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ABSTRACT

It is well-known that higher-order methods (as compared to lower order accurate methods) capture
transient phenomena more efficiently since they allow for a considerable reduction in the degrees of
freedom for a given error tolerance. In particular, high-order finite difference methods (HOFDMs) are
ideally suited for problems of this type, cf. the pioneering paper by Kreiss and Oliger [5].

For long-time simulations, it is imperative to use finite difference approximations that do not allow
growth in time if the PDE does not allow growth—a property termed time stability [3]. Achieving
time-stable HOFDM has received considerable past attention. A robust and well-proven high-order
finite difference methodology, for well-posed initial boundary value problems (IBVP), is to combine
summation-by-parts (SBP) operators [4, 6] and either the simultaneous approximation term (SAT)
method [1], or the projection method [7] to impose boundary conditions.

0.9455 1.6605 2.5755 3.6905

10
4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

-8 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

Figure 1: An example of FD-FD nonconforming multiblock coupling for the Euler equations, comparing
traditional and B-Opt SBP. Left: Convergence properties. Right: The solution and non-conformal interface.

The SBP-SAT and SBP-Projection methods naturally extends to multi-block geometries. Thus, prob-
lems involving complex domains or non-smooth geometries are easily amenable to the approach. The
SBP-SAT and SBP-Projection methods can also handle non-conformal interfaces, allowing adaptive
grids. Traditional SBP FD operators found in the literature are essentially central finite difference
stencils, defined on regular grids, closed at the boundaries with one-sided difference stencils. Tradi-
tional SBP operators however suffer from reduced accuracy close to the boundaries. To improve the
accuracy, [6] introduced a type of boundary optimized (B-Opt) SBP operators, of orders up to twelve.
Recently, we have extended the usage of B-Opt SBP operators to non-conformal interfaces. In Figure
1 the Euler equations are solved using the SBP-SAT method on a non-conformal interface. Here we
compare the accuracy of the traditional and B-Opt SBP operators for orders 4,6 and 8.
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The SBP-SAT and SBP-Projection methods also allow for a hybrid coupling of different schemes
having SBP property. Other examples of discrete operators with the SBP property include spectral
collocation, finite volume methods, and continuous Galerkin FE. In a recent paper [2] a hybrid SBP-
SAT method to couple HOFDM and FEM in a nonconforming multiblock fashion is presented. The
proposed technique results in a time-stable, and accurate discretization. Our most recent results
indicate that the less well-known SBP-Projection method has some important advantages as compared
to the now relatively mature SBP-SAT method. One of the more obvious advantages with the SBP-
Projection method is that it exactly mimics the stability properties of the underlying well-posed IBVP,
without tuning of parameters. The SBP-Projection method only requires the discrete operators to have
a SBP property. In the present study we will show how the SBP-Projection method can be employed
to ensure time-stability and efficiency in the framework of well-posed IBVP. As a proof of concept we
will show results from various wave dominated problems, including the Navier-Stokes equations, the
elastic wave equation, the acoustic wave equation, and flexural-gravity waves in ice-covered oceans.
Some novel results of FD-FD, as well as hybrid FE-FD coupling using the SBP-Projection method on
non-conformal interfaces will also be presented.

In Figure 2 the advection equation is solved using the hybrid SBP-SAT method to couple a sixth-order
traditional FD scheme with a FE scheme (see [2] for details) on a non-conformal interface.

Figure 2: An example of FD-FE nonconforming multiblock coupling for advection equation using a sixth-order
FD scheme on the left domain and a FE scheme on the right domain. A close up in the right subfigure.
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