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Abstract. A time accurate and high resolution numerical method for gas-liquid two-phase 
flows is proposed. The artificial viscous terms in the flux splitting of upwinding are derived by 
using the preconditioner to enhance the stability of computation for compressible and 
incompressible combined flow with arbitrary void fractions. A homogeneous equilibrium gas-
liquid two-phase model taken account of the compressibility of mixed media is used. A finite-
difference 4th-order Runge-Kutta method and a Roe-type flux splitting method with the MUSCL 
TVD scheme are employed. By this method, a one-dimensional two-phase shock tube problem 
was computed and confirmed the applicability to the unsteady and arbitrary Mach number flow 
problems. Detailed observations of shock and expansion wave propagations through the gas-
liquid two-phase media and comparisons of predicted results with exact solutions are made. 

 
 
1 INTRODUCTION 

Gas-liquid multiphase flow is well encountered in engineering problems of boiling, aerosol, 
phase change and the flow through hydro machines and under water vehicles, moving with a 
high-speed in working fluid of liquid state. As cavitation bubble occurs and collapses near the 
surface of the body as an example, it causes noise and vibration and damages to the hydraulic 
machine system. In the sense of reducing these unfavourable impacts from the gas-liquid 
multiphase flow, therefore, accurate prediction and estimation of such flow is very important.  

To understand the behavior of collapsing of cavitation bubbles, some efforts to propose 
cavity flow model for numerical simulations [1-3] and, analytical and experimental method for 
shock-bubble interaction problems [4,5] have been made. However, due to the strong and 
complicated unsteady flow phenomenon such as phase changes, the co-existence of 
compressible and incompressible flow, vortex shedding and turbulence of cavitating flow, the 
mathematical expression of the flow as well as a development of numerical method is not 
established yet. Recently, Shin et al. [6,7] has proposed a mathematical cavity flow model based 
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on a homogeneous equilibrium model taking account of the compressibility of the gas-liquid 
two-phase media. With this model, the mechanism of developing cavitation has been 
investigated through the application to a couple of cavitating flows problems [8,9]. These 
schemes were extended to preconditioned dual time-stepping methods to treat both 
compressible and incompressible flow effects associated with very large range of sound speeds, 
which can arise in cavitating flows with multi-rates of void fraction [10].  

The purpose of this paper is to extend previous high resolution scheme [10] with the 3rd-
orde MUSCL TVD scheme to a time consistent method for solving high speed gas-liquid two-
phase flows with arbitrary Mach numbers. In order to obtain a stable and accurate treatment of 
gas-liquid interfaces considered by contact discontinuity, artificial viscous terms in the flux 
splitting on the upwinding are modified by using the preconditioner. As numerical examples, 
gas-liquid two-phase shock tube problems with arbitrary void fractions were computed and 
checked the applicability to the unsteady problem. Unsteady shock wave phenomena in the gas-
liquid two-phase media are investigated. 

2 NUMERICAL METHOD 

2.1 Gas-liquid two-phase model 

Gas-liquid two-phase flow is modeled to a pseudo single-phase flow by using the concept 
of the homogeneous equilibrium model [6] and the reconstruction of equation of state. In this 
study, Tammann’s equation of state [11], 𝑝 ൅ 𝑝௖ ൌ 𝜌௟𝐾ሺ𝑇 ൅ 𝑇௖ሻ is used for the liquid phase. 
Here 𝑝, 𝜌 and 𝑇 are mixture pressure, density and temperature, respectively. The subscript 𝑙 
represents the liquid phase. 𝐾, 𝑝௖ and 𝑇௖ are the liquid, pressure and temperature constants of 
liquid. On the order hand, the gas phase is assumed as an ideal gas with the equation of state of 
𝑝 ൌ 𝜌௚𝑅𝑇 , where 𝑅  is the gas constant and the subscript 𝑔  represents the gas phase. The 
density 𝜌 of the two-phase medium is expressed by combining linearly the gas phase density 
𝜌௚ and the liquid phase density 𝜌௟ with the local void fraction 𝛼 (gas volume fraction) and the 
quality 𝑌. By assuming the local equilibrium conditions, the equation of state becomes, 

𝜌 ൌ
𝑝ሺ𝑝 ൅ 𝑝௖ሻ

𝐾ሺ1 െ 𝑌ሻ𝑝ሺ𝑇 ൅ 𝑇௖ሻ ൅ 𝑅𝑌ሺ𝑝 ൅ 𝑝௖ሻ𝑇
                                                            ሺ1ሻ 

In this model, the apparent compressibility is considered, and the speed of sound 𝑐 is exactly 
derived by using thermodynamic relations, 𝑐ଶ ൌ 𝜌𝐶௣/ሺ𝜌் ൅ 𝜌𝐶௣𝜌௣ሻ . Here, 𝜌்  and 𝜌௣ 
represent 𝜕𝜌/𝜕𝑇 and 𝜕𝜌/𝜕𝑝, respectively. 𝐶௣is the specific heat capacity at constant pressure 
of 𝐶௣ ൌ 𝑌𝐶௣௚ ൅ ሺ1 െ 𝑌ሻ𝐶௣௟ . The relation between the 𝛼  and the quality 𝑌  is given by 
𝜌ሺ1 െ 𝑌ሻ ൌ ሺ1 െ 𝛼ሻ𝜌௟ and 𝜌𝑌 ൌ 𝛼𝜌௚, where  

𝛼 ൌ
𝑅𝑌ሺ𝑝 ൅ 𝑝௖ሻ𝑇

𝐾ሺ1 െ 𝑌ሻ𝑝ሺ𝑇 ൅ 𝑇௖ሻ ൅ 𝑅𝑌ሺ𝑝 ൅ 𝑝௖ሻ𝑇
                                                           ሺ2ሻ 

2.2 Governing equations and preconditioned stability term 

Based on the above model concept, the one dimensional Euler equations for the mixture 
mass, momentum, energy and the gas-phase mass conservation can be written as follows,  
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𝜕𝑸
𝜕𝑡

൅
𝜕𝑬
𝜕𝑥

ൌ 0       𝑤𝑖𝑡ℎ    𝑸 ൌ ቎

𝜌
𝜌𝑢
𝑒

𝜌𝑌

቏      𝑎𝑛𝑑     𝑬 ൌ ൦

𝜌𝑢
𝜌𝑢ଶ ൅ 𝑝
ሺ𝑒 ൅ 𝑝ሻ𝑢

𝜌𝑢𝑌

൪                                      ሺ3ሻ 

where, 𝑢 and 𝑒 in the unknown variable vectors 𝑸 and flux vectors 𝑬 are velocity and total 
energy, respectively.  

The hydraulic flow with hydraulic transients and hydroacoustics such as cavitating flow has 
both compressible and incompressible flow characteristic. For this kind of flow, a compressible 
flow model which can handle the incompressible flow is advantageous. For this purpose, 
artificial compressible method and preconditioning method [12,13] have been developed and 
used in the steady state computation. In general, these methods are not consistent in time 
because the time derivative is multiplied by the preconditioning matrix. For unsteady flow 
computation, therefore, the preconditioning method for steady problems should be improved to 
that of consistent in time. In this paper, according to the basic concept of high-order upwind 
scheme, a modification of artificial viscous terms in Roe’s flux difference splitting was 
examined: the artificial viscous terms in the flux splitting is modified by the preconditioning 
matrix to enhance the numerical stability at the treatment of shock interfaces in the two-phase 
media. To obtain the preconditioning matrix of the non-conservative system controllable the 
propagation of acoustic waves, the conserved variables 𝑸 in equation (3) is transformed to 
primitive variables 𝑾 as follows: 

Γିଵ 𝜕𝑾
𝜕𝑡

൅
𝜕𝑬
𝜕𝑥

ൌ 0       𝑤𝑖𝑡ℎ    𝑾 ൌ ሾ𝑝, 𝑢, 𝑇, 𝑌ሿ்      𝑎𝑛𝑑     Γିଵ ൌ
𝜕𝑸
𝜕𝑾

                                  ሺ4ሻ 

To improve the stability for the multiphase problems with incompressible and compressible 
flow nature, a modified Roe’s approximation [14] was used. The derivative of the flux vector 
𝑬 can be written with the numerical flux as ሺ𝜕𝑬/𝜕𝑥ሻ௜ ൌ ሺ𝑬௜ାଵ/ଶ െ 𝑬௜ିଵ/ଶሻ/∆𝑥, and the flux 
𝑬௜ାଵ/ଶ modified by using the Γିଵ and Γ௣ as 

𝑬௜ାଵ/ଶ ൌ ሺ1/2ሻ൛𝑬ሺ𝑸௜ାଵ/ଶ
௅ ሻ ൅ 𝑬ሺ𝑸௜ାଵ/ଶ

ோ ሻ െ Γ௜ାଵ/ଶ
ିଵ ሺ𝑳𝒑|Λ|𝑳𝒑

ିଵሻ௜ାଵ/ଶሺ𝑾௜ାଵ/ଶ
ோ െ 𝑾௜ାଵ/ଶ

௅ ሻൟ                ሺ5ሻ 

where, Λ, 𝑳𝒑 and 𝑳𝒑
ିଵ are matrices of eigenvalues and the left eigenvectors of Γ௣ሺ∂𝐸/ ∂𝑄ሻΓିଵ. 

The stability terms of third terms in Eq.(5) can also be consisted of Γ௣௜ାଵ/ଶ
ିଵ  instead of Γ௜ାଵ/ଶ

ିଵ . 
Γ௣

ିଵ is preconditioner of the non-conservative system which is formed by the addition of the 
vector 𝜃ሾ1, 𝑢, 𝐻, 𝑌ሿ் to the first column of the Γିଵ as,  

Γ௣
ିଵ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜃 ൅

𝜕𝜌
𝜕𝑝

0
𝜕𝜌
𝜕𝑇

𝜕𝜌
𝜕𝑌

𝑢 ൬𝜃 ൅
𝜕𝜌
𝜕𝑝

൰ 𝜌 𝑢
𝜕𝜌
𝜕𝑇

𝑢
𝜕𝜌
𝜕𝑌

𝐻 ൬𝜃 ൅
𝜕𝜌
𝜕𝑝

െ 1൰ 𝜌𝑢 𝜌𝐶௣ ൅ 𝐻
𝜕𝜌
𝜕𝑇

𝐻
𝜕𝜌
𝜕𝑌

𝑌 ൬𝜃 ൅
𝜕𝜌
𝜕𝑝

൰ 0 𝑌
𝜕𝜌
𝜕𝑇

𝜌 ൅ 𝑌
𝜕𝜌
𝜕𝑌⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where, parameter 𝜃 is chosen by Weiss & Smith [15]. 𝑾௜ାଵ/ଶ
௅,ோ  is obtained by applying the third-

order MUSCL TVD scheme [16] as followings. 
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𝑾௜ାଵ ଶ⁄
௅ ൌ 𝑾௜ ൅ ሺ1 4⁄ ሻ൛ሺ1 െ 𝜅ሻ𝐷ା𝑾௜ିଵ ଶ⁄ ൅ ሺ1 ൅ 𝜅ሻ𝐷ି𝑾௜ାଵ ଶ⁄ ൟ    

𝑾௜ାଵ ଶ⁄
ோ ൌ 𝑾௜ାଵ െ ሺ1 4⁄ ሻ൛ሺ1 െ 𝜅ሻ𝐷ି𝑾௜ାଷ ଶ⁄ ൅ ሺ1 ൅ 𝜅ሻ𝐷ା𝑾௜ାଵ ଶ⁄ ൟ

                                 ሺ6ሻ 

Here, the flux-limited values of 𝐷𝑾 and the minmod function are determined by 

𝐷ା𝑾௜ିଵ ଶ⁄ ൌ minmod൫𝛿𝑾௜ିଵ ଶ⁄ , 𝑏𝛿𝑾௜ାଵ ଶ⁄ ൯, 
𝐷ି𝑾௜ାଵ ଶ⁄ ൌ minmod൫𝛿𝑾௜ାଵ ଶ⁄ , 𝑏𝛿𝑾௜ିଵ ଶ⁄ ൯, 

𝛿𝑾௜ାଵ ଶ⁄ ൌ 𝑾௜ାଵ െ 𝑾௜                                  
minmodሺ𝑥, 𝑦ሻ ൌ signሺ𝑥ሻmaxሾ0, minሼ|𝑥|, 𝑦signሺ𝑥ሻሽሿ 

The linear combination parameter 𝜅 is determined by the rang of െ1 ൑ 𝜅 ൑ 1 and has an 
effect on the accuracy. On the other hand, the slope of the flux in the minmod function is 
controlled by the limiter 𝑏. The rang of 𝑏, 1 ൑ 𝑏 ൑ ሺ3 െ 𝜅ሻ ሺ1 െ 𝜅ሻ⁄ , is determined by the 
condition of TVD stability. 

For time accurate solutions, the following 4th-order Runge-Kutta explicit method in finite 
difference discretization is used in equation (4) with 𝑳ሺ𝑸ሻ ൌ 𝜕𝑬/𝜕𝑥 because it is capable of 
capturing linear as well as non-linear waves and can resolve contact discontinuities. 

𝑾ଵ ൌ 𝑾௡ െ Δ𝑡/4Γ𝑳ሺ𝑸௡ሻ                   𝑾ଶ ൌ 𝑾௡ െ Δ𝑡/3Γ𝑳ሺ𝑸ଵሻ
𝑾ଷ ൌ 𝑾௡ െ Δ𝑡/2Γ𝑳ሺ𝑸ଶሻ                    𝑾௡ାଵ ൌ 𝑾௡ െ Δ𝑡Γ𝑳ሺ𝑸ଷሻ

                                      ሺ7ሻ 

3 NUMERICAL RESULTS 

The present numerical method has been validated by using the Riemann problem suggested 
by Sod [17] as a standard test problem. The domain is x of [-10 m, 10m]. Initial conditions of 
left (L)- and right (R)-hand side at discontinuous surface (x = 0m) at T=300K for a given void 
fraction 𝛼௜ are as followings: 𝑝௅= 0.1MPa,  𝑢௅= 0m/s,  𝛼௅= 𝛼௜  and 𝑝ோ= 0.1MPa,  𝑢ோ= 0m/s, 
𝛼ோ= 𝛼௜.  
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FIGURE 1: Computational results of pressure, density, velocity and temperature distributions  

for ideal gas at 𝛼௜ = 100%  

Figure 1 shows comparisons with exact solution for the shock tube problem of ideal gas (𝛼௜ 
=100%) with the ratio of specific heats γ =1.4 at t =0.01s. The results obtained by present time 
consistent method with grid points of 10,000 (red line) matched with exact solutions. The coarse 
grid of 100 (symbols) is also fairly well predicted for the comparison with exact ones except 
small dissipation at discontinuity. 
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FIGURE 2: Computational results of pressure, density, velocity, temperature and void fraction distribution 

for gas-liquid 2-phase media at 𝛼௜ ൌ 50%, time 𝑡 ൌ 0.357s 
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FIGURE 3: Computational results of pressure, density, velocity and temperature distribution 

for liquid phase at 𝛼௜ = 0%, time 𝑡 ൌ 0.00473s 

Based on the validity of the present method in Fig.1, the present method was applied to the 
two-phase shock tube flow in thermal process with arbitrary void fraction to check the 
applicability to the unsteady problem and investigate the characteristics of pressure waves 
propagating in the gas-liquid two-phase medium. Figure 2 shows calculated results at initial 
void fraction of 50%. The value of parameter 𝜃 for preconditioning was taken the order of Mach 
number. As seen in this figure, both results with 100 and 10,000 grid points were well predicted 
unsteady shock tube problems. However, the temperature profile at the place of density jump 
showed an overshoot even though the value is quite smell. Almost the same results were 
obtained by the stability term with Γ௣௜ାଵ/ଶ

ିଵ  instead of Γ௜ାଵ/ଶ
ିଵ  in Eq.(5). Here, the result with 

10,000 were regarded as an exact solution, which was coincide with solutions obtained without 
preconditioning [18]. In this flow case the compression wave is propagating with decreasing 
the void fraction because the compression wave compresses the two-phase medium. However, 
expansion wave shows the opposite behavior with increasing the void fraction, resulting the 
contact discontinuity exists and propagates toward right-hand side by the wave induced velocity. 
Pressure behind the shock wave is higher than single-phase of gas. Figure 3 shows another 
computational result for liquid phase at 𝛼௜ = 0%. The expansion wave is propagating like a 
compression wave. It is different from the gas phase because there exists big difference of speed 
of sound and wave induced velocity between gas states and liquid states. Very small changes 
of density and velocity are observed as investigated in the previous work [18].  

4 CONCLUSIONS 

A time consistent high resolution finite-difference method for gas-liquid two-phase flow was 
proposed and applied to the two-phase shock tube problem. In the proposed method, the 
artificial viscous terms in the flux splitting of upwinding are derived to improve the stability 
and used 4th-order Runge-Kutta method combined with MUSCL TVD scheme. A 
homogeneous equilibrium model of gas-liquid two-phase flows was applied.  

Numerical results showed that the present high resolution method obtains a good prediction 
of pressure, density, velocity, temperature and void fraction distributions in comparison with 
exact solutions, and quite well simulated unsteady phenomena of the shock wave including the 
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propagation of both compression and expansion waves. The reliability and applicability of the 
present method to unsteady flow problems with arbitrary void fraction and sound of speed were 
confirmed as consequence.  
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