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Abstract

This paper describes a finite element model to solve the incompressible Navier–Stokes equations based on the

stabilization with orthogonal subscales and a pressure segregation. The former consists of adding a least-square form of

the component orthogonal to the finite element space of the convective and pressure gradient terms; this allows to deal

with convection-dominated flows and to use equal velocity–pressure interpolation. The pressure segregation is inspired

in fractional step schemes, although the converged solution corresponds to that of a monolithic time integration.

Likewise, we put special emphasis on the use of anisotropic grids. In particular, we describe some possible choices for

the calculation of the element length that appears in the stabilization parameters and check their behavior in two

classical numerical examples. The preconditioning strategy used to solve the resulting algebraic system for very

anisotropic meshes is also briefly described.
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1. Introduction

The treatment of the pressure in numerical approximations of incompressible flow problems is still an

active subject of research basically for two reasons. First, its approximation needs to be different from that
of the velocity field in order to have a stable numerical scheme. Secondly, its coupling with the velocity
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components makes the solution of the linear system arising from the discretization of the equations highly
demanding from the computational point of view.

Referring to the pressure approximation, when finite element methods are used this leads to the well

known inf–sup stability condition for the velocity and pressure finite element spaces if the standard

Galerkin formulation is used. To satisfy it is possible, and several velocity pressure pairs are known to fulfill

the inf–sup condition. However, there is also the possibility of modifying the discrete variational formu-

lation of the problem so as to circumvent it. Finite element formulations of this kind may fall basically into

two categories, namely, methods that allow the use of equal interpolations (and therefore continuous

pressures) and techniques to stabilize simple elements, such as the Q1=P0 pair (multilinear velocity, piecewise
constant pressure). Examples of the first group are the methods in [5,17], the Galerkin/least-squares (GLS)

technique [21,22,25] and least-squares methods for first-order systems as those in [4], whereas examples of

the second are those in [20,30], among others.

Concerning the velocity–pressure coupling, fractional step methods for the incompressible Navier–

Stokes equations have enjoyed widespread popularity since the original works of Chorin [7] and Temam

[34]. The reason for this relies on the computational efficiency of these methods (see e.g. [26,29,35]),

basically due to the uncoupling of the pressure from the velocity components. However, several issues

related to these methods still deserve further analysis, and perhaps the most salient of these are the behavior
of the computed pressure near boundaries and the stability of the pressure itself.

In this paper we address these two aspects of the pressure treatment. On the one hand, we describe a

finite element method able to deal with equal velocity pressure interpolations. On the other hand, we

present an iterative algorithm that allows to uncouple the calculation of the pressure from that of the

velocity. It is motivated by what is commonly done in fractional step methods, although the converged

solution of the iterative procedure is that of the monolithic (coupled velocity–pressure) time discretization.

In this sense, our approach can be viewed as a predictor–multicorrector method.

Apart from the pressure treatment, another important issue to be considered in the numerical
approximation of incompressible flows are the (numerical) instability problems found when the viscous

term is small compared to the convective one. Both the inf–sup condition and the convection instabilities

can be overcome by resorting from the standard Galerkin method to a stabilized formulation. The one

adopted in this work is based on the subgrid scale concept and, in particular, in the approach introduced by

Hughes in [23,24] for the scalar convection–diffusion equation (see also [3,6] for related methods). The basic

idea is to approximate the effect of the component of the continuous solution which can not be resolved by

the finite element mesh on the discrete finite element solution. An important feature of the formulation

developed herein is that the unresolved component, hereafter referred to as subgrid scale or subscale, is
assumed to be L2 orthogonal to the finite element space, in a sense to be explained later. This idea was first

introduced in [8] as an extension of a stabilization method originally introduced for the Stokes problem in

[13] and fully analyzed for the stationary Navier–Stokes equations in [14]. It is further elaborated in [11].

A summary of the method proposed in this last reference is presented here.

In this paper we put special emphasis on the use of anisotropic finite element meshes, particularly in the

way to compute the element length when the aspect ratio is very high, and in the preconditioning of the

algebraic system resulting from these anisotropic meshes. Concerning the calculation of the element length,

we propose four options and test them in two numerical examples. These options are the maximum length
of the element edges, the minimum, the element length in the direction of the flow and the length proposed

in [19], for which some error estimates are available for scalar elliptic problems. Referring to the precon-

ditioning method, we recall very briefly the linelet strategy proposed in [32].

We have organized the paper as follows. In the following section we present the problem to approximate,

some notation and the time discretization we will use. In Section 3 we summarize the stabilized finite

element formulation and in Section 4 we describe some possible ways to compute the element length

appearing in the stabilization parameters. In Section 5 we describe the pressure segregation strategy we
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propose, together with some computational aspects of the algorithm. Some numerical results are presented
in Section 6 and finally some conclusions are drawn in Section 7.
2. Problem statement

2.1. Continuous problem

Let X be the domain of Rnsd occupied by the fluid, where nsd ¼ 2 or 3 is the number of space dimensions,
C ¼ oX its boundary and ½0; T � the time interval of analysis. The Navier–Stokes problem consists in finding

a velocity u and a pressure p such that

otuþ u � ru� mr2uþrp ¼ f in X; t 2 ð0; T Þ; ð1Þ

r � u ¼ 0 in X; t 2 ð0; T Þ; ð2Þ

u ¼ 0 on C; t 2 ð0; T Þ; ð3Þ

u ¼ u0 in X; t ¼ 0; ð4Þ
where m is the kinematic viscosity, f is the force vector and u0 is the velocity initial condition. We have
considered the homogeneous Dirichlet boundary condition (3) for simplicity.

To write the weak form of problem (1)–(4) we need to introduce some notation. We denote by H 1ðXÞ the
Sobolev space of functions whose first derivatives belong to L2ðXÞ, and by H 1

0 ðXÞ the subspace of H 1ðXÞ of
functions with zero trace on C. A bold character is used for the vector counterpart of these spaces. The L2

scalar product in a set x is denoted by ð�; �Þx, and the L2 norm by k � kx. The subscript x is omitted when it

coincides with X. To pose the problem, we also need the functional spaces V st ¼ H1
0ðXÞnsd , and

Qst ¼ fq 2 L2ðXÞj
R

X q ¼ 0g, as well as V ¼ L2ð0; T ;V stÞ and Q ¼ L2ð0; T ;QstÞ for the transient problem.

Assuming for simplicity the force vector to be square integrable, the weak form of problem (1)–(4)
consists in finding ðu; pÞ 2 V � Q such that

ðotuþ u � ru; vÞ þ mðru;rvÞ � ðp;r � vÞ ¼ ðf ; vÞ; ð5Þ

ðq;r � uÞ ¼ 0; ð6Þ
for all ðv; qÞ 2 V st � Qst, and satisfying the initial condition in a weak sense.

2.2. Time discretization

Any time integration of (5) and (6) is in principle possible. However, we shall concentrate on the

monolithic trapezoidal rule (solving for the velocity and the pressure at the same time). The time discretized

version of (5) and (6) in this case consists in solving the following problem: from known un, find unþ1 2 V st

and pnþ1 2 Qst such that

ðdn
t uþ unþh � runþh; vÞ þ mðrunþh;rvÞ � ðpnþh;r � vÞ ¼ ð�f nþh; vÞ; ð7Þ

ðq;r � unþhÞ ¼ 0; ð8Þ
for all ðv; qÞ 2 V st � Qst, where dt is the time step size, superscript m refers to the time step level tm ¼ mdt;
h 2 ð0; 1� and we use the notation

unþh :¼ hunþ1 þ ð1� hÞun; dun :¼ unþ1 � un and dn
t u :¼ dun

dt
:
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The force term �f nþh in (7) and below has to be understood as the time average of the force in the interval
½tn; tnþ1�, even though we use a superscript nþ h to characterize it. The pressure value computed here has

been identified as the pressure evaluated at tnþh, although this is irrelevant for the velocity approximation.

The values of interest of h are h ¼ 1=2, corresponding to the second order Crank–Nicolson scheme, and

h ¼ 1, which corresponds to the backward Euler method. In this case, the convective term in (7) can be

replaced by ðun � runþ1; vÞ, since it also leads to a first order unconditionally stable scheme, well suited for

the long term time integration.
3. Stabilization with orthogonal subscales

The purpose of this section is to summarize the steps that lead to the finite element formulation proposed

in [11]. LetTh denote a finite element partition of the domain X of diameter h, from which we construct the

finite element spaces Qh, Vh and Vh;0, approximations to Qst, H
1ðXÞnsd and V st, respectively. The former is

made up with continuous functions of degree kq and the other two with continuous vector functions of

degree kv, the latter verifying the homogeneous Dirichlet boundary conditions. In the following, finite

element functions will be identified with a subscript h.
The discrete problem is obtained by approximating u and p. If uh and ph are the finite element unknowns,

we approximate u � uh þ ~u and p � ph, that is, the velocity is approximated by its finite element component

plus an additional term that we call subgrid scale or subscale (for the sake of simplicity, the pressure

subscale will be taken as zero). We call un � un� :¼ unh þ ~un and pn � pnh the velocity and the pressure for time

level n. Considering the spatial interpolation, we assume that unh and pnh are constructed using the standard

finite element interpolation. In particular, equal velocity–pressure interpolation is possible with the for-

mulation to be presented.

The important point is the behavior assumed for ~un. To simplify the discussion, we assume that it
vanishes on the interelement boundaries, that is, it is a bubble-like function [3,6]. However, contrary to

what is commonly done, we do not assume any particular behavior of ~un within the element domains. We

will indicate later on how to approximate it.

If in (7) un is replaced by un� :¼ unh þ ~un, pn is replaced by pnh, the terms involving ~un are integrated by parts,

and the test functions are taken in the finite element space, one gets

ðdn
t uh þ unþh

� � runþh
h ; vhÞ þ mðrunþh

h ;rvhÞ � ðpnþh
h ;r � vhÞ þ ðdn

t ~u; vhÞ
� ð~unþh; mr2

hvh þ unþh
� � rvhÞ ¼ ð�f nþh; vhÞ; ð9Þ

ðqh;r � unþh
h Þ � ð~unþh;rqhÞ ¼ 0; ð10Þ

which must hold for all vh 2 Vh;0 and qh 2 Qh. The notation r2
h is used to indicate that the Laplacian needs

to be evaluated element by element. It is important to note that the advection velocity in (9) is unþh
� .

The equation for the subscales ~unþ1 is obtained by taking the velocity test function in (7) in its space.

The result is that, within each element [10]:

dt~u
n þ unþh

� � r~unþh � mr2~unþh ¼ rnþh þ vnþh
h;ort; ð11Þ

rnþh :¼ f nþh � ð�mr2unþh
h þ unþh

� � runþh
h þrpnþh

h Þ; ð12Þ
where vnþh

h;ort is a function L2-orthogonal to the space of subscales.

The next step is to model the solution ~unþ1 of (11). This means to give a closed-form expression for it that
approximates the exact solution in some sense. It is shown in [11] that if we replace (11) by the algebraic

equation
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1

hdt

�
þ 1

s

�
~unþh ¼ 1

hdt
~un þ rnþh þ vnþh

h;ort; ð13Þ

with

s :¼ c1
m
h2

�
þ c2

junþh
� j
h

��1

; ð14Þ

then there are values of the constants c1 and c2 (which do not depend neither on the discretization nor on the
equation coefficients m and junþh

� j) for which the solutions of (11) and (13) have approximately the same L2-

norm over the elements. Note that in (13) we do not require the subscales to vanish on the element boundaries.

It still remains to define the space of the subscales. A main feature of our formulation is that we take it

(approximately) orthogonal to the finite element space. Imposing this in (13) allows to compute vnþh
h;ort, which

turns out to be minus the projection of rnþh onto the finite element space Vh. Therefore,

1

hdt

�
þ 1

s

�
~unþh ¼ 1

hdt
~un þ P?

h ðrnþhÞ; ð15Þ

where P?
h ¼ I � Ph, Ph being the L2-projection onto Vh.

To complete the description of the method, we will make two further approximations. First, we will
consider that P?

h ðf Þ ¼ 0, that is, f is a finite element function. This does not alter the accuracy of the final

formulation. Secondly, we will neglect the orthogonal projection of viscous term in rnþh and mr2
hvh in (9).

This is exact for linear elements and leads to a consistent formulation for higher order elements. Thus, the

final system of equations we are left with is

ðdn
t uh þ unþh

� � runþh
h ; vhÞ þ mðrunþh

h ;rvhÞ � ðpnþh
h ;r � vhÞ

þ ðstP?
h ðunþh

� � runþh
h þrpnþh

h Þ; unþh
� � rvhÞ ¼ ð�f nþh; vhÞ þ

1

hdt
ðst~un; unþh

� � rvhÞ; ð16Þ

ðqh;r � unþh
h Þ þ ðstP?

h ðunþh
� � runþh

h þrpnþh
h Þ;rqhÞ ¼

1

hdt
ðst~un;rqhÞ; ð17Þ

where

st :¼
1

hdt

�
þ 1

s

��1

:

Note that the term ðdn
t ~u; vhÞ in (9) vanishes because of the orthogonality of dn

t ~u and vh. Note also that the

parameter st has been included within the inner product, since in principle it changes from point to point.

The terms multiplied by this parameter must be responsible for the enhancement of stability with respect to

the standard Galerkin method; we will call them stabilization terms.

The formulation we propose is finally given by system (16) and (17), together with (15) to update the

subscales. Here, we have only sketched how to obtain it; the reader is referred to [11] for further details.

Likewise, we have some results of convergence analyses for simplified problems. In particular, the stationary

and linear case (with u� replaced by a given advection velocity) is fully analyzed in [12], and the transient

advection–diffusion equation (also linear) in [15]. The results of these papers show that the goal of being able

to deal with convection dominated flows and using equal velocity–pressure interpolation is certainly achieved.

Except for the fact that we have deleted the viscous contribution in the stabilization terms, all the steps

we have followed have a heuristic motivation. Once arrived to the final problem (16) and (17), we can make

some further modifications provided the consistency of the method is maintained, that it to say, these

modifications do not alter the fact that the exact solution is still a solution of the discrete problem. For the

discussion of the next section and the numerical results, we will make the following modifications:
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• We will consider the subscales quasi-static. As explained in [11], this leads to ~unþh ¼ sP?
h ðrnþhÞ as the solu-

tion of (15).

• The advection velocity u� will be replaced uh. This means that we neglect the influence of the subscales in

the transport of momentum. However, this point needs to be further explored, since this influence is the

key of turbulence modeling.

• We will remove P?
h ðrpnþh

h Þ from (16) and P?
h ðunþh

� � runþh
h Þ from (17). This implies that instead of adding

a least-square form of P?
h ðunþh

� � runþh
h þrpnþh

h Þ in the variational system we add a least-square form of

P?ðrpnþh
h Þ plus a least-square form of P?

h ðunþh
� � runþh

h Þ. This possibility is also analyzed in [12] and

shown to have even (slightly) improved stability.

With all these modifications, we arrive at the discrete problem

ðdn
t uh þ unþh

h � runþh
h ; vhÞ þ mðrunþh

h ;rvhÞ � ðpnþh
h ;r � vhÞ þ ðsP?

h ðunþh
h � runþh

h Þ; unþh
h � rvhÞ

¼ ð�f nþh; vhÞ; 8vh 2 Vh;0; ð18Þ

ðqh;r � unþhÞ þ ðsP?
h ðrpnþh

h Þ;rqhÞ ¼ 0; 8qh 2 Qh; ð19Þ

which will be further analyzed in the Section 5 from a more computational standpoint.
4. Characteristic element length

In this section we discuss some possible ways to compute the characteristic element length h appearing in

the expression of the stabilization parameter given by (14).

The first remark to be made is that if the mesh is isotropic, that is to say, both the diameter of the circle
(sphere in 3D) inscribed to the element and the external one go to zero at the same rate, the way to compute

the element length will not affect the convergence rate of the method. In this case, if h1 and h2 are two

possible ways to measure h, we will have that ch1 6 h2 6 c0h1 for appropriate constants c and c0. The error

estimates in terms of h1 and h2 will be the same up to a constant depending on c and c0.
Even though the error estimates are the same, the error for a given hmay be different depending on the way

to compute it. Likewise, the convergence behavior of the iterative scheme may depend on the way to compute

h. This is what we want to check from numerical experiments, two of which will be presented later on.

The situation is different when the mesh is anisotropic. In this case, the element size in different directions
go to zero at different rates. The interpolation theory and, obviously, the error analysis, is not so mature in

this case as in the case of isotropic meshes. Some results applied to stabilized finite element methods can be

found in [1,2,18,19]. We will describe here the way to compute h proposed in this last reference [19].

However, our intention is not to discuss its convergence properties, but only to check its behavior for a

given mesh compared to other possibilities.

We have implemented four different ways to compute the characteristic element length: the maximum

length of the element edges, the minimum, the element size in the direction of the flow and the expression

proposed in [18]. The first two ways to compute h are obvious, so we describe now the other two. To simplify
the notation we will consider the two-dimensional case, although what follows is completely general.
4.1. Element length in the flow direction

In this section we briefly describe the way we compute the element length in the flow direction, which was

already proposed in [16].
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Let D be a convex domain in R2 transformed into D0 � R2 by an affine mapping f ¼ ðf1; f2Þ. Using the
notation of Fig. 1, let ‘ ¼ jB� Aj, ‘0 ¼ jB0 � A0j, where v the vector from A to B and v0 ¼ ðDf Þv, where Df is

the Jacobian matrix of f . Since

f ðBÞ ¼ f ðAÞ þ ‘0
v0

jv0j ¼ f ðAÞ þDf ðB� AÞ; ð20Þ

we have that

‘0ðDf Þ�1
v0 ¼ jv0jðB� AÞ: ð21Þ

Taking the Euclidian norm on both sides of (21) and considering that Df �1v0 ¼ v we get

‘0 ¼ jv0j
jvj ‘: ð22Þ

Formula (22) allows us to compute the characteristic length in the flow direction as

h ¼ juj
ju0j

h0; ð23Þ

where subscript naught indicates that the value corresponds to the parent domain of the element. Eq. (23)

reduces the computation of h to that of h0, which can be easily estimated since the geometry is now very

simple. In our computations we have taken h0 ¼ 2 for quadrilateral elements with parent domain

½�1; 1� � ½�1; 1� and h0 ¼ 0:7 for triangular elements using as parent domain the triangle of vertices ð0; 0Þ,
ð0; 1Þ, ð1; 0Þ.

Observe that the length h defined by (23) depends on the point of the element domain. Thus, it will be

numerically different at each integration point. Also, the exact value of h0 depends on each point, although

the assumption of a constant value seems reasonable. Observe also that from (20) it can be seen that (23)

will be exact whenever the mapping f can be considered affine. This will always be the case with

straightsided triangles and parallelograms in two dimensions.

4.2. Element length for anisotropic meshes

In this section we describe the way to compute h for each element proposed in [18] to account for the

anisotropy of the mesh.

As before, let Df be the Jacobian of the isoparametric mapping from the parent domain to the element

under consideration, and let Df ¼ BZ be its polar decomposition, with B symmetric and positive-definite

and Z orthogonal. If k1, k2 are the two eigenvalues of B, with k1 > k2 > 0, the proposal of the above

mentioned reference is to take

h ¼ k2 ð24Þ
as element length to use in the expression of the stabilization parameters.
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5. Pressure segregation and iterative procedure

In this section we will consider two possibilities of uncoupling the calculation of the pressure from the

velocity. The first is a classical fractional step scheme, which we will describe in detail when it is applied to

our stabilized formulation. The second is an iterative scheme for the original monolithic problem but which

takes as starting point the fractional step method. This will lead to an iterative scheme in which the pressure

in the momentum equation is lagged one iteration with respect to the velocity. After computing this

velocity, the pressure can be updated. In this sense, the algorithm we propose can be viewed as a predictor–

multicorrector method.

5.1. Matrix version of the problem

For the purposes of this section, it is convenient to write the matrix version of problem (18) and (19). Let

us note first that the orthogonal projections of these equations can be written as

P?
h ðunþh

h � runþh
h Þ ¼ unþh

h � runþh
h � ynþh

h ;

P?
h ðrpnþh

h Þ ¼ rpnþh
h � znþh

h ;

where ynþh
h and znþh

h are the solution of

ðynþh
h ; vhÞ ¼ ðunþh

h � runþh
h ; vhÞ; 8vh 2 Vh; ð25Þ

ðznþh
h ; vhÞ ¼ ðrpnþh

h ; vhÞ; 8vh 2 Vh: ð26Þ

From these expressions it is easily checked that the discrete variational problem (18) and (19), together

with the projection equations (25) and (26), leads to the nonlinear algebraic system

Mdn
tUþ KðUnþhÞUnþh þ GPnþh þ Suðs;UnþhÞUnþh � Syðs;UnþhÞYnþh ¼ Fnþh; ð27Þ

DUnþh þ SpðsÞPnþh � SzðsÞZnþh ¼ 0; ð28Þ

MYnþh � CðUnþhÞUnþh ¼ 0; ð29Þ

MZnþh � GPnþh ¼ 0; ð30Þ

where U, P, Y and Z are the arrays of nodal unknowns for u, p, y and z, respectively. If we denote the node
indexes with superscripts a, b, the space indexes with subscripts i, j, and the standard shape function of

node a by Na, the components of the arrays involved in these equations are:

Mab
ij ¼ ðNa;NbÞdij ðdij is the Kronecker dÞ;

KðUnþhÞabij ¼ ðNa; unþh
h � rNbÞdij þ mðrNa;rNbÞdij;

Gab
i ¼ ðNa; oiNbÞ;

Suðs;UnþhÞabij ¼ ðsunþh
h � rNa; unþh

h � rNbÞdij;

Syðs;UnþhÞabij ¼ ðsunþh
h � rNa;NbÞdij;
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Dab
j ¼ ðNa; ojNbÞ;

SpðsÞab ¼ ðsrNa;rNbÞ;

SzðsÞabj ¼ ðsojNa;NbÞ;

CðUnþhÞabij ¼ ðNa; unþh
h � rNbÞdij;

Fa
i ¼ ðNa; fiÞ:

It is understood that all the arrays are matrices (except F, which is a vector) whose components are

obtained by grouping together the left indexes in the previous expressions (a and possibly i) and the right

indexes (b and possibly j). Likewise, (27) needs to be modified to account for the Dirichlet boundary

conditions (matrix G can be replaced by �Dt when this is done).

5.2. Fractional step scheme

Even though fractional step schemes are often introduced at the continuous level, the splitting can also

be done for the algebraic nonlinear system arising after the spatial discretization, in our case (27)–(30). This

is the approach advocated in [27,28] and that we will follow here. It allows in particular to obviate the

controversial issue of boundary conditions for the intermediate velocity to be introduced.

Eq. (27) is exactly equivalent to the system

M
1

dt
ð~Unþ1 � UnÞ þ KðUnþhÞUnþh þ GPn þ Suðs;UnþhÞUnþh � Syðs;UnþhÞYnþh ¼ Fnþh; ð31Þ

M
1

dt
ðUnþ1 � ~Unþ1Þ þ GðPnþh � PnÞ ¼ 0; ð32Þ

where ~Unþ1 is an auxiliary variable. If the solution of the discrete problem behaves as we could expect, form

(32) we see that the difference between Unþ1 and ~Unþ1 will be of order Oðdt2Þ. At this point we can make the

essential approximation of replacing Unþh by ~Unþh :¼ h~Unþ1 þ ð1� hÞUn in (31) and also in (29). This should

not alter the accuracy of the time integration scheme, which is at most Oðdt2Þ. Likewise, we can express Unþh

in terms of ~Unþh using (32) and insert the result in (28), which yields

dtDM�1GðPnþh � PnÞ � SpðsÞPnþh þ SzðsÞZnþh � D~Unþh ¼ 0: ð33Þ
At this point, it is very convenient to make a further approximation. Observe that DM�1G represents an

approximation to the Laplacian operator. In order to avoid dealing with this matrix (which is computa-

tionally feasible only if M is approximated by a diagonal matrix), we can approximate

DM�1G � L; with components Lab ¼ �ðrNa;rNbÞ: ð34Þ
Matrix L is the standard approximation to the Laplacian operator. Clearly, this approximation is only

possible when continuous pressure interpolations are employed.
After using approximation (34) in (33) the problem to be solved is:

M
1

dt
ð~Unþ1 � UnÞ þ Kð~UnþhÞ~Unþh þ GPn þ Suð~snþh; ~UnþhÞ~Unþh � Syð~snþh; ~UnþhÞYnþh ¼ Fnþh; ð35Þ

MYnþh � Cð~UnþhÞ~Unþh ¼ 0; ð36Þ
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dtLðPnþh � PnÞ � Spð~snþhÞPnþh þ Szð~snþhÞZnþh � D~Unþh ¼ 0; ð37Þ

MZnþh � GPnþh ¼ 0; ð38Þ

M
1

dt
ðUnþ1 � ~Unþ1Þ þ GðPnþh � PnÞ ¼ 0; ð39Þ

where ~snþh indicates that the parameter s is computed with the intermediate velocity ~Unþh. These equations

have been written in the order they can be solved: first, one can solve system (35) and (36) to obtain ~Unþ1

(and also Ynþ1), then system (37) and (38) allows us to obtain Pnþ1 (and Znþ1) and finally (39) yields the end-

of-step velocity Unþ1.

Problem (35)–(39) is the fractional step version of the stabilized finite element method we propose. The
stability properties when Y is neglected (that is to say, when convection is not stabilized) are fully discussed

in [9].

5.3. Monolithic iterative scheme

System (35)–(39) is nonlinear, and therefore the first step to solve it is to linearize it. Likewise, variables Y
and Z are coupled with ~U and P, respectively, and this makes the formulation expensive from the com-

putational point of view. There is the possibility of uncoupling these variables by using a block-iterative
scheme. In the same iterative loop we can deal with the linearization of the convective term in the

momentum equation (35) and the stabilization terms (those multiplied by the parameter s), although there

is of course the possibility to use nested loops.

Denoting by a superscript the iteration counter, the linearized form of system (35)–(39) we propose

is:

M
1

dt
ð~Unþ1;iþ1 � UnÞ þ Kð~Unþh;iÞ~Unþh;iþ1 þ GPn þ Suð~snþh;i; ~Unþh;iÞ~Unþh;iþ1 � Syð~snþh;i; ~Unþh;iÞYnþh;i ¼ Fnþh;

ð40Þ

MYnþh;iþ1 � Cð~Unþh;iþ1Þ~Unþh;iþ1 ¼ 0; ð41Þ

dtLðPnþh;iþ1 � PnÞ � Spð~snþh;iþ1ÞPnþh;iþ1 þ Szð~snþh;iþ1ÞZnþh;i � D~Unþh;iþ1 ¼ 0; ð42Þ

MZnþh;iþ1 � GPnþh;iþ1 ¼ 0; ð43Þ

M
1

dt
ðUnþ1;iþ1 � ~Unþ1;iþ1Þ þ GðPnþh;iþ1 � PnÞ ¼ 0: ð44Þ

These equations are all linear and uncoupled, that is to say, they can be solved successively.

All the arguments that led us to the fractional step scheme (35)–(39) are valid if instead of using the

pressure Pn we replace it by the any other pressure. In particular, in the iterative scheme (40)–(44) we can

replace it by Pnþh;i. If the resulting iterative scheme converges, the second term in the left-hand-side of (44)

will disappear, and therefore the intermediate velocity will converge to the end-of-step one. Thus, we do not

need to distinguish between ~U and U and (44) can be simply ignored. The final iterative scheme is

M
1

dt
ðUnþ1;iþ1 � UnÞ þ KðUnþh;iÞUnþh;iþ1 þ GPnþh;i þ Suðsnþh;i;Unþh;iÞUnþh;iþ1

� Syðsnþh;i;Unþh;iÞYnþh;i ¼ Fnþh; ð45Þ
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MYnþh;iþ1 � CðUnþh;iþ1ÞUnþh;iþ1 ¼ 0; ð46Þ

dtLðPnþh;iþ1 � Pnþh;iÞ � Spðsnþh;iþ1ÞPnþh;iþ1 þ Szðsnþh;iþ1ÞZnþh;i � DUnþh;iþ1 ¼ 0; ð47Þ

MZnþh;iþ1 � GPnþh;iþ1 ¼ 0: ð48Þ
Apparently, this is a straightforward iteration procedure for solving the original monolithic problem

(27)–(30) freezing the pressure gradient in the momentum equation. However, there is a term whose

presence would be hardly motivated by looking only at this system, namely, the term dtLðPnþh;iþ1 � Pnþh;iÞ.
The motivation to introduce it comes from the inspection of what happens in the fractional step scheme we

have described, even though now we aim to converge to the original nonsplit problem (27)–(30).

The convective term in (40) and (45) could be easily linearized using the second order Newton–Raphson

scheme instead of the fixed point method we have used. However, for the stabilization terms the latter is the

simplest strategy, unless numerical differentiation is employed. Moreover, the block-iterative coupling
proposed for Y and Z would lead anyway to at most linear convergence of the iterative scheme.

We have found the iterative procedure (45)–(48) very efficient (only scalar equations need to be solved)

and robust. Without the term dtLðPnþh;iþ1 � Pnþh;iÞ in (47) convergence turns out to be much harder. We

first used this scheme in [31] (see also [33]). Some more numerical results are presented in the following

section.

5.4. Preconditioning for very anisotropic meshes

Apart from the need of properly defining the element size to be used in the expression of the stabilization

parameters, another implication of the use of (very) anisotropic finite element meshes is the poor condi-

tioning of the matrix of the final algebraic system to be solved at each iteration of each time step. This may

cause serious problems to the convergence of iterative schemes to solve this system, often making them fail

to converge.

In this section, we describe the basic idea of the preconditioner proposed in [32] that we have used in the

numerical experiments to check the behavior of the stabilized finite element method presented here. In

particular, we have used it for pressure equation (47), whose matrix is symmetric and positive definite. We
have used the Conjugate Gradient algorithm to solve it.

Let A be the matrix of the system to be solved and let P be the preconditioner we are looking for. The

way to construct P is as follows. First, the nodal points of the finite element mesh are grouped to form

‘‘lines’’ following the direction normal to the grid stretching. Then, the preconditioner is built by assembling

the diagonal entries of the system matrix Aii and also the nondiagonal entries Aij, i 6¼ j, corresponding to

nodes of edges belonging to the linelets. An important condition for the final structure of the preconditioner

is that a nodal point can only belong to one linelet, i.e., a linelet does not cross any other one. Thus, if the

nodal points are renumbered following the linelets, the preconditioning matrix associated to the degrees of
freedom belonging to a line is tri-diagonal. In addition, it can be shown that diagonal preconditioning

automatically holds for the degrees of freedom associated to the points of the mesh that do not belong to

any linelet. For details and references, see [32].

Concerning the way to solve the other equations in system (45)–(48), we solve the projection equations

(46) and (48) either by using a diagonal mass matrix obtained from a closed quadrature rule or by using this

matrix as a preconditioner of a Jacobi iteration to converge to the solution with the consistent mass matrix

(very few iterations are required to converge with very stringent tolerances). The first option has been used

in the numerical examples presented next. Finally, system (45) is solved using a standard GMRES solver
either with diagonal scaling or with ILU preconditioner. Again, the option used in the following examples

is the former.
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6. Numerical examples

In this section we present the results of two classical numerical experiments we have performed using the

stabilized formulation described in this paper. The goal is to compare the effect of different ways to compute

the element length appearing in the expression of the stabilization parameters when the mesh is anisotropic.

We can anticipate that the quality of the solution in all the cases is very good, in the sense that no pressure

and velocity oscillations occur. The stabilization method as such, regardless of the way to compute the

characteristic element length, performs well in allowing equal velocity–pressure interpolation and dealing
with high element Reynolds numbers.

6.1. Flow over a cylinder

This example involves the flow past a cylinder, a widely solved benchmark problem. The computational

domain is �X ¼ ½0; 15� � ½0; 10� n D, with the cylinder D of diameter 1 and centered at ð4; 4Þ. The velocity at

x ¼ 0 is prescribed to ð1; 0Þ, whereas at y ¼ 0 and y ¼ 10 the y-velocity component is prescribed to 0 and the

x-component is left free. The outflow (where both the x- and y-components are free) is x ¼ 15. The Rey-
nolds number is 100, based on the cylinder diameter and the prescribed inflow velocity. The finite element

mesh employed consists of 3636 linear triangles, with 1888 nodal points. The stretching in the boundary

layer is 1:2400.

To integrate the flow equations in time we have used the Crank–Nicholson scheme with a time step

dt ¼ 0:05 (the first 10 time steps have been solved with the backward Euler method).

The results shown in Figs. 2–5 correspond to t ¼ 3000, when the vortex shedding is fully developed. Figs.

2 and 3 show the pressure contours and the streamlines, respectively.

Fig. 4 shows the evolution of the pressure vertical forces on the cylinder for different expressions of h. It
can be seen that the most dissipative results are obtained when the characteristic element length is com-

puted as the maximum length of the element edges. The other three possibilities yield similar results. The

highest amplitude and frequency, and thus the minimum dissipation, is obtained when h is computed in the

flow direction. A little more dissipative are the solutions obtained with h computed as indicated in [18] and

taking the minimum length of the edges.

The linelets used in the construction of the preconditioner to solve the pressure equation in this par-

ticular example are shown in Fig. 5. It can be seen that they grow from the cylinder boundary, where the

most stretched elements are located.
Fig. 2. Pressure.



Fig. 3. Streamlines.

Fig. 4. Evolution of the pressure vertical forces on the cylinder.

Fig. 5. Linelets.
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The mean number of iterations of the Conjugate Gradient algorithm to solve Eq. (47) within each
iteration of each time step has been 174 to reach a tolerance of 10�8, whereas with no preconditioning other

than a diagonal scaling 10 000 iterations were required to reach a residual of the order of 10�3.

6.2. Flow over a backward facing step

This second example is the classical benchmark of a flow over a backward facing step. The length of the

inflow channel is 4 and its width 1, the total length of the computational domain 40 and the width of the

channel 2. A parabolic velocity profile with maximum value 1 is prescribed on the inflow, whereas the no-
slip condition is prescribed on the rest of the walls except the outflow, where a zero traction condition is

fixed. The Reynolds number, computed with a velocity 2/3 and the step height 1 is 1000.

The finite element mesh employed consists of 16 472 linear triangles and 8542 nodal points. The

stretching on the boundary limit is about 1:40. The flow equations where advanced in time with the

backward Euler method and a Courant number of 100 to obtain the steady state solution, which was

assumed to be reached when kunþ1 � unk6 10�3kunþ1kdt.
Figs. 6 and 7 show the pressure contours and the streamlines for this example using different ways to

compute h. It can be observed that the results are all very similar. Looking at the maximum pressure
difference, the highest value in this case is obtained with h computed as indicated in [18], followed by h
Fig. 6. Streamlines. From the top to the bottom: h in the direction of the flow, h proposed by Formaggia and Perotto [19], maximum

length of the element edges and minimum length of the element edges.



Fig. 8. Convergence to the steady-state for the flow over a backward facing step.

Fig. 7. Pressure. From the top to the bottom: h in the direction of the flow, h proposed by Formaggia and Perotto [19], maximum

length of the element edges and minimum length of the element edges.
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computed following the streamlines. This gives an indication that these two are the less dissipative alter-
natives for h, although in this case the conclusion is not so clear as in the previous example.

Fig. 8 shows the convergence towards the steady state. Again, the behavior obtained for the different

ways to compute h is very similar. The slowest in the case corresponds to (24), whereas the fastest is ob-

tained taking the maximum length of the element edges. This again is representative of how dissipative is

the scheme.

In this example, the mean number of iterations of the Conjugate Gradient algorithm to solve Eq. (47)

within each iteration of each time step has been 212 to reach a tolerance of 10�8, whereas no convergence to

the prescribed tolerance was obtained without preconditioning.
7. Conclusions

We have presented a finite element scheme for the incompressible Navier–Stokes equations with two

main features: it incorporates a stabilization procedure and an iterative scheme to deal with the pressure.

We have found this iterative procedure, given by (45)–(48), very efficient (only scalar equations need to be

solved) and robust. Without the term dtLðPnþh;iþ1 � Pnþh;iÞ in (47) convergence turns out to be much harder.
In fact, for the two numerical examples presented it was impossible to obtain convergence within each time

step without this term, even though this point should be further analyzed (particularly in terms of the time

step size and the viscosity, which are the two parameters most relevant to nonlinear convergence). We first

used this scheme in [31] (see also [33]), where other numerical simulations using it can be found.

We have also discussed different ways to compute the element length that appears in the stabilization

parameters. As it could be expected, it is directly related with the numerical dissipation of the scheme. It is

important to remark, though, that the two choices that yield less dissipation, namely, (23) and (24), still

succeed in stabilizing the pressure and allow to deal with convection dominated flows.
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