The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022
5-—9 June 2022, Oslo, Norway

DEEP NEURAL NETWORKS FOR GEOMETRIC
MULTIGRID METHODS

Nils Margenberg', Robert Jendersie?, Thomas Richter?, Christian Lessig>

'Helmut-Schmidt-University, Holstenhofweg 85, Hamburg, 22043, Germany

20tto-von-Guericke University, Universitétsplatz 2, Magdeburg, 39106, Germany

Key words: FEM, Geometric Multigrid Methods, Deep Neural Networks, Scientifc Machine
Learning

Abstract. We investigate scaling and efficiency of the deep neural network multigrid method
(DNN-MG), a novel neural network-based technique for the simulation of the Navier-Stokes
equations that combines an adaptive geometric multigrid solver with a recurrent neural network
with memory. The neural network replaces in DNN-MG one or multiple finest multigrid layers
and provides a correction for the classical solve in the next time step. This leads to little
degradation in the solution quality while substantially reducing the overall computational costs.
At the same time, the use of the multigrid solver at the coarse scales allows for a compact network
that is easy to train, generalizes well, and allows for the incorporation of physical constraints.
In this work, we investigate how the network size affects training and solution quality and the
overall runtime of the computations.

1 Introduction

In the last decade, deep neural networks had great success with tasks such as machine trans-
lation and image classification and recently also showed surprising effectiveness for even more
challenging problems such as image generation and playing games, cf. [§]. Underlying these
results is the ability of deep neural networks (DNNs) to accurately approximate high dimen-
sional mappings when sufficiently deep and complex network architectures are used, training is
performed on large or very large amounts of data, and powerful hardware, such as GPUs, are
employed.

The aforementioned success of deep neural networks and related techniques leads to a growing
interest to apply these also to problems in computational science and engineering, including for
the simulation of partial differential equations (PDEs). Raissi, Karniadakis and co-workers [15]
16|, for example, proposed physics-informed neural networks (PINNs) that directly learn the
mapping from the input of a potentially parametric PDE to its solution. Kasim et al. [7] showed
the effectiveness of deep neural networks to approximate a wide range of partial differential
equations when also the network architecture is part of the training. Various works [10} |11
9] recently also developed frameworks for operator learning. A natural connection between
neural networks and dynamical systems has been observed for example by E [4] and Haber and
Rothutto [5, 3]. This can also be exploited when neural networks are used for the solution of

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

PDESs, for example to improve the stability of the learning. A more detailed discussion of related
work can, for example, be found in [13].

A principle question for the applicability of deep neural networks for PDEs is how the equa-
tions themselves and known results on their solutions should be incorporated. Furthermore,
there exists already a large number of numerical schemes for partial differential equations and
one has to ask under what circumstances a neural network can outperform these. To address
these questions, we investigated in our previous work how an adaptive multigrid solver, i.e. one
of the most efficient classical techniques for partial differential equations, can be combined with
deep neural networks for the solution of the Navier-Stokes equations. The resulting deep neural
network multigrid method (DNN-MG) |13] combines a geometric multigrid solver with a recur-
rent neural network with memory to replace computations on one or multiple finest mesh levels
with network based corrections. DNN-MG exploits the typical structure of multigrid meth-
ods with a hierarchy of finite element meshes and function spaces. In contrast to the typical
application of multigrid, the finite element problem is not solved on the finest mesh level but
on an intermediate one. Even finer levels are only processed by the neural network. Through
this, DNN-MG achieves a significant speed-up with only a small degradation in quality while its
design for small patches ensures that the technique generalizes well and is comparatively easy
to train. The divergence freedom of learned corrections for the Navier-Stokes equations was
investigated in |12].

In this work, we investigate the scalability with respect to the size of the neural network.
Our results show that larger networks are able to capture the flow behavior better and improve
important flow quantities. The increased network size has a minor impact on training and test
time. DNN-MG compared to a pure numerical simulation can even reduce the simulation time.

2 Deep neural network multigrid solver

In this section we give a short summary of the deep neural network multigrid solver [13]. Al-
though it is applicable to other equations, we will consider it in the context of the incompressible
Navier-Stokes equations.

2.1 Finite Element Discretization of the Incompressible Navier-Stokes equations
The incompressible Navier-Stokes equations are given by

1

V.v=0, atv—l—(v-V)v—Re

Av+Vp=f onl0,T]xQ (1)
Here v: [0, T] x Q — R? is the velocity, p: [0, 7] x © — R the pressure, Re > 0 the Reynolds
number, and f an external force. At time ¢ = 0 it holds v(0, -) = vy(+), on the Dirichlet boundary
D indicates an inflow profile and
on outflow boundaries I'” we consider the do-nothing outflow condition é(ﬁ -V)v —pit =0,
which is a well established model for artificial boundaries [6]. By 7 we denote the outward facing
unit normal on the boundary 02 of the domain.

We use a weak finite element formulation to discretize with vy, ¢p € Vj, = [W,gQ)]d and
test functions py, &, € Ly = Wf). W,(LT) is here the space of continuous functions which are

polynomials of degree r on each element T € €2, and €}, is the mesh domain. The equal order

I'P we prescribe v = v, where v” = 0 on fixed boundaries or v

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

finite element pair V;, x L; that we use does not fulfill the inf-sup condition. We hence use
stabilization terms of local projection type [1] with parameter ar = g - Re - h3- and projection
T W}E2) — W,El) into the space of linear polynomials.

We use the second order Crank-Nicolson method for time discretization and in the n-th time
step we determine the state z,, = (v}, ..., vf.f, pr) given by an algebraic system of equations

where the right hand side f,, also depends on the previous state x,_1, details are given in the
previous publications [13] |12]. Equation is a large nonlinear system of algebraic equations
that is solved by Newton’s method with the initial guess :c%o) = (Un—1,Pn—1). Each Newton step
takes the form

A (DY@ = f— A (20D), 20 = 207D 4O for 1 =1,2,. .. (3)

A’ (x(lfl)) is the Jacobian of A at 21 which can be computed analytically for this problem,
cf. |17, Sec. 4.4.2].

2.2 Deep Neural Network Multigrid Solver

For the solution of the Newton iteration described above we use GMRES and the geometric
multigrid method as preconditioner, leading to a highly efficient solver. However, multiple
GMRES steps and one up- and down-sweep of the multigrid method per GMRES step still
result in a significant amount of computations. Considering the multigrid hierarchy with levels
1,2,..., L most of the computation time (about 75%) is thereby spent on the finest mesh level
(denoted as L). Solving on an additional level L + 1 therefore leads to a substantial increase in
the computational costs.

The principle idea of the deep neural network multigrid solver (DNN-MG) is to advance in
time using the Crank-Nicolson method on mesh level L, using the multigrid hierarchy on levels
1,2,..., L for solving the linear systems, and then correct this coarse solution of the Navier-
Stokes equations on one (or potentially multiple) finest mesh levels L+ 1 with a neural network.
An overview is provided in Algorithm[I] The network correction on level L+1 enters the assembly
of the right hand side at the next time step so that the enriched solution is preserved in time (see
our previous work [13| Fig. 1] for further details). For such a correction to be meaningful, the
network has to be able to (largely) retain the accuracy of the multigrid computation. Through
the coarse multigrid solution as well as the nonlinear residual, the network has, however, highly
informative input that makes this viable; in other words, the classical coarse solution as well as
its error on finer levels provide a strong prior for the network correction.

To ensure our network correction can be computed efficiently and to facilitate generalization,
we use the underlying mesh to subdivide our domain into patches, e.g. a mesh element or a
structured assembly of a few adjacent elements, and apply the network on these. This greatly
aids generalizability since the network no longer needs to correct the general flow and instead
only local corrections for each patch are required. Furthermore, the local setup simplifies training
and ensures that a large training corpus is given by just a few example flows. For the neural
network, we use a recurrent one with memory, more specifically GRUs, so that complex flow
behavior can be predicted and coherence in time is ensured.

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

Algorithm 1 DNN-MG for the solution of the Navier-Stokes equations. Lines 6-9 (blue) provide
the modifications of the DNN-MG method compared to a classical Newton-Krylov simulation
with geometric multigrid preconditioning.

1: for all time steps n do

2: while not converged do > Newton’s method for Eq. [2]
3: dz; = MULTIGRID(L, A", b}, 02;) > Geometric multigrid
4: Zitl & 2z + €0z

5: end while

6: O = P(v)) > Prolongation on level L + 1
7: A — N (05 Qp, Qpiq) > Prediction of velocity correction
8: bty < Rhs(05™ +di™, fo, fas1) > Set up rhs for next time step
9: by — R(b) > Restriction of rhs to level L
10: end for

In summary, the key features that make DNN-MGs efficient and flexible are:
(a) patchwise operation to ensure generalizability to unseen flow regimes and meshes;
(b) GRUs with memory to capture complex flow behavior and ensure coherence in time;

(c) use of the nonlinear residual in Eq. 2| as network input to have rich information about the
sought correction.

Algorithmically, DNN-MG works as follows, see Alg.[I] The neural network-based correction
is applied at the end of every time step after we computed an updated velocity vﬁ on level L
(Alg. |1} 1. 2-4). For this, vl is first prolongated to level L+ 1, yielding o211 := P(vk). Then we
compute the input to the neural network, which is evaluated individually for each patch P; (a
mesh element on level L in the present work). The inputs to the neural network are thereby also
entirely local and include the residual of Eq. (2) on level L + 1, the prolongated velocity o-+!,
geometric properties such as the patch’s aspect ratio, and the Péclet number over the patch.
The network predicts a velocity correction dLJrl and notably does not include the pressure. It
enters only through the fine mesh residual, Wthh is part of the input.

At the end of the neural network-based correction a provisional right hand side b1} =
Rhs(0Et" + dET fr, fas1) of (3) is computed on level L + 1 and then restricted to level L. The
corrected by, | is then used in the next time step, which is again improved by a neural network-
based correction at the end of the step. Through this, the neural network based correction
propagates back into the Newton solver and improves the numerical solution.

Before we can use DNN-MG, we train the network with a high fidelity finite element solution
on the fine mesh level L 4 1 using the loss function

Lot oFHL gb Ly Z Z Hvﬁﬂ (v;) —i—dTLlH)H?Q(Pi). (4)
n=1P,eQr41

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

Here N is the number of time-steps in the training data. Since DNN-MG operates strictly local
on patches, the loss accumulates the local residuals for each patch in the second sum. For a
detailed description and results showing the generalizability, efficiency and efficacy, we refer to
(13, [12].

3 Numerical experiments

In this section we investigate the scalability of DNN-MG with respect to the size of the neural
network both in terms of its computational efficiency and the quality of the results.

3.1 Setup

As test problem we considered the classic benchmark of a laminar flow around an obstacle [19)
governed by the Navier-Stokes equations. Analogous to [13] and different from [19] we use elliptic
obstacles with varying aspect ratios instead of discs. This avoids that the neural networks can
memories flows and perform well in the experiments.

The neural networks of DNN-MG used for our experiments had the same overall structure
as in our previous work [13] with GRU cells with memory at their heart. In contrast to [13],
however, we replaced the convolutional layer with a dense one since it slowed down training
considerably with only a negligible effect on the effectiveness of the network. To investigate the
effect of the neural network size we parameterized the network by the hidden state size of the
GRU-cells (32, 64) and the number of GRUs stacked on top of each other (1, 2, 3). The resulting
network sizes are reported in Tab.

We use the finite element library Gascoigne 3d [2] for numerical simulations and PyTorch [14]
for the neural networks. The training data was obtained in the same manner described in
previous works by running resolved finite element simulations consisting of 2560 elements and
8088 degrees of freedom and localizing the data to the time steps and to the patches of the mesh.
The simulations were carried out on a coarser mesh with 640 elements resulting 2124 degrees of
freedom. The training of the networks was performed on a NVIDIA Tesla V100. The numerical
simulations were performed on the same machine equipped with 2 Intel Xeon E5-2640 v4 CPUs
and running on 20 cores.

3.2 Training performance

The convergence behavior of the training for the different network configurations is reported
in Fig. |1} We see that all networks show a similar behavior although the larger networks converge
slightly faster and the loss is generally lower. The strongest effect on this behavior has the size
of the hidden state with the GRUs of size 64 x n performing best.

In Tab. [I] we see that the training time scales very well with the network size. Although the
number of parameters is increased by almost one magnitude between the networks 32 x 1 and
64 x 3, the training time grows only by 35%.

3.3 Application performance

Once trained, the network is used in the DNN-MG solver described in Section [2 Table
collects the runtimes for the overall simulation over 1050 time steps as well as the time required

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

—32x1 64 x1—32x 2 64x2—32x3—64x3

2 L ‘] T
10! | E I]
L | o |
1071 | | | | L 10 L1 | | | L
0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000

Figure 1: Average training (left) and validation (right) loss of different GRU-cells per patch
(smoothed with gnuplots smooth bezier curve): A cell with dimension m x n consists of n GRUs
stacked on top of each other, where the hidden states h are of size m.

for evaluating the neural network in DNN-MG. In most cases, the neural network contributes
less than 4% to the overall computational time. We further note that about 1.5s of the network
evaluation time must be attributed to data processing and communication between the finite
element library and PyTorch. In an optimized implementation this time could most likely be
reduced substantially.

The observed scaling in Tab. [2| does not always agree with what one would expect from the
neural networks sizes in Tab. [l There are multiple reasons for this. First, when the neural
network correction is highly inaccurate then we need more Newton iterations in the next time
step, resulting in higher runtimes such as for the 32 x 1 network. High quality predictions, on the
other hand, improve the runtimes and for the 64 x 3 GRU-cell, for example, the time associated
with the assembly routines was reduced by a factor of 4. Second, if the network deteriorates
the solution and convergence of the Newton iteration is too slow we switch off the prediction for
this time step. If this happens often, it leads to significantly less network evaluations and thus
reduces runtimes of the network (this causes the spikes e.g. for 64 x 1, 64 x 2) although at the
price of a loss in accuracy.

In summary, the networks take up only a small fraction of the runtime and may even reduce
the overall runtime through faster convergence of the Newton iteration. For the largest network
64 x 3, for example, we achieve a speedup of almost 100% compared to the solution without a
network. However, an ill-suited network can also negatively affect the convergence and hence
slow down computations.

3.4 Accuracy of the networks

To compare the approximation power of the different neural network configurations, we eval-
uate the solution to the benchmark problem with respect to three functionals and also compute
the error in the computed velocities and pressures. The first functional we consider is the squared

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

x10%
1 ‘ .

GRU dims #parameters time 08l / . h
32x1 8544 (1.00) 7039s (1.00) - —
64x1 23232 (272) 7238s (L.02) 06[1T =
32x2 14688 (1.72) 80555 (1.14) 4| | £
64x2 47808 (5.60) 8335s (1.18) e 32xn s
32x3 20832 (2.44) 9158s (1.30) 0.2[. 64 X 1 :
64x3 72384 (8.47) 9573s (1.36) . | ‘ |

#%arametélers (x 1%4)

Table 1: GRU dimensions, parameters and the training time. In parentheses we list the factor
compared to GRU 32 x 1.

divergence
Ta(0(t)) = /Q IV - o(#)[2 da. (5)

We know that the exact solution should satisfy Jgiy(v) = 0. However, since our finite element
approach is not strictly divergence free and since we are adding artificial stabilization terms, the
numerical solution will carry a divergence error that is also present in the training data. Hence,
also the neural network correction will not be exactly divergence free although it should not
deteriorate it further. As suggested in [19], the second and third functional we are considering
are the drag and lift forces acting on the obstacle

Taag i (00 p(8) = = | (- 9(0) = pl0)])it- €, (®
or i€

where we denote by I' the boundary of the obstacle, by 7 the unit normal vector pointing into

the obstacle and by €; = €, and € = €, the Cartesian unit vectors.

Figure [2[shows all three functionals over the temporal interval [9s,10s], where the solution
reached the periodic limit cycle (the phase were adjusted so that they agree on the first maximum
in [9s,10s]). We use a high resolution simulation MG(L + 1) as reference and MG(L), that is
the uncorrected simulation on level L, as base line. We observe that most functional outputs
are significantly improved by DNN-MG with the best performing neural networks (cf. Table .
Nearly exact values are obtained in case of the lift functional (right) but also drag (middle)
is getting close to the reference value, in particular for 64 x 3. For the divergence Jg;, the
improvement is more modest although compared to our previous results [12] ([12, Fig. 1] in the
corresponding preprint) with a network with 32 x 1 GRU cells we still obtain a lower divergence.

In Fig. [3] we show the relative I errors of the velocity and pressure with respect to the fine
mesh solution MG(L + 1). The results demonstrate that the largest network 64 x 3 is able to
produce robust and accurate predictions for large time intervals. This network is also able to
substantially reduce the phase error that results from the interplay between spatial and temporal
discretization [18} |13] and leads to lower frequency oscillations on coarser meshes. Our previous
results and the smaller networks show the same effect for the DNN-MG approach (low frequency

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

type runtime NN-Eval 20 - |

MG(L +1) 538.45s (0%) —_ ——32Xxn

MG(L) 453.06s (0%) = #6064 xn

32x1 705.53s 21.84s (3.1%) £ ol |

64x1 284.63s 2.85s (1.0%) =

32x2 257.72s TA4ds (2.9%))

64x2 224.95s 4.14s (1.8%) -

32x3 200.42s 11.01s (5.5%) - | |

64x3 230.6s 547s (2.3%) 2 4 6

#parameters (x10%)

Table 2: Timing results for the simulations with the different GRUs we tested with runtime
referring to the timing of the whole simulation and NN-eval the time spent on evaluating the
neural network. In general ~ 1.5s of the latter is spent on data processing. In parentheses we
specify the time taken relative to the runtime in percent.

oscillations in Fig.|3|) but using a larger neural network cures this defect. We also refer to Fig.
which shows (e.g. in the case of the lift functional) that the GRU 64 x 3 solution is almost
perfectly in phase with the fine mesh solution MG(L + 1) while a lower frequency is found for
the coarse mesh MG(L).

4 Discussion

The presented results show the scalability of the DNN-MG method with respect to the net-
work size. We observed that larger networks lead to DNN-MG simulations that capture flow
behavior more accurately. At the same time, the increased number of parameters in the network
has little impact on the training times and can (through the faster convergence of the Newton
solve) even improve the runtime performance compared to a standard MG solver. Smaller net-
works are often not able to capture the flow behavior and even render the solution useless at
times. In some cases, they also have a negative impact on the runtime performance due to the
interaction of the neural network and the Newton solve.

The model problem of a laminar flow around an obstacle that we considered is relatively
simple and it might appear that a multigrid solver is not necessary in this case. However, the
structure of the multigrid solver with different mesh levels is a necessary ingredient for the
DNN-MG method. The multigrid structure will, furthermore, ensure optimal scaling for larger
problems and especially in 3d, regimes we will consider in future work.

5 Conclusion

We have investigated the scalability of the DNN-MG method with respect to the neural
network size in terms of accuracy, runtime, and training time. We showed that larger networks
are able to more accurately predict flow features and this allowed us to substantially improve
over previous results for the DNN-MG method. In particular, our largest network 64 x 3 is

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

e MG(L+1) = MG(L)——32Xx 2~ 64 x2—+32x 3—+64 x 3

T T T T T T T

05 [| 05 [: |

10 |- 40.45 =
0.4 10 / |

5| N |

0.35 | B

o —e —e— —e— —¢ —-0.5 N
| | |

| | | | | |
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

Figure 2: Divergence Jaiv(v(t)), drag Jarag(v(t), p(t)), lift Jig(v(t), p(t)) (from left to right) for
the coarse multigrid solution MG(L), a high fidelity finite element reference solution MG(L +1)
and DNN-MG solutions for different GRU configurations.

able to recover the flow frequency of the high fidelity simulations and through this we obtained
velocity and pressure errors not attainable before. The divergence is now also at least as good
as for the standard multigrid simulation without any additional effort, cf. [12]. Importantly, the
improved accuracy comes at virtually no additional cost in terms of runtime and are now able
to improve over a standard multigrid simulation by almost 100%.

The presented results lead to further research directions we would like to investigate in
the future. Omne question is when the network size saturates and how the required amount
of training data scales with the number of network parameters. The presented results in 2D
provide also a promising basis for a hybrid finite element / neural network simulation for the
Navier-Stokes equations in 3D which we would like to consider in the future. Finally, our
practical findings provide a strong motivation to address more theoretical questions such as the
stability, consistency and convergence of DNN-MG.

Acknowledgement NM acknowledges support by the Helmholtz-Gesellschaft grant number
HIDSS-0002 DASHH.

Conflict of Interest On behalf of all authors, the corresponding author states that there is
no conflict of interest.

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

Drag Lift Divergence
type min max mean amp min max mean amp Freq | max V-v mean V -v
MG(L +1) | 0.4332 0.5005 0.4668 0.0673 | -0.5394 0.5358 -0.0018 1.0752 | 3.9823 2.4384 2.0343
MG 0.3588 0.3966 0.3777 0.0378 | -0.4281 0.4242 -0.0019 0.8523 | 3.6530 5.6041 4.2733
32x1 0.3565 0.4505 0.4035 0.0941 | -0.5101 0.4479 -0.0311 0.9580 | 3.6437 5.7798 4.5833
48 x 1 0.3697 0.4814 0.4256 0.1116 | -0.5463 0.5362 -0.0051 1.0824 | 3.8627 10.5135 7.1490
64 x 1 0.3683 0.5176 0.4430 0.1493 | -0.5380 0.5505 0.0062 1.0884 | 3.9301 12.5491 8.2422
32 x2 0.3296 0.4273 0.3785 0.0977 | -0.3725 0.6077 0.1176 0.9802 | 3.5533 8.0235 5.3722
48 x 2 0.3737 0.5029 0.4383 0.1292 | -0.5352 0.5494 0.0071 1.0846 | 3.8462 10.2259 5.5768
64 x 2 0.3807 0.4827 0.4317 0.1020 | -0.5444 0.5563 0.0060 1.1007 | 3.7559 5.3619 3.9398
32x3 0.3080 0.4604 0.3842 0.1525 | -0.4108 0.3984 -0.0062 0.8092 | 3.2710 14.9148 7.0485
48 x 3 0.3813 0.4795 0.4304 0.0982 | -0.4950 0.5019 0.0035 0.9969 | 3.8095 4.9454 3.3824
64 x 3 0.3648 0.4965 0.4306 0.1317 | -0.5466 0.5455 -0.0006 1.0921 | 3.9130 7.8864 3.9800

Table 3: Maximum, minumum values, mean and amplitude of oscillation for drag and lift
functionals, mean and maximum values of the divergence as well as frequency of the periodic
solution. We indicate the results for the different finite element solution on coarse and fine
mesh finite element simulation and for the different hybrid finite element / deep neural network

approaches.
—— MG =32 x2——64 X232 x 364 x 3|
‘ 0.5F ‘ ‘ =
1 [= . N (] -
i " : 04| -
0.3 8
0.5 8
0.2 8
| | 0.1} | [

|
0.4

|
0.2

0

|
0.6

|
0.8

1

0

|
0.2

|
0.4

| |
0.6 038

1

Figure 3: Relative errors for pressure (left) and velocity (right) compared to the reference
solution on level L + 1 for the coarse solution on level L and DNN-MG with different neural

network configurations.

10

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

References

[1]

S

R. Becker and M. Braack. “A Finite Element Pressure Gradient Stabilization for the Stokes
Equations Based on Local Projections”. In: Calcolo 38.4 (2001), pp. 173-199.

R. Becker et al. The Finite Element Toolkit GASCOIGNE 3D.

B. Chang et al. “Reversible Architectures for Arbitrarily Deep Residual Neural Networks”.
In: AAAI Conference on Artificial Intelligence. 2018.

W. E. “A Proposal on Machine Learning via Dynamical Systems”. In: Communications
in Mathematics and Statistics 5.1 (2017), pp. 1-11. URL: https://doi.org/10.1007/
s40304-017-0103-z.

E. Haber and L. Ruthotto. “Stable architectures for deep neural networks”. In: Inverse
Problems 34.1 (Dec. 2017), p. 014004. URL: https://doi.org/10.1088%2F1361-6420%
2Faa9a90.

J. G. Heywood, R. Rannacher, and S. Turek. “Artificial Boundaries and Flux and Pressure
Conditions for the Incompressible Navier-Stokes Equations”. In: Int. J. Numer. Math.
Fluids. 22 (1992), pp. 325-352.

M. F. Kasim et al. “Up to two billion times acceleration of scientific simulations with deep
neural architecture search”. In: (Jan. 2020). eprint: 2001 .08055.

Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (May 2015),
pp- 436-444. 1ssN: 0028-0836. URL: http://www.nature.com/articles/nature14539.
Z. Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020.
arXiv: 2010.08895 [cs.LG].

Z. Li et al. Neural Operator: Graph Kernel Network for Partial Differential Equations.
2020. arXiv: 2003.03485 [cs.LG].

L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators.
2020. arXiv:|1910.03193 [cs.LG].

Nils Margenberg, Christian Lessig, and Thomas Richter. “Structure Preservation for the
Deep Neural Network Multigrid Solver”. In: etna 56 (2021), pp. 86-101. 1sSN: 1068-9613,
1068-9613. DOI: |10.1553/etna_vol56s86.

Nils Margenberg et al. “A Neural Network Multigrid Solver for the Navier-Stokes Equa-
tions”. In: Journal of Computational Physics 460 (July 1, 2022), p. 110983. 1sSN: 0021-9991.
pOTI: [10.1016/73. jcp.2022.110983|

Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS Autodiff Workshop.
2017.

M. Raissi and G. E. Karniadakis. “Hidden physics models: Machine learning of non-
linear partial differential equations”. In: Journal of Computational Physics 357 (Mar.
2018), pp. 125-141. 18sN: 0021-9991. URL: https://www.sciencedirect.com/science/
article/pii/S0021999117309014.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378 (2019), pp. 686—
707. 1SSN: 0021-9991. URL: http://www.sciencedirect.com/science/article/pii/
S50021999118307125.

11

https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1088%2F1361-6420%2Faa9a90
https://doi.org/10.1088%2F1361-6420%2Faa9a90
2001.08055
http://www.nature.com/articles/nature14539
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/1910.03193
https://doi.org/10.1553/etna_vol56s86
https://doi.org/10.1016/j.jcp.2022.110983
https://www.sciencedirect.com/science/article/pii/S0021999117309014
https://www.sciencedirect.com/science/article/pii/S0021999117309014
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125

Nils Margenberg, Robert Jendersie, Thomas Richter, Christian Lessig

[17] T. Richter. Fluid-Structure Interactions. Models, Analysis and Finite Elements. Vol. 118.
Lecture Notes in Computational Science and Engineering. Springer, 2017.

[18] Thomas Richter and Nils Margenberg. “Parallel Time-Stepping for Fluid-Structure Inter-
actions”. In: Mathematical Modelling of Natural Phenomena (Jan. 14, 2021). 1SSN: 0973-
5348, 1760-6101.

[19] M. Schéfer and S. Turek. “Benchmark computations of laminar flow around a cylinder”.
In: Flow Simulation with High-Performance Computers II. Ed. by E.H. Hirschel. Notes
Numer. Fluid Mech. 52. Vieweg, Wiesbaden, 1996, pp. 547-566.

12

	Introduction
	Deep neural network multigrid solver
	Finite Element Discretization of the Incompressible Navier-Stokes equations
	Deep Neural Network Multigrid Solver

	Numerical experiments
	Setup
	Training performance
	Application performance
	Accuracy of the networks

	Discussion
	Conclusion

