factor, depending on the seismic zone or the seismicity of the territory. 

According to the aforementioned analogy, the joined action of the vertical and horizontal 

forces can be taken into account by replacing them with a “virtual” vertical force Ri whose 

length corresponds to the resultant of the forces Fi and Hi (Fig. 2b):  
 

     Ri =
Fi

cos(α)
      (16) 

 

With this approach, the seismic factor λ corresponds to the tangent of the angle at which 

the element is rotated: 
 

     λ =
Hi

Fi
= tan(α)      (17) 

 

Therefore, the seismic response of the structure for an assigned seismic factor λ is assessed 

by rotating the structure at the angle provided by reversing Eq. (17), that is:  
 

     α = arc tan(λ)      (18) 
 

For clarity, the main steps of the procedure for assessing the seismic response of the structure 

using the FRS Method (Section 2) are listed below: 

1) Compute the angle α (Eq. 18) for the assigned value of the seismic factor λ; 

2) Compute the vertical forces Ri (Eq. 16) acting on each element of the structure; 

3) Rotate the structure at angle α; 

4) Compute the line of thrust closest to the geometrical axis, using the procedure 

described in Section 2. 

4 SAFETY ASSESSMENT 

The procedure described in Section 2 and 3 allows one to compute, for any assigned load 

condition of vertical forces and horizontal forces proportional to the vertical ones, the line of 

thrust closest to the geometrical axis. 

In order to assess if the arch is safe, a comparison between the shape of the line of thrust 

and the profile of the arch must be carried out. However, the line of thrust closest to the 

geometrical axis, provided by the computation, could also be somewhere out of the profile of 

the arch, without mandatorily meaning that the arch is unsafe. 

In fact, the line of thrust closest to the geometrical axis is only one of all ∞3 funicular 

polygons associated to the load condition. According to the static theorem of limit analysis, it 

can be vertically shifted in order to check if it stands within the profile of the arch. By doing 

so, we are exploring all ∞1 funicular polygons parallel to that provided by the computation. 
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Figure 3: Safety assessment procedure 

With this in mind, the authors have developed a procedure to assess the degree of safety of 

an arch based on the “capacity” of the line of thrust closest to the geometrical axis to be 

vertically shifted within the profile of the arch (Fig. 3). Two limit positions can be obtained: 

the lines of thrust, parallel to the original one, tangent to the extrados and intrados of the arch, 

respectively, in at least one point while still remaining contained within its profile. In authors’ 

formulation, these two polygons identify a domain of admissible lines of thrust (i.e. 

equilibrium states) and are the upper and lower bound of this region respectively. In other 

words, this region identifies all the ∞1 lines of thrust that lie within the profile of the arch and 

that, as a consequence, describe different safety conditions. 

In order to assess the degree of safety with this approach, the “full range factor of safety” 

has been defined: it is the ratio between the thickness of the domain and the thickness of the 

arch, in line with the “geometrical factor of safety” proposed by Heyman in [13]. However, in 

authors’ opinion, the factor that best points at the degree of safety of the arch is the reciprocal 

of such coefficient, that we have denoted as “performance factor”: 
 

    p. f. =
Sid

Smin
  0 ≤ p. f. ≤ 1    (19) 

 

It is worth noting that, in line with the formulation of the procedure above described, the 

thickness smin of the arch to be inputted in Eq. 19 is the minimum vertical thickness among all 

the thicknesses measured in correspondence to the action lines of loads and that also the 

thickness of the domain, sid, is vertically measured, and, for this reason, is a constant value. 

According to Eq. 19, the safest arch is that in which the line of thrust can be vertically 

shifted upwards and downwards so that the distance between the upper and lower thrust lines 

is exactly equal to the thickness of the arch (sid = smin). It occurs in the solely case of an 



S. Galassi, G. Tempesta 

 9 

inverted catenary-shaped arch [14] and provides the performance factor equal to 1. 

Conversely, a performance factor equal to 0 points to an unsafe arch, because the upper bound 

and the lower bound thrust lines coincide and identify a domain of zero thickness. Therefore, 

summarizing, the performance factor ranges in the narrow interval [0,1], thus indicating 

intermediate safety levels. 

In the case of an arch subject to a predetermined vertical load condition and horizontal 

forces computed based on an assigned seismic factor λ, Eq. 19 still holds and the safety level 

can still be assessed using the FRS approach. 

However, in order to assess the seismic vulnerability level of an arch, that is the “seismic 

capacity” of the structure, the limit value of λ (hereafter referred to as λlim) is required to be 

computed. 

In the approach of standard limit analysis, λlim is computed as the load multiplier that 

activates the collapse mechanism. Instead, with our approach, the seismic factor λ is 

maximum (i.e. λ = λlim) when the thickness of the domain of safety is zero: 
 

    λ = λlim   →   α = αmax  ∶  sid = 0     (20) 
 

Therefore, in order to compute λlim, an iterative analysis that runs repeatedly the four-step 

procedure described at the end of Section 3, is proposed. Such a procedure could be executed 

increasing, step by step, the angle of the plane on which the arch stands. 

However, it is worth noting that the horizontal forces being simulating the seismic action, 

the seismic factor λ ranges in the interval [0,1] and, in agreement with Eq. 18, the inclination 

angle of the structure ranges in the interval [0°,45°] accordingly. Therefore, in order to obtain 

a more accurate value of the limit seismic factor λlim, we have preferred to use the bisection 

method in such an interval. The iterative procedure converges when the thickness of the 

domain becomes zero. 

5 NUMERICAL EXAMPLES 

5.1 Arch subject to vertical loads 

In this section the safety level of a non-symmetric segmental arch is investigated. The arch 

under study covers a span of 4.70 meters, has an angle of embrace of 135° (with the right 

abutment positioned at 25° and the left one at 165° from the horizontal reference line), has a 

constant thickness of 30 cm and is subdivided in 20 elements, each one subject only to its 

self-weight. Although the specific weight used for the computation is 18kN/m3, it is also 

worth noting that this value is irrelevant, since all the elements have the same size. 

Figure 4 shows the line of thrust closest to the geometrical axis (the thicker poly-line) 

which is everywhere within the profile of the arch. Furthermore, the upper and lower bound 

lines of thrust that border the domain of safety are also shown. The computations, performed 

with the computer program ArchiVAULT, in which the procedure has been implemented, have 

provided the vertical thickness of the domain of 18.52 cm, the full range factor of safety of 

1.6177 and the performance factor of 0.6182, a value that points to a rather safe arch. 
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Figure 4: Safety assessment of an arch only subject to its self-weight 

5.2 Arch subject to vertical and horizontal forces 

According to the value of 0.6182 of the performance factor obtained for the load case of 

only self-weight in the previous section, the arch seems to be capable of supporting also a 

pattern of horizontal forces and, therefore, to resist a seismic event. 

In this section the safety verification of the arch subject to its self-weight and a set of 

horizontal forces proportional to it is carried out and the limit value of the seismic factor is 

computed considering an earthquake acting both in +X and –X direction. 

In order to simulate the action of horizontal forces in +X direction, the plane on which the 

structure stands has been tilted clockwise (Fig. 5a). The maximum angle in correspondence to 

which the thickness of the domain becomes zero is computed to be 19.88° (indeed, in Fig. 5a 

the upper and lower bound lines of thrust coincide). It is worth noting that, in correspondence 

to this value, the performance factor mandatorily becomes zero and the limit seismic factor is 

0.3616.  

Instead, in order to simulate the action of horizontal forces in -X direction, the plane on 

which the structure stands has been tilted counterclockwise (Fig. 5b). The maximum angle in 

correspondence to which the thickness of the domain becomes zero is computed to be 9.88°. 

Accordingly, the limit seismic factor is 0.1742, a much lower value than that obtained for the 

rightward forces analysis and, therefore, a much lower seismic capacity is shown. 

 
Figure 5: Safety assessment of an arch subject to its self-weight and a horizontal pattern of forces rightward (a) 

and leftward (b) 
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6 CONCLUSIONS 

- In accordance with Heyman, collapse in masonry arches is not generally provoked by 

material failure because stresses are always rather small. Accordingly, to assess the 

safety a procedure based on the comparison between the shape and position of the 

thrust line and the profile of the arch has been formulated. 

- The procedure, denoted as FRS Method, has been developed to compute the line of 

thrust closest to the geometrical axis of an arch subject to a set of vertical loads, the 

geometrical axis being represented through the poly-line that joins the element 

centroids. 

- This procedure makes use of the finite difference method to minimize the distance 

between the ordinates of the element centroids and the ordinates of the nodes of the 

thrust line. 

- Unlike other previous or recent methods in the literature, our method computes the 

“exact” solution avoiding both proceeding iteratively by trials and errors and the use 

of optimization techniques. 

- Being mainly interested in assessing the behavior of arches in seismic regions, the 

FRS procedure has been extended in order to include the presence of horizontal 

forces proportional to the vertical ones. 

- The value of the horizontal forces is computed, in an innovative way, exploiting the 

analogy between the inclined plane on which the structure stands and the inclination 

of the resultant of the vertical and horizontal forces. Thanks to this trick, the 

procedure, that minimizes the vertical distances between the ordinates of the element 

centroids and the ordinates of the nodes of the thrust line, still holds and can easily be 

exploited also for the seismic verification. 

- The safety level of the arch is assessed defining the domain of equilibrium lines of 

thrust and computing the performance factor (PF), that is the reciprocal of the full 

range factor of safety (FRS). 

- The domain of equilibrium lines of thrust and the FRS are exploited to estimate the 

seismic vulnerability of an arch by computing the limit seismic factor, which is 

achieved when the thickness of the domain of safety (i.e.: the PF) becomes zero. 
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