

NASA Ames Research Center Contributions to the PADRI workshop

- Gaetan Kenway Jeffery Housman Cetin Kiris
- Computational Aerosciences Branch NASA Ames Research Center

November 29, 2017

- PADRI: A common platform for validation of aircraft drag reduction technologies
- . Generic strut-braced wing configuration
- Slightly swept wing for low cruise Mach number (0.72)
- Simplified geometry without engines, empennage or flap-track fairings
- Significant wave-drag and flow separation at strut-wing intersection
- . Focus of this workshop is to redesign the junction

MDO for Aircraft Configurations with High-fidelity (MACH)

Python user script

Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer interface		Aerostructural solver		Geometry modeler
<i>pyOptSparse</i>		<i>AeroStruct</i>		<i>DVGeometry/GeoMACH</i>
Common interface to various		Coupled solution methods and coupled		Defines and manipulates
optimization software		derivative evaluation		geometry, evaluates derivatives
SNOPT	Other optimizers	Flow solver <i>ADflow</i> Governing and adjoint equations	Structural solver <i>TACS</i> Governing and adjoint equations	

- . Underlying solvers are parallelized and compiled
- . All communication done through memory
- . Easy-to-use Python scripting interface
- . Only using aerodynamic design capacity for PADRI

ADFlow

- Automatic-Differentation Flow Solver
- Second order finite volume RANS
- . Standard SA turbulence model
- . Point-matched multiblock and overset grids
- Multiple solvers: Runge Kutta (RK), DDADI, approximate Newton Krylov (ANK) and Newton Krylov (NK) algorithms
- DADI, ANK and NK used for optimization
- . Extremely fast convergence for small design changes

Common Research Model (DPW6)

MIT D8 Double Bubble

ADFlow Solver Convergence

 Combination of three algorithms: Diagonalized Alternating Direction Implicit (DADI), Approximate Newton-Krylov (ANK) and Newton Krylov (NK)
 Newton-Krylov fully couples flow and turbulence variables

Mesh Deformation

- . Inverse-distance weighting method
- . Parallel, fast and highly robust for large deformations

- . Free-form deformation (FFD) volume approach
- . Parametrize the change in geometry
- . Embed discrete geometry into trivariate B-spline volumes
- . Point-inversion algorithm to find u-v-w coordinates
- . Control point motion smoothly controls the underlying geometry
- . Sub-FFD approach for localized control

Overset Meshes

- Surface patches
 generated with Pointwise
- Chimera Grid Tools (CGT)
 for volumetric extrusion
- . Hyperbolic mesh extrusion
- Consistent refinement
 between levels

Mesh	# Wing Chordwise	# Wing Spanwise	# Truss Chordwise	# Truss Spanwise	Total Cells	Drag (counts)
L1	64	202	96	110	7.4 M	232.42
L1.4	88	282	134	154	19.2 M	224.61
L2	126	404	192	220	57.3 M	220.87

Baseline Configuration Grid Convergence

Baseline Solutions (Shock Sensor)

Optimization Problem Description

- Single point drag minimization (CL=0.417)
- . Design Variables: FFD Shape position + angle of attack
- Flight condition: M=0.72, altitude=30,000 ft, alpha=1.0

- Case 1
- Nominal design problem

Case 2

 Nominal design problem + fixed trailing edge

Case 3

. Full truss redesign

Optimization Design Variables

- . Only truss is modified
- . Follows workshop guidelines for design region (Case 1 and 2)
- . Orange control point sphere are modified

Optimization Constraints

. Explicit "toothpick" thickness constraints

Optimization Constraints

- Linear constraints enforce fixed leading and (optionally) trailing edge
- These constraints are enforced exactly by the optimizer

Optimization Convergence History

Grid Convergence Study

Optimized L1 shape analyzed using finer meshes

Grid Convergence Study

- . Nearly constant drag deltas
- . L1 mesh capturing the critical flow features

Shock Surface Visualization

- . Case 1 successfully removes shock in design region
- . Full truss redesign has weak shock on lower surface

Separated Flow

- All designs reduce the amount of separated flow at the strutwing junction
- Red iso-contour at Vx=-.0001

Separated Flow

- All designs reduce the amount of separated flow at the strutwing junction
- . Red iso-contour at Vx=-.0001

Lift Distributions

- All optimized designs reduce truss lift
- Nearly elliptical lift distribution and increased angle of attack for case 3
- Negative truss lift is optimal!

Off-Design Performance

Consistent improvement across Mach and angle of attacks

Off-Design Performance

Consistent improvement across Mach and angle of attacks

Off-Design Performance

Consistent improvement across Mach and angle of attacks

Optimization Case 1

Pressure is shown on the surface. Stream ribbons are colored by Mach number.

Optimization Case 2

Pressure is shown on the surface. Stream ribbons are colored by Mach number.

Optimization Case 3

Pressure is shown on the surface. Stream ribbons are colored by Mach number.

Summary

- Successfully redesigned truss-junction intersection
- Fast optimization turn-around times of under 2 hours
- . 13.5 drag count reduction for Case 1
- . 33.5 drag count reduction for Case 3
- . In transonic flow, truss may have negative lift
- No cost associated with flow control device other than initial development costs
- . Future work should include aero-structural trade-offs

Questions

This work is funded by Nasa Advanced Air Transport Technology (AATT), sub project High Aspect Ratio Wing (HAW)