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Abstract 

Solving large systems of equations from CFD problems by the explicit pseudo-temporal scheme requires a very tow amount of 
nlemory and is highly paratlelizable, bu; the CPU time largely depends on the conditioning of the system. For advectiv¢ systems it 
is shown that the rate of convergence depends on a condition number defined as the ratio of the maximum and the minimum 
group velocities of the continuum system. If the objective is to reach the steady state, the temporal termcan be modified in order 
to reduce this condition number. Another possibility consists itl the addition of a local preconditioning mass matrix. In this paper 
an optimal preconditioning for incompressible flow is presented, also applicable :c, compressib!e ones with locally incompressible 
zones, like stagnation points, in contrast with the artificial compressibility method. The preconditioned system has a rate of 
convergence independent from Mach number. Moreover. the discrete solution is highly improved, eliminating spurious 
oscillations frequently encountered in i,compressible flows. 

O. Notation and symbols 

Notation 
x , X  
.f 
R e { z ) ,  I m { z }  

xiYi 
d i a g { a ,  b,  c . . . .  } 

Vec to r s  in lower  case ,  m a t r i c e s  in u p p e r  case  
( d x / d t ) ,  t e m p o r a l  de r iva t i ve  
Rea l  a n d  i m a g i n a r y  pa r t  o f  c o m p l e x  n u m b e r  z 
E~ x,y, ,  r e p e a t e d  ind ices  s u m m a t i o n  c o n v e n t i o n  
D i a g o n a l  ma t r ix  with d i a g o n a l  en t r i e s  a, b,  c . . . .  

Symbols  

At 
a 

Bo, L 
B~).L 
C 

J a c o b i a n  ma t r ix  o f  the  fluxes for  the  i th  spat ia l  d i r e c t i o n  
A b s o l u t e  va lue  o f  the  r ight-  and  le f t -go ing  waves  in Sec t ion  2 .2  
B o u n d a r y  c o n d i t i o n  ma t r i ce s  
B o u n d a r y  c o n d i t i o n  ma t r i ce s  in t he  e i g e n c o m p o n e n t  basis  
C o u r a n t  n u m b e r ,  n o n - d i m e n s i o n a l  t ime  s t ep  
(1)  S p e e d  o f  s o u n d  
(2)  Art i f ic ia l  s p e e d  o f  s o u n d  for  the  artificial compre s s ib i l i t y  m e t h o d  
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det  X 
e 
F 
R 
i 
K 
K n u m  

ij 

k 
K 

L 
m 
M 
t in  

M ar l  

N 

n d  

N n t~d 

P 
r 

Rll.t. 
r .o .c .  
S 

t 
At 
Atcrtt 
U 
U 
U* 

U~ 
X 
(X 

/3 
K 

A 
A 
6, 
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Cons tan t  in the algori thmic complexi ty  express ion 
De t e r m i na n t  of matrix X 
Tota l  energy  
Advect ive  fluxes 
Residual  of  the general  discrete system 

Stiffness matr ix  for the general  discrete system 
Numerica l  diffusion matr ices  in Section 4.3 
wave n u m b e r  vector  
Condi t ion  n u m b e r  based on group velocities of the con t inuum sys tem 
Length  of the one-d imens iona l  domain  
Dimens ion  of  the state vector  
Mach n u m b e r  
( I )  Mash matr ix  for the general  discrete  sys tem (1) 
(2) Local p recondi t ion ing  mass matr ix  for hyperbol ic  sys tems (20) 
Artificial Mach n u m b e r  
Diagonal  e lements  of  Min ~ 
N u m b e r  of  nodes  in a character is t ic  d i rect ion 
N u m b e r  of  spatial  d imens ions  
N u m b e r  of  degrees  of  f r eedom 
Pressure  
Algor i thmic  cons tant  in artificial compress ibi l i ty  m e t h o d  
Reflect ion coefficients 
Rate  of  convergence  in i terat ive a lgor i thms 
Change  of  basis matr ix 
S t reaml ine  o r ien ted  unit vector  
T ime  
T ime  step 
Critical t ime step 
Local fluid s tate  vector  
Velocity vector  
Mach n u m b e r  vector  
Phase veloci ty vector  defined by (23) 
G r o u p  veloci ty vector  defined by (24) 
State  vector  of  the general  discrete system 
(1) D u m m y  scalar cons tant  in the definit ion of  h o m o g e n e o u s  funct ion 
(2) Cons tan t  to adjus t  in the definit ion of  Mi.  ~, Eqs.  446) and (49) 
(3) Angle  of  a t tack in Sect ion 5 
Scalar  p a r a m e t e r  for hyperbol ic  sys tem (57) 
Condi t ion  n u m b e r  
Condi t ion ing  of the p recond i t ioned  sys tem 
Jacobians  in diagonal  form 
Eigenvalue  
Angle  formed by the Mach vector  with the mesh 
Densi ty  
Cons tan t  densi ty  in artificial compress ibi l i ty  me thod  
E igenf requency  for the p lane-wave analysis 

S u b -  a n d  S u p r a - i n d i c e s  
i , j , l  Spatial  coord ina tes  indices 
inc Precondi t ion ing  based on diagonal  scaling for incompress ib le  flow 
L l Precondi t ion ing  based on lhe L h-norm of the jacobian flux vector  
L2  Same for the L , - n o r m  
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n u m  

C,NC 

ID 

s 

For the numerical diffusion terms 
For the conservative and non-conservative versions of the artificial compressibility 
system 
Optimal one-dimensional values for the numerical ¢.liffusion operator of SUPG 
State vector componcnt index (1 ~/s, <~ rn) 
Preconditioning based on the projection of thc jacobian flux vector onto the 
streamline direction 

Io Introduction 

A very common procedure in order to find steady states from non-linear equations arising in 
computational fluid dynamics, say F(x)= O, is to iterate an explicit or implicit temporal scheme until 
convergence: M.~ = F(x), t---, ~ [4, 6], Here, x ~ R" is the state vector, F is a map from ~,v onto itself 
that represents the discre~.e system of equations, M is the m~ss matrix of the system and the dot 
represents time derivative. If an explicit scheme is used, comparatively low amount of core memory and 
large CPU-time are required. Moreover, the CPU-time highly depends on the conditioning of the 
system. Bad conditioning of the system is caused by several multiplicative factors like large variations in 
element size through the mesh, large variations in edge sizes for a given element, local inct,.mt~ressible 
(M---~ 0) or transonic (M---', 1) behavior, where M is the Mach number. On the other hand, if an ling, licit 
temporal scheme coupled to a direct solver is preferred, very large convergence rates are achieved, but 
it requires a large amount of memory to factorize the associated matrix. This problem can be partially 
overcome by solving the linear subproblems by an iterative solver like GMRES,  DMR, e t c . . .  The 
amount of core memory is drastically reduced at the expense of an increased CPU-time which, again, 
highly depends on the conditioning of the system. The success of an iterative scheme (either explicit or 
implicit) is, then, related to improving the conditioning of the system. For instance, bad conditioning 
arising from large variations in mesh element size can be removed through the use of 'local time 
steppin~ strategies. This can be ~een as modifying the mass matrix of the original system to ,~k = F(x) 
where M is a diagonal matrix that includes a factor proportional to the maximum admissible time step 
based on a local stability analysis. As is well known, this modifies the temporal evolution of the state 
vector in such a way that it has no more physical sense. Due to this fact, it is only applicable when 
looking for a steady state. Much in the same way, we look for local mass matrices which correct the bad 
conditioning associated to different characteristic speeds at incompressible (M--*0) and transonic 
(M---~ 1) regimes. By 'local' mass matrices we mean block-diagonal matrices with each block connecting 
only the d.o.f. 's of each node. This restriction is imposed in order to have an O(N,,,d) Cost per 
preconditioning cycle, where N,,,d is the total number of nodes in the mesh. 

In [7], we showed that the bad conditioning arising at transonic and incompressible regimes is caused 
by very different propagation speeds for the different components of error. For instance, in the 
compressible regime, vorticity waves (i.e. shear waves) propagate downstream with the velocity of the 
fluid, which is much lower than the speed of sound with which pressure waves propagate in all 
directions. Thus, the limiting component in order to fulfill the CFL condition are the pressure waves, 
which will propagate at, roughly, one element per time step. On the other hand, the vorticity waves will 
propagate at M elements per time step, where M is the Mach number. As the main mechanism of 
convergence is the absorption of perturbations at the boundaries, the convergence rate will be affected 
by a factor K = I v o l . , . ~ / I v ~ l  . . . . . . .  where Ivol  . . . . .  ,o are the maximum and minimum group velocities, r 
is named the group velocity condition number and we have K = 1 /M for incompressible flows and 
K = 2 / IM - II for transonic flow. Note that K is a property of the continuum PDE's  sy_qem regardless of 
the numerical scheme. 

In the same paper, we presented a preconditioning mass matrix (PMM) for the transonic regime. An 
important improvement of the conditioning of the system was reached. However, no improvement was 
found for the incompressible regime. On tbe other hand, the incompressible range is very important, 
perhaps even more important than the transonic one since it is present in globally compressible flows at 
stagnation points, for instance. 



2 3 4  M. Storti et al. / Cornput. Methods. Appl. Mech. Engrg. 124 (1995) 231-252 

Several general ~trategies can be adopted to propose PMM's. For diagonalizable systems the optimal 
choice is M = [AI. l tere 'optimal'  means that the group velocity condition number of the preconditioned 
system is O(1). Unfortunately, this is not the case for the gas dynamics equations. However, this choice 
gives some improvement in the transonic case, but fails in the incompressible one. 

The preconditioning proposed here for the incompressible regime is based on a totally different 
concept. The idea is to rescale the momentum and continuity equations as a function of Mach number 
with respect to the energy equation. Both theoretical and numerical results show that an optimal 
conditioning is achieved (K---,2 for M---,0). 

In Section 2 we define a condition number based on group velocities for hyperbolic systems and we 
show how it is related to the rate of convergence. In Section 3 we review the results already published 
about the application of PMM's to compressible flow at transonic regime. In Section 4 the new PMM 
for incompressible flow isproposed and the resulting conditioning is assessed. We devote Subsection 4.2 
to the comparison with the artificial compressibility method of Chorin, while the influence on the 
accuracy of the numerical results is discussed in Section 4.3. Finally, in Section 5 we present several 
n.~merical results. 

2. Convergence rate in explicit pseudo-temporal ~:nemes 

2.1. General considerations about taw of  convergence in iterative systems 

Let us consider the explicit pseudo-temporal scheme applied to a linear system of O.D.E. ' s  like 

U" ÷ t ._ U" 
M A t  = K U "  - b (1) 

where K is the jacobian of F and b a constant right-hand side. The ultimate rate of convergence of the 
scheme can be fot.ld by standard eigenvalue decomposition 

,} r.o.c. = logt0 min }1 + At A~, (2) 
t..t = I 

where {A~,} is the set of eigenvalues of M-IK.  The r.e.c, is observed as the slope of the convergence 
hislory of the residual as a function of iteration number in a logarithmic plot, measured in orders of 
magnitude per iteration. As is well known, such an explicit scheme has a critical time step At,,i, due to 
stability restrictions. For badly-conditioned systems, the largest eigenvalue }AI,,,~ fixes the critical time 
step, roughly AT~r, ~ 1 /[Al,,,x, and the lowest eigenvalue gives the lowest convergence rate 

{ , r.o.c.-----log,u{1 + Atl,~lm,, } =logt0 1 + IA]'"i"-- =log,o{l  + l/Kai,,,} ~ r,d~,~ 
I,qm,,J ~ (3) 

where Kdisc = Ialm,./ialm~.. is the condition number of the discrete system. For discretized advection 
systems, there are two main mechanisms of convergence, namely, numerical damping within the 
domain and advection to the boundaries followed by absorption. It was shown in [7] that the first one 
gives a convergence rate O(N z) iterations, where N is the number of elements in a characteristic 
direction, whereas the second one gives an O(N) convergence rate. As usual, the highly oscillatory 
modes are the stability limiting ones, whereas the smooth ones have the lowest convergence rates. 

2.2. One-dimensional example 

Now we wilt present a simple example that allows us to understand the main factors affecting 
convergence rate in advective systems. The analysis will be restricted to the continuum system since, as 
was mentioned, the lowest rates are those of the smoother modes. We consider a one-dimensional, 
linear and homogeneous system like 

OU au 
a---~+a-0-~--=0, O < x < L ,  0 - - t < ~ :  (4) 
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where U E ~" is the state vector and A ~E [~2,_~ is the advective flux jacobian. We suppose that A has two 
eigenvalues {a ÷, - a - } ,  with a :  > 0 ,  and the boundary and initial conditions are 

B o U ( O ,  t) = 0 

n,U(L.t) : o  (5) 

U(x. 0) = u,,(x) 

The B's  are 1 x 2 nlatrices since, as dictated by the theory of advcctive systems, we have one ingoing 
and one outgoing wave at each b o u n d a r y  Convergence rates can be dctzrmined by Laplace t ransform 
but,  in practice, it is equivalent to search for solutions of tile form" U(x, t) = e -A' / ) (x) ,  and arrive at an 
equat ion for A. Replacing this particular form in (4) 

-~ t~  + a -fix = 0 (6) 

whose solution is 

6'(x) = exp{ AA- Ix} /)(0) (7) 

On  the other  hand,  the boundary conditions are t ransformed to 

B,,t)(0) =0 
(8) 

B L U(L)  = B,. exp{ AA- t L }/)(0) = 0 

so that the equation we are looking for is 

det  BL e ~'~-'l" = 0  (9) 

Since the system is hyperbolic, a simpler expression can be obtained if we switch to a basis of [R 2, where 
A is diagonal.  Let S be the change of  basis matrix such that S-~AS = diag{a ÷, - a - } ,  then 

exp{AA-]L } = S diag{e ~t''"" , e-"~L'"- }S -i (10) 

where  diag{a, b, c . . .  } stands for a diagonal matrix with diagonal entries a,  b ,  c . . . .  Transforming the 
boundary  conditions into the eigencomponents  

B ~, = B o S  (11) 
s 

B L = B L S  

and (9) simplifies to 

[ B: t  B¼, ] 
det Bt.~ ._ ' e "L'"" B j , e - "  " = 0  (12 )  

It can be shown that the B,~'s are related to the reflection coefficients R~.z at the ext remes of the 
domain through 

/3' 8', 
~}2 . I 

R , , -  n;,, " n , . -  /3'~2 (13) 

and then,  Eq. (11 ) becomes 

- A L I a  - e A L . .  • e - R , , R L  = 0 (14) 

from which the following expression for A can be obtained 
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Fig. 1. Convergence by absorption at the boundaries. L = !, a" = 1, a- = 2. The coefficients of reflection are R,,., = +0.8 at each 
boundary.  The perturbation at t = 0  is a right-going gaussian of width--0.1 and unit amplitude in u centered at x = 0.3. it 
propagates to the right and hits the right boundary at t = 0.7. It is reflected to a left-going o-wave of amplitude 0.8 until it hits the 
left-boundary at t = 1.2. It is reflected there to a right-going u-wave of  amplitude 0.64. At t = 1.5 it is at the same place where the 
process started and the cycle r e s t am again with a total loss of amplitude in the cycle of IR,,R,.I. 

log(1/IR,,RLI) 
Re{A} = L L (15) 

- -7+--=-  a a 

The physical meaning of (15) is clear now (see Fig. 1): a smooth wave packet of unit amplitude 
composed of right going waves lasts L / a  + to go from x = 0 to x = L. IRt, I of it is reflected to a packet of 
left-going waves which, again, lasts L / a -  to traverse the domain and reach the boundary at x = 0 .  
Finally, after reflection IRoRLI of the initial wave is reflected to a right-going wave packet and the cycle 
is completed. Usually, one has absorbing bounfiary conditions at the boundaries. For 1D systems, 
completely absorbing boundary conditions can be devised at~d R 0, R ,  = 0, implies an infinite rate of 
convergence. However, in practical 2D or 3D situations, local non-reflecting boundary conditions are 
completely absorbing only for normally incident waves and, then, a globally non-infinite rate of 
convergence is observed. 

2.3. Rate of  convergence in advective systems 

Applying the rate of convergence definition (2) to the previously shown example, we arrive at 

Iog,,,(l/lR,,R,.i) 
r.o.c. = at t.(-~-~ +,-7-1) ( ,6)  

We assumed that At A << I (it is shown below that it behaves like 1 /N as N----, ~, with N the number of 
nodes in the one-dimensional mesh). The time step is made non-dimensional: At = Ch/am~ ~, where C is 
the Courant number,  which is restricted by the CFL condition to be smaller than unity (recall that the 
analysis is given for the explicit forward Euler scheme), h is the mesh size and am~ x = max{a +, a -} .  
Replacing the above expression for At in (16) we obtain 

c log,.., 1 / I n . n ,  I) 
r.o.c. = N( 1 + K) (17) 

w i t h  
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a ..,,~ max  { a + , a - } 
K = ~ = ( 1 8 )  

a.,,. min{a ~ , a-  } 

This rate of convergence is valid also in multidimensional problems, where now N is the number of 
~"" One easily arrives at an estimate of the algorithmic elements in a characteristic direction, i.e. N ~ N . , , a .  

complexity of the form 

N,,p = number of operations = ~,,P't-" ~a ~' .  ,,,~t ~,,,: (19) 

The exponent is competitive with most iterative solvers and moreover, the explicit scheme is highly 
parallelizable and easy to code. However, one of the main drawbacks of this and most iterative solvers 
is the high dependence of Coo on the different physical and numerical parameters of the problem. For 
instance, very low r.o.c.'s are obtained if badly designed boundary conditions (i.e. non-absorbing ones) 
are used, or the continuum system is badly conditioned (K large) as in the incompressible or transonic 
regimes. 

In the rest of the work we will focus on how to improve the r.o.c.'s based on the design of a good 
local preconditioning. This is done in two steps: the first one is to improve the condition number K 
based only on an analysis of the continuum system. Once a good candidate is found, it must be verified 
how the corresponding critical Courant number is modified, since it is included also in the expres:fion 
for the r.o.c. (see Eq. (16)). This is performed by a standard stability analysis. There exist cases where 
a given preconditioning improves the conditioning of the system but, after a stability analysis, it is 
shown that this 'gain' is counteracted by a deterioration in the critical Courant number so that no 
overall gain is produced. 

2.4. Computa t ion  o f  condit ion n u m b e r  f o r  mul t id imens ional  advective sys tems  

Now, we extend the definition of the condition number to the general multidimensional case, laying 
stress on the Euler equations. As we will use Fourier analysis, we restrict the analysis to the Cauchy 
problem (infinite domain), linear, homogeneous (constant coefficients) multidimensional advective 
systems of equations 

OU OU 
M-~--+ Aj-ff~ = 0 ,  Vx @ R"a, t > 0 (20) 

where U(x,  t) ~ ~" '  is the state vector, {Ai} ;'#~ are the jacobians of the advective fluxes, Aj E I~ ' '  X"', and 
M ~ II~ . . . . .  is the mass matrix. Here and in what follows, the Einstein convention will be adopted. We 
assume that the system is hyperbolic, i.e. for all k E [~,,a the matrix k-A = kjA i is diagonalizable with 
real eigenvalues. Moreover, we will assume that the system is symmetrizable, i.e. there exists a 
non-singular matrix S, independent of k, for which S ( k . A ) S - I  is symmetric for all k. The Euler 
equations fell into both categories. We look for eigenfunctions in the form of plane waves 

V ( x , t ) =  (J e "*x-°'') (21) 

Replacing (21) in (20) the following determinantal equation in (o is obtained 

d e t ( - ~ M  + krAj) = 0 (22) 

and it results that 0 has to be an eigenvector corresponding to the eigenvalue ¢o. For each k • [~"~ we 
r t l  obtain a set of eigenvalues {t%(k)}~,=], which are called the 'branches of eigenvalues'. For the 

non-preconditioned system M = I, the eigenvalues are ~-eal since the system is hyperbolic. This feature 
must be kept by the preconditioning. For symmetrizable systems, a sufficient condition is that M must 
be positive definite and symmetric in the basis where the jacobians are symmetric. Coming back to the 
expression for the plane wave (2I),  we can see that constan: aii-iplitude planes Re{U e i(k'x-~°t)} = 

constant, have a characteristic phase velocity 
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v, , , (k)  = -fly k (23 )  

However, it can be shown that energy and information propagate at the group velocity 

ato (24) 
vg , , -  ak 

For a complete description on Fourier analysis of discrete systems the reader is referred to [9]. It is easy 
to see that the ~ . ' s  are homogeneous functions of degree one in k, i.e. co~,(ak) = a%(k)  for a > 0. As a 
consequence, v~, is homogeneous of degree 0 and then it depends only on the direction of k 

The condition number K is ex'~ended tG the multidimensional case as 

K -  ]Dg/.t[mi n (26) 

where the maximum and minimum are taken over all [k] = 1 and t~ = 1 . . . . .  m, 

2.5. Numerical computation of  group velocities 

A first attempt to compute group velocities is to replace the derivatives in Eq. (24) by finite 
quotients, but often the eigenvalues are computed with numerical routines and some kind of 
continuation algorithm should be applied to identify the continuous branches. Moreover, singularities 
exist in some cases. We present here a practical algorithm to compute them, that overcomes this 
drawback. In this section the Einstein convention of summation over repeated indices will be dropped. 
Let us consider the eigenvalue decomposition of 2 i kr4 J 

A=S-'(~ k/li)$ (27) 

with A a diagonal matrix. Of course, A and 8 are functions of k. By its definition, the ~o~,'s are the 
diagonal elements of A 

oJ, : { $ - '  ( ~  k ~ i ) S } , ,  (28) 

The group velocity is, by (24) 

0o). 
v~,,t - Ok t - {S - 'A tS  + D}~,, (29) 

where 

L as  

Taking derivatives of the identity S-~8 = ! the expression 

) °s 
a S - '  S + S - ' - ~ t = O  (31) 

is obtained, from which (OS-L t , oft) can be eliminated and replaced in the expression for D and, after 
some algebra 

D = - ( S  ~' O~kt) A +  A ( S - '  a -~ )  = - E A  + .  AE (32) 
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Now. we note that the diagonal elements of D are null 

D,.. = -E~..%. + %.E~.~ = 0  (33) 

and then. the group velocities can be easily computed as 

aw,. 
v~ , t -  ak t - {S-'A,S},,~. (34) 

The numerical procedure consists in sweeping the circle (sphcre) Ikl = 1 in 2D (3D) with a large amount 
of wave number vectors and to compute the maximum and minimum group velocities (in absolute 
value). Sometimes it is interesting to plot the locus of the group velocities in a (vg~, v~y) plane. 

3. PMM for compressible flows (review) 

The compressible Euler equations in conservative form are 

aU aF, 
+ = ° 

where 

(35) 

(36) 
pu + ] 

F =/ ,uur +pL,,..,| 
L (pc + p)u + ] 

where U ~ ~ "  is the state vector of the fluid, F C ~ ...... " are the advective fluxes, p the density, u the 
velocity vector, p the pressure, e = p / [ p ( y - 1 ) ]  +U2/2 the total energy, y =  1.4 and m = 5  in 3D 
(m = n a + 2 in general). The jacobians of the fluxes are defined as 

•Fi (37) 
A,--  dU 

and can be written in compact form as 

k,A,= - ( u . k ) u + ( 3 ' -  ! ) ~ k  uk r + ( u . k ) l - ( y - l ) k u  + ( y - 1 ) k  (38) 

( u . k ) [ ( y - l ) u " - ~ e ]  --~+e k ~ - ( y - l ) ( u . k ) u  + y(u .k )  

The system is symmetrizable and then hyperbolic, but it is not diagonalizable in the multi-dimensional 
case. However, it is (trivially) diagonalizable in the one-dimensional case. We will show that for such 
diagonalizable systems we have an optimal preconditioning. 

For the one-dimensional case, the choice 

M = IA,I (39) 
gives a deeoupled system in the basis of eigcnvectors of A,. which looks like 

0--~ + sign(vg,) ~ = 0 ,  p. = 1 . . . .  m (40) 

where V = S-~U are the new variables where the system is decoupled, and v~, are the corresponding 
eigenvalues. (For such one-dimensional systems group velocities and phase velocities coincide with the 
eigenvalues of the jacobian matrix.) It is clear from (40) that all components will propagate with the 
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same unitary speed. For mult idimensional  diagonalizable systems (39) can be extended as M = IAt, and 
several possibilities are obtained depending on the chosen norm. In this paper  we will consider 

M,., = IA,I + IA,.I + IA:I (41) 

ML2 = CA~ + A ; -  a~. (42) 

Again,  we transform the syste, into the basis where it is diagonal 

or,, v~,. aV,. 
O"-"~ - +  ]Vg•l / i X , - 0 ,  /1 1 . . . . .  m (43) 

where vg~,, is the ith dimensional  component  of the group velocity for the /~th equat ion of the 
non-precondit ioned system, and it can be shown that it corresponds to the p.th diagonal component  of  
the jacobian A i in its diagonal form. (For a detailed discussion see [7].) The norm appearing in (43) is 
the same as that one chosen for the preconditioning matrix. It stems from this expression that the group 
velocities for the precondit ioned system are all O ( l ) .  

A first at tempt to treat non-diagonalizable systems is to use (41) or (42) directly. The condition 
number  for a particular M is computed as described in Section 2.4, and we plot the condition number  
for both the non-precondidt;ned system rN,, (see Fig. 2) and the precondit ioned ones K~. ,.;._,. As can be 
seen, some gain is :~btained for transonic flow. The gain is a constant factor as M---, 1 (KL~.t.2/~CNp~ 1 /3  
as M ~ 1), since both give a behavior O(}M - l i ) - '  as M ~ 1. See Fig. 3 for logarithmic scaling in the 
transonic region. 

Another  possibility is to take 

M: = js,A,I ( 4 4 )  

for some vector s. Such a choice will give optimal conditioning if only wave number  vectors parallel to s 
are considered. A natural choice for s is the streamline oriented unit vector and the corresponding 
condit ioning is shown in Fig. 8. A significant improvement  is reached since it can be shown that the 
condit ioning behaves like K~ = 11 - M21- ~'". Notwithstanding the singularity is not removed,  a half-order 
gain is achieved. 

I0 * 
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I0 ~ 
Kinc 

• • | | 

. . ÷ 

:Ks i 
' ' ! i 

. . . . . . . . . . . .  ~1 / . . . . . . . . .  

~lfflC 
J 

KL2 
.- K'I_I 

I(~0 02 0.4 0,6 0.8 | 1.2 1.4 1.6 1.8 2 

M 
Fig. 2. Semi-logarhhrme plot of the condition nutnber of the continuum system for several precondifionings. 
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Fig. 3. Same as Fig. 2, bul with a logarithmic scaling in Ihe transonic regime M--~ 1 

4. P M M  for incompressible flows 

For the incompressible regime, none of the above-ment ioned possibilities succeeded in giving a 
significant improvement  in the conditioning of the system. See Fig. 4 for logarithmic scaling in the 
incompressible region. In fact, the PMM's  from Eqs. (41) or (42) have a condition number  O(1)  as 
M--~ 0, so that it is clear that it cannot correct the singularity. Regarding the streamline based M s from 
Eq. (44),  the conditioning is even worse than the non-precondit ioned system, in Figs. 5 -8  we can see 
the locus of the group velocity vector in the (u~,  v~,~) piane for M = 0.1 to 0.6 with AM = 0.I and M = / ,  
ML=.L2.., As is well known, for the non-precondit ioned system the locus for the branches corresponding 
to pressure waves are circles of  unit radius centered at ( M , 0 ) .  The entire branch for advection of  
vorticity is collapsed in a point at (M, 0), For the L~ and L~ norm the circles are deformed in 
quasi-circles with a nose pointing to ( I ,  0) and the advection of vorticity expands in to  a triangle which 

I0 ~ 

K 

io  ~ 

tO~ 

10-3 

i ~ i r -  K S  ¸ ~ , i i ::- 

~ III ! :  ! ! !  

J J i . . . . .  , , , , , L , . t  • L _ *  , l * l * i  • • ~ u J J  

I02 |04 I0° M lOI 

Fig. 4. Same as Fig. 2. but with a /ogarithmic scaling in the incompressible regime M--,0. 
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Fig. 5. Locus of group velocities fllr the non-prccondllionc‘d system M = 1. The locus has been plotted for M = 0.1 10 0.G with LI 
step of 0. I. Thu branches of group v&dies arc iudicatcd by points. For each Mach number two circles ccntcrcd at the origin and 

with radii Iu~~~,,,~ ,“,, I, have hccn drawn. 

--- --- - r- -- ~ 

Fig. 6. Samt- as Fig. 5 hut for M = M, ,. 

Fig. 7. Same as Fig. 5 but for M = M, :. 

diminishes in size as M+ 0 and a single point at ( l,(I). For the streamline based preconditioning (44), 
the advection-of-vorticity branch expands in a triangle and collapses with the quasi-circle resulting in a 
cardioid-shaped curve and a single point at ( l,(l). 

4. .! . Pwcortdi~ioning by diagonal scaling 

As was mentioned in the Introduction, the preconditioning we propose for the incompressible case 
here is based on ‘tuning’ three different scaling parameters for the continuity. momentum and energy 
equations, For the saki of simplicity 

- _ 
we perform an analysis for the 2D Euler equations in primit& 

variables. The jacohians are 0 ph.“ 0 
k,A; = id,1 + o %,, x n,, k’P 

[ 1 0 pc2?- II 

(45) 
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Fig. 8. Same ~.,, Fig. 5 but for M - M .  

Without  loss of generality,  we will suppose that u is parallel to the x axis. The proposed mass matrix is 

M,, c = diag{rnl ,  m2, m2, rn3} (46) 

These parameters  will be chosen in such a way so as to improve, as far as possible, the condi t ioning for 
the one-dimensional  problem when k,, = 0. It is expected that ,  if the condit ioning works in this case, it 
will work for the general k r-~-0 case, since the proposed matrix (46) is isotropic. This result is 
confirmed afterwards. 

The  group velocities for k:. = 0 have only x components  (due to symmetry about the x-axis), which is 
obta ined  through the resolmion of the following eigenproblem 

det(A~ - vg~M) = 0 (47) 

whose solution is, in the limit of  low Mach numbers 

Mtm, 
M/m,  

v~x= M(m +m~)+_.~/[ ] + )~ -±( /712m, )  ''~ 
2 M(mz + m3) 2 (1 - M 2 (48) 

2mzm3 2m2m, mam~ • 

In order  to have a 0 ( 1 )  condit ion we musl have 

M M 
- -a"(rn~m3) -I'" (49) 

m I /7/2 

with t~ a constant  independent  from Math  number.  Since the mass matrix is defined up to a 
multiplicative constant ,  we can set m I ~ :  txM and then,  m 2 = rn~ = ctM and m~ = I / M  are obta ined from 
(49). 

Now we proceed to the 'fine' tuning of the precondit ioning,  i.e. the choice of the opt imal  value for or. 
This is done by sweeping ot for a fixed Mach number  and plotting the condit ion number  versus a .  The 
opt imal  value o~*(M) which gives the lowest condition number  is found and it can be seen that o t* -~2  
when M---,0 (see Fig. 10). The final expression for Mi. ~ is 

M,,c = diag{2M, 2M, 2 M , - ~ }  (50) 

The locus of group velocities for M =0.1  to 0.6 is shown in Fig. 9. Note that both circles at the 
maximum and minimum group velocities approach a defined value z,s M---,0, so that  the condi t ion 
number  remains bounded.  
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Fig. 9. Same as Fig. 5 but for M = M,,,. 

Fig. 10. Optimal value for the a constant, Condition number of the preconditioned system (M = M.~,, Eq, (50)) as a function of 
for M = 0.05, O. 1, 0.2. 

As was mentioned in the last paragraph of Section 2.3, we checked the stability of the discretized 
preconditioned system. The integration scheme is the standard forward-Euler. The stability analysis is 
done by Fourier analysis of the infinite problem. Stability is assessed for each plane wave corresponding 
to a wave number vector k = (k,, k:.). For each Mach vector u* = u/c  = (u*,. u,*. ) we sweep a number of 
representative wave number vectors and the maximum admissible time step At(u*, k, Ix) is computed 
(for a detailed description see [7]). We are interested in the Courant number associated to the above 
critical time step. The maximum admissible Courant number is calculated as 

lug  J max 
- - -  min z~t(u* k, Ix) (51) Cm"x h I,. ~, ' 

In Fig. 11 we plot the Courant number versus the incidence angle 0 = tan- ' (u*  [u*)  for several J.*l and 
for both the preconditioned (right) and non-preconditioned (left) cases. We conclude that the stability 
limits are not drastically affected by the preconditioning. 

Regarding the cost of this preconditioning, it is negligible as compared to the cost of the evaluation of 
the residual. It amounts mainly to the multiplication of the residual of each equation by the inverse of 
the corresponding diagonal element in the preconditioning matrix. This multiplication must be 
performed for each node, at update time. 

4.2. Comparison with the artificial compressibility method 

The preconditioning proposed in Section 4.I has several aspects in common with the artificial 
compressibility method of Chorin, and in this section we will analyze the advantages and similarities 
with it. The "artificial compressibility equations' can be cast as an advective diffusive system (35, 36) 
with the following definitions 

c 2 is a positive parameter that can be chosen in such a way so as the improve the convergence to the 
steady state, in [5], a local value of c"=  max(0.3, ru") with 1 < r <  5 is suggested. 

We performed an analysis of the conditioning of the system based on the ratio between the maximum 
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Fig. i1. Stability analysis for the non-preconditioned (left) and preconditioned (right) systems. We have the critical Courant  
number  (based o n ,  + c) on the ordinates and angle of the fl,w with the mesh axis in the ~bscissae. Each curve corresponds to a 
different Mach number  for M -~ 10 ', 10 : . . . .  IO ". 

and minimum group velocities, and a sharper estimation of the parameter was obtained. We consider 
the linearized (i.e. with constant jacobians) version of (52} and we note that the condition of the system 
depends only on the 'artificial' Mach number M : , ,  = u / c .  The lowest condition number is obtained for 
M,,, = 1 /x /3  and the corresponding condition number is x = 3. The corresponding locus of group 
velocities is shown in Fig. 12. M,,,, = l /X/3  corresponds to an r wdue of 3. 

Instead, a small improvement is obtained if the following form of the artificial compressibility 
equations is considered 
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Fig, 12. Locus of group velocities for the arlific;~l compressibility equations in conservative fl)rm (52). The crosses indicate the 
branch of ~ o u p  velocities and two circles centered at v~ = (I of radii Iv.;[ ..... , Io, I ..... have been drawn. The figure corresponds to 
M .... = 1/V3. 

Fig. 13. The same as in Fig. I2 for the non-conservative form of the artilicial compressibility c£,uations (53), for M~,, = 1/V'2. 
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[o c r] 
A Nciki = ui I j (53) 

This system is obtained if a term proportional to the continuity equation is substracted from the 
momentum equations. However, the conservative character of the equations is lost. The lowest 
condition number is obtained at M,,,t = 1 /V~  and is K = 2 (see Fig. 13), exactly the same as in our 
proposed scheme. 

Finally, if the conservative form of the equations is used together with a PMM as follows 

au aFci [ 1 0naXnd ] (54) 
M -~-  + Ox----/- " M =  ,t4 ] c: I 

the same value of K = 2 at M~,, = 1 /V~ is obtained (see Fig. 14), but in a conservative form now. 
The preceding results led to the following conclusions. First, both the artificial compressibility 

method in conservative form of Eq. (52) and the PMM of Section 4.1 give optimal (i.e. K = O(I ) )  
condition.lngs with a slight advantage for the PMM (K = 2 against 3). The PMM is applicable to 
incompressible flows (it suffices to consider an arbitrarily low Mach number) but also to compressible 
flows with incompressible regions, whereas the artificial compressibility applies only to incompressible 
flows. Both are almost equivalent if an incompressible flow is considered and either the non- 
conservative version (53) or the preconditioned conservative one (54) is considered. 

4.3. Accuracy improvement  

Another  topic to be discussed is how the preconditioning affects the accuracy of the solution. First of 
all, we have to remark that preconditioning and discretization do not commute and, then, the discrete 
solution for the steady state of the preconditioned system is not the same as for the non-preconditioned 
o n e  

but 

u,.o(t = ~ .  h) ~ UNp(t = ~o. h) (55) 

m 

lira U,.~(t = ~.  h) =lim UNp(t = ~. h) =U(t = ~) (56) 
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Fig. 14. The same as in Fig. 12 for the conservative form of the artificial compressibility equations with preconditioning (54), for 
M~,,= IJV~. 
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where U is the continuous solution of the non-preconditioned problem, whereas U~n¢.Np stand for the 
discrete solutions of the preconditioned and non-preconditioned problems. Of course, both converge to 
the continuum steady solutions as the mesh is refined. The non-equivalence of the steady state discrete 
solutions is due to the fact that the stabihzing 'upwind' terms (in our case, taken from SUPG) are not 
the same. The question that arises is whether the numerical solution is improved or deteriorated by the 
preconditioning, it is well known that accuracy problems can arise in nearly incompressible flows. The 
subject has been extensively studied in the context of Navier-Stokes equations. For the Euler 
equations, the problem has received much lesser attention because it is not so used to solve 
incompressible inviscid flows with this system. However, 'checkerboard' type instabilities have been 
reported in stagnation points [1]. 

Surprisingly enough, we have experimentally found that the numerical solutions are much improved 
when this preconditioning is used, as will be reported in the numerical results. We do not have a full 
explanation of this phenomenon, yet. At filst sight, it seems reasonable that the stabilization scheme 
will work better on a well-conditioned problem. Consider, for instance, the following system 

= , , Ax  = _ ~  , A~ = ! Ot +A '  ~-b--~ 0 U = u2 :.. 

This system is symmetric and non-diagonalizable. As usual, in an SUPG context, the stabilized system 
on a square homogeneous mesh of size h looks like 

OU OU a2U 
- -  = X  " ' ' m ~  ( 5 8 )  

at + Ai-~x~ --"  Ox~Oxj 

where 

n u m  h 2 - i / 2  
g o =A,~'Aj and r = ~ ( A ~ + A y )  (59) 

For the system described above (57) we have 

h hfl  z h h u m  

~ ' - 2  1 ~ / ~ -  7 I  and K~  m 2 ~ I "  X.,  2VI+ /321  (60) 

This should be compared to the 'optimal' one-dimensional expressions 

K . . . .  ID h h h 
~" 2 IAxl -2 f l l  K . . . . .  ~D _ h = - -  = , _ _ y y  -~-lAy] = ~ I  (61) 

For/3 << 1 we have K "~m =K ""m''D which means that the upwinding is optimal in the y direction, but - - y y  - - y y  

x ~  m aK°°m.'° X~m.,D -~ ~__~ << and the numerical dissipation along the x-direction is insufficient. Con- 
versely, for 13 >> 1 we have g ~ "  =__xxK °um'ID but Key°Urn = 1/BK,___~.y . . . .  tD <<A'..rr . . . .  ~t). For /3 = O(1) the 
upwind is nearly optimal for all directions. Coincidently, the lowest conditioning (in the sense of Eq. 
(26)) is obtained fo, /3 = 1. This verifies the rule: 'low conditioning implies better stabilization'. 

Flowever, this rule is not applicable to diagonalizable systems, since they are always optimally 
stabilized, independent from the conditioning of the system. 

5 .  N u m e r i c a l  r e s u l t s  

Firstly, in this section we will show how the preconditioning mass matrix proposed here improves the 
rate of convergence of nearly incompressible flows (M - 10 -3) for two model problems like the circular 
bump and flow around a Joukowski profile. 

In Fig..~.6 we can see the convergence history for the circular bump (thickness = I2%, see Fig. 15) 
with the non-preconditioned scheme (left) and the preconditioning mass matrix presented in this paper 
(right). We notice that a significant improvement in the rate of convergence is achieved regardless of the 
very low Mach number (M = 10-3), and also validate the improvement in the condition number. 
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Fig. 15. Locally refined mesh for the bump (thickness = 12%). 
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Fig. 16. Convergence history fo, 6,,..':vmp at M = 10 ~, without (left) and with (right) preconditioning. Each curve corresponds 
to the r.m.s.-norm of the vector of nodal residuals of each equation: 1 (continutly), 2, 3 (x.  y momentum) a,,d 4 (.~o, er£y). 

Initially, for the non-preconditioned case, the residual has a relatively high r.o.c, of roughly 60 
i terat ions/order with a highly oscillatory component, but it switches later to a smooth curve with a low 
and diminishing r.o.c, of 6000 iter/order. This behavior is explained as follows: initially the error is 
mainly in the continuity equation which generates pressure waves which have a high group velocity and 
then a high rate of convergence. The oscillations are caused by reflections at the lateral slip boundaries 
(absorbing boundary conditions are used at the inlet and outlet boundaries). At a certain moment the 
component of the error in the form of pressure waves have been dissipated, and that component in the 
form of vorticity remains almost with the same amplitude since it has a much lower group velocity. 
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Fig. 19. Convergence  history for the Joukowski  profile (12% thickness,  4 .6% camber)  at an angle o f  a t tack a = - 0 . 8 8 7 2  ° and 
M = 10-*, without  (left)  and with (right) pre :ondi t ioning.  Label ing of  the curves is the same as in Fig. 16. 

From this point onwards, the r.o.c, is dominated by that of the vorticit.y waves, since they are the main 
component of the error. Since vorticity is propagated downstream, there i~ n~ possibility of reflections 
at the slip boundaries. This explains the smooth behavior of the second part of "he curve. With respect 
to the preconditioned case, we can observe in the right plot that all equations have almost the same 
slope, and it is so because we have got a condition number close to two. 

The second example is a flow around a Joukowski profile (12% thickness, 4.6% camber) with an 
angle of attack a = -0.8872 ° and a Mach number M = 10 -3. As in the previous case, Fig. 19 shows the 
convergence histories for the non-preconditioned system (left) and for the proposed preconditioning 
(right) and, again, we conclude that the rate of convergence experiences an important improvement 
with similar rates for each equation. 

Another interesting topic, treated in S,'ction 4.3, is the accuracy improvement. In this kind of 
problem one of the most important measures related to the quality of the results is got by the pressure 
coefficient distribution around the profile. For both problems we have a pattern to validate the 
numerical results. For the circular bump we have computed a pattern using a BEM (Boundary Element 
Method) computation for potential flow that is very close to the real experiment due to the low 
compressible effects. For the Joukowski profile example we have the analytic solution for incompress- 
ible potential flow, obtained from conformai mapping techniques. 

In Fig. 15 we show the mesh used for the final simulation on the bump. As we can see, we have 
refined close to the profile to increase the accuracy. The first simulation was carrk!d out with the basis 
mesh (the mesh without refinement, not shown) and the results obtained with this mesh are plotted in 
Fig. 17. In the upp,:r part we show the Cp distribution in y-axis versus the profile coordinates in the 
.c-axis for the non-preconditioned scheme. The other plot is the same for the preconditioned scheme 
presented here. We can see how the checkerboard modes that appear in Euler codes near incompress- 
ible regimes (upper plot), disappear with the preconditioned scheme (lower plot). In order to compare 
to the pattern mentioned above we refined the mesh (see Fig. 15) and we present this comparison in 
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Fig. 20. Cp distribution for the Joukowski profile. (C_): Euler/FEM M = I0 a, ---: exact/incompressible potential). 

Fig. 18. Note the good quality of these results even though more refinements can be performed at the 
leading and trailing edge in the case that the pressure distribution has to be adjusted more precisely. 

Finally, in F~g. 20 we show the C,, distribution for the second example (Joukowski profile at M = 10 -3 
with angle of attack a =-0.8872°). The numerical results have been marked with circles and the 
analytical potential flow solution in dashed line. Good agreement between both results is observed. 
Note also, the ability to capture the suction peak. 

6. Conclusions 

An optimal local preconditioning for incompressible flows was developed in this paper° It preserves 
the hyperbolicity of the system improving the rate of convergence to the steady state and the accuracy 
of the numerical results. As regards of the rate of convergence, this shows a behavior independent of 
Mach number. Unlike the artificial compressibility method of Chorin, the proposed preconditioning is 
applicable not only to incompressible flows, but also to compressible flows with incompressible regions. 
Both are almost equivalent if an incompressible flow is considered. This completes the work presented 
in [7], covering the whole Mach number range, from incompressible to supersonic. Such a method 
allows to get the goal of unification of compressible and incompressible flows. Firstly, spurious 
checkerboard oscillations are suppressed and, secondly, explicit schemes can be applied even at the 
incompressible regime. 
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