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Abstract

Solving large systems of equatiens from CFD problems by the explicit pseudo-temporal scheme requires a very low amount of
memory and is highly parallelizable. bui the CPU time largely depends an the conditicning of the system. Fur advective systems it
is shown that the rate of convergence depends on a condition number defined as the ratio of the maximum and the minimum
group velocities of the continuum system. If the objective is to reach the steady state, the temporal term can be modified in order
to reduce this condition number. Another possibility consists in the addition of a local preconditioning mass matrix. In this paper
an optimal preconditioning for incompressible flow is presented, also applicablc (o compressibie ones with locally incompressible
zones, like stagnation points, in contrast with the artificial compressibility methed. The preconditioned system has a rate of
convergence independent from Mach number. Moreover. the discrete solution is highly improved, eliminating spurious
oscillations frequently encountered in incompressible flows.

0. Notation and symbols

Notation

x, X Wectors in lower case, matrices in upper case
% (dx/dr), temporal derivative

Re{z}, Im{z} Real and imaginary part of complex number z
Xy, L, x,y,. repeated indices summation convention

diag{a.b,c,...} Diagonal matrix with diagonal entries @, b, c, ...

Symbols

A, Jacobian matrix of the fluxes for the ith spatial direction

a” Absolute value of the right- and left-going waves in Section 2.2
B, , Boundary condition matrices

B,, Boundary condition matrices in the eigencomponent basis

C Courant number, non-dimensional time step

c (1) Speed of sound

(2) Artificial speed of sound for the artificial compressibility method
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Constant in the algorithmic complexity expression

Determinant of matrix X

Total energy

Advective fluxes

Residual of the general discrete system

V-1

Stiffness matrix for the gencral discrete system

Numerical diffusion matrices in Section 4.3

wave number vector

Condition number based on group velocities of the continuum system
Length of the one-dimensional domain

Dimension of the state vector

Mach number

{1) Mass mairix for the general discrete system (1)

(2) Local preconditioning mass matrix for hyperbolic systems (20)
Artificial Mach number
Diagonal elements of M,
Number of nodes in a characteristic direction

Number of spatial dimensions

Number of degrees of freedom

Pressure

Algorithmic constant in artificial compressibility method

Reflection coefficients

Rate of convergence in iterative algorithms

Change of basis matrix

Streamline oriented unit vector

Time

Time step

Critical time step

Local fluid state vector

Velocity vector

Mach number vector

Phase velocity vector defined by (23)

Group velocity vector defined by (24)

State vector of the general discrete system

(1) Dummy scalar constant in the definition of homogeneous function
(2) Constant to adjust in the definition of M, ., Eqgs. (46) and (49)
(3) Angle of attack in Section 5

Scalar parameter for hyperbolic system (57)

Condition number

Conditioning of the preconditioned system

Jacobians in diagonal form

Eigenvalue

Angle formed by the Mach vector with the mesh

Density

Constant density in artificial compressibility method
Eigenfrequency for the plane-wave analysis

Sub- and Supra-indices

i,jd
inc
L1
L2

Spatial coordinates indices

Preconditioning based on diagonal scaling for incompressible flow
Preconditioning based on the L,-norm of the jacobian flux vector
Same for the L,-norm
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num For the numerical diffusion terms

C.,NC For the conservative and non-conservative versions of the artificial compressibility
system

1D Optimal one-dimensiona! values tor the numerical iffusion operator of SUPG

1 State vector coniponent index (1< u <m)

5 Preconditioning bascd on the pro;cchon of the jacobian flux vector onto the

streamline direction

1. Introduction

A very common procedure in order to find steady staics from non-lincar equations arising in
computational fiuid dynamics, say F(x) =0, is to |tcrate an explicit or implicit temporal scheme until
convergence: M¥ = F(x), i == [4, 6]. Here, x €R" is the state vector, F is a map from R" onto itself
that represents the discrete system of cquations, M is the mass matrix of the system and the dot
represents time derivative. If an explicit scheme is used, comparatively low amount of core memory and
large CPU-time are required. Moreover, the CPU-time highly depends on the conditioning of the
system. Bad conditioning of the system is caused by several multiplicative factors like large variations in
element size through the mesh, large variztions in edge sizes for a given element, local incumpressible
(M—0) or transonic (M~ 1) behavior, where M is the Mach number. On the other hand, if an implicit
temporal scheme coupled to a direct solver is preferred, very large convergence rates are achieved, but
it requires a large amount of memery to factorize the associated matrix. This problem can be partially
overcome by solving the linear subproblems by an iterative solver like GMRES, DMR, etc... The
amount of core memory is drastically reduced at the expense of an increased CPU-time which, again,
highly depends on the conditioning of the sysiem. The success of an iterative scheme (either explicit or
implicit) is, then, related to improving the conditioning of the system, For instance, bad conditioning
arising from large variations in mesh element size can be removed through the use of ‘local time
stepping’ strategies. This can be ceen as modifying the mass matrix of the original system to Mi=F (x)
where M is a diagonal matrix that includes a factor proportional to the maximum admissible time step
based on a local stability analysis. As is well known, this modifies the temporal evolution of the state
vector in such a way that it has no more physical sense. Due to this fact, it is only applicable when
looking for a steady state. Much in the same way, we look for local mass matrices which correct the bad
conditioning associated to different characteristic speeds at incompressible (M—0) and transonic
(M— 1) regimes. By ‘local’ mass matrices we mean block-diagonal matrices with each block connecting
only the d.o.f.'s of each node. This restriction is imposed in order to have an O(N,,,) cost per
preconditioning cycle, where N, is the total number of nodes in the mesh.

In [7], we showed that the bad conditioning arising at transonic and incompiessible regimes is caused
by very different propagation speeds for the different componcnts of error. For instance, in the
compressible regime, vorticity waves (i.e. shear waves) propagate downstrcam with the velocity of the
fluid, which is much lower than the speed of sound with which pressure waves propagate in all
directions. Thus, the limiting component in order to fulfill the CFL condition are the pressure waves,
which will propagate at, roughly, one element per time step. On the other hand, the vorticity waves will
propagate at M elements per time step, where M is the Mach number. As the main mechanism of
convergence is the absorption of perturbations at the boundarics, the convergence rate will be affected
by a factor k = |G| pax / 06] max min Where |06 ,ac.mia are the maximum and minimum group velocities. x
is named the group velocity condition number and we have « = 1/M for incompressible flows and
k =2/|M — 1] for transonic flow. Note that « is a property of the continuum PDE’s sysiem regardless of
the numerical scheme.

In the same paper, we presented a preconditioning mass matrix (PMM) for the transonic regime. An
important improvement of the conditioning of the system was reached. However, no improvement was
found for the incompressible regime. On the other hand. the incompressible range is very important,
perhaps even more important thaa the transonic one since it is present in globally compressible flows at
stagnation points, for instance.
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Several general strategies can be adopted to propose PMM’s. For diagonalizable systems the optimal
choice is M = |A|. Here ‘optimal’ means that the group velocity condition number of the preconditioned
system is O(1). Unfortunaiely, this is not the case for the gas dynamics equations. However, this choice
gives some improvement in the transonic case, but fails in the incompressible one.

The preconditioning proposed here for the incompressible regime is based on a totally different
concept. The idea is to rescale the momentum and continuity equations as a function of Mach number
with respect to the energy equation. Both theoretical and numerical results show that an optimal
conditioning is achieved (x — 2 for M—0),

In Section 2 we define a condition number based on group velocities for hyperbolic systems and we
show how it is related to the rate of convergence. In Section 3 we review the results already published
about the application of PMM'’s to compressible flow at transonic regime. In Section 4 the aew PMM
for incompressible flow is proposed and the resulting conditioning is assessed. We devote Subsection 4.2
to the comparison with the artificial compressibility method of Chorin, while the influence on the
accuracy of the numerical results is discussed in Section 4.3. Finally, in Section 5 we present several
numerical results.

2. Convergence rate in explicit psendo-temporal scihemes
2.1. General considerations about rate of convergence in iterative systems

Let us consider the explicit pseudo-temporal scheme applied to a linear system of O.D.E.’s like

U"*I —_ U" n
M B YR KU - b 1)
where K is the jacobian of F and b a constant right-hand side. The ultimate rate of convergence of the

scheme can be fouad by standard eigenvalue decomposition
.
r.o.c. = log",{mirll |1+ At A“|} (2)
pry

where {A,} is the set of eigenvalues of M 'K. The r.c.c. is observed as the slope of the convergence
hisiory of the residual as a function of iteration number in a logarithmic plot, measured in orders of
magnitude per iteration. As is well known, such an explicit scheme has a critical time step At_,,, due to
stability restrictions. For badly-conditioned systems, the largest eigenvalue |X], .. fixes the critical time
step, roughly AT, x1/]A] ... and the lowest eigenvalue gives the lowest convergence rate

crit

(3)

where y;.. = |Alnin/ |A]wax 18 the condition number of the discrete system. For discretized advection
systems, there are two main mechanisms of convergence, namely, numerical damping within the
domain and advection to the boundarics followed by absorption. It was shown in {7) that the first one
gives a convergence rate O(N°) iterations, where N is the number of elements in a characteristic
direction, whereas the second one gives an O(N) convergence rate. As usual, the highly oscillatory
modes are the stability limiting ones, whereas the smooth ones have the lowest convergence rates.

Al
r.o.c.=log, {1 + A",’\imin} = logm{l + 'I_Lmn_} =log,,{1+ 1/Kdis.c} =

|/\|max Kaise

2.2. One-dimensional example

Now we will present a simple example that allows us to understand the main factors affecting
convergence rate in advective systems. The analysis will be restricted to the continuum system since. as
was mentioned, the lowest rates are those of the smoother modes. We consider a one-dimensional,
linear and homogeneous system like

U al

o TAG, =0, 0<x<L,0<t<= {4)
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where U € R’ is the state vector and A € R*"? is the adveetive flux jacobian. We suppose that A has two
eigenvalues {a*, —a " }. with @ >0, and the boundary and initial conditions are

BU0.1)=0
B UL.t)=0 (5)
U(x.0) = U, (x)

The B’s are | X 2 matrices since, as dictated by the theory of advective systems, we have one ingoing
and one ouigoing wave at cach boundary. Convergence rates can be detcrmined by Laplace transform
but, in practice, it is equivalent to search for solutions of the form: U(x. r) = ¢ ™" U(x), and arrive at an
equation for A. Replacing this particular form in (4)
1/
-AU +A T 0 (6)
whose solution is
U(x) = exp{Ad " 'x} U(0) )
On the other hand, the boundary conditions are transformed te
81:0(0) =0
. L (®)
B, U(L)Y=8, exp{AA"'L}U(0) =0

so that the equation we are fooking for is

Y IR B (9)
BLCAA"L

Since the system is hyperbolic, a simpler expression can be obtained if we switch to a basis of R*, where
A is diagonal. Let S be the change of basis matrix such that § 'AS = diag{a”, —a~}, then

exp{AA 'L} = § diag{c*t’* e 18! (10)
where diag{a, b, ¢ ...} stands for a diagonal matrix with diagonal entries a. b, ¢ . . . . Transforming the
boundary conditions into the eigencomponents

B{, =B,S (11)

B, =BS5S

and (9) simplifies to

der| B B ), (12)
Bl eAL'u' B;_g C-Al. P

L1

It can be shown that the B,'s arc related to the reflection coefficients R, at the extremes of the
domain through

B B,
= — = a 13
R, B’ R, B (13)

L2

and then, Eq. (11) becomes
e—ALlu' _RnRL ea\Lta‘ =0 (14)

from which the following expression for A can be obtained
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Fig. 1. Convergence by absorption at the boundaries. L =1, 4" =1, a” =2. The coefficients of reflection are R, , = +0.8 at each
boundary. The perturbation at 1=0 is a right-going gaussian of width=0.1 and unit amplitude in « centered at x=0.3. It
propagates to the right and hits the right boundary at r = 0.7. It is reflected to a left-going v-wave of amplitude 0.8 until it hits the
left-boundary at ¢t = 1.2. It is reflected there to a right-going -wave of amplitude 0.64. At = 1.5 it is at the same place where the
process started and the cycle restarts again with a total loss of amplitude in the cycle of |R,R,|.

log(llanRLl)
Re{a} =i L (15)
-t
a a
The physical meaning of (15) is clear now (see Fig. 1): a smooth wave packet of unit amplitude
composed of right going waves lasts L/a" 10 go from x =0 to x = L. |R, | of it is reflected to a packet of
left-going waves which, again, lasts L/a” to traverse the domain and reach the boundary at x = 0.
Finally, after reflection |R,R, | of the initial wave is reflected to a right-going wave packet and the cycle
is completed. Usually, one has absorbing bounuary conditions at the boundaries. For 1D systems,
completely absorbing boundary conditions can be devised aud R,, R, =0, implies an infinite rate of
convergence. However, in practical 2D or 3D situations, local non-refleciing boundary conditions are
completely absorbing only for normally incident waves and, then, a globally non-infinite rate of
convergence is observed.

2.3. Rate of convergence in advective systems

Applying the rate of convergence definition (2) to the previously shown example, we arrive at

(L D)
a a

We assumed that Ar A << ] (it is shown below that it behaves like 1/N as N— =, with N the number of
nodes in the one-dimensional mesh). The time step is made non-dimensional: At = Ch/a,,,,, where C is
the Courant number, which is restricted by the CFL condition to be smaller than unity (recail that the
analysis is given for the explicit forward Euler scheme), h is the mesh size and a,,, = max{a”,a"}.
Replacing the above expression for At in (16) we obtain

_ C10g1‘1(1/|R[,RL1)
- N1+ k)

r.o.c. =

(16)

(17)

with
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Apax _ Max{a’,a} (18)
Gnin  minf{a’,a}

K=

This rate of convergence is valid also in multidimensional problems, where now N is the number of
elements in a characteristic direction, i.e. N ~ N} "¢. One easily arrives at an estimate of the algorithmic
complexity of the form
N,, = number of operations = C, N5, """ (19)
The exponent is competitive with most iterative solvers and moreover, the explicit scheme is highly
parallelizable and easy to code. However, onc of the main drawbacks of this and most iterative solvers
is the high dependence of C,, on the different physical and numerical parameters of the problem. For
instance, very low r.0.c.’s are obtained if badly designed boundary conditions (i.e. non-absorbing ones)
are used, or the continuum system is badly conditioned (x large) as in the incompressible or transonic
regimes.
iIn the rest of the work we will focus on how to improve the r.o.c.’s based on the design of a good
local preconditioning. This is done in two steps: the first one is to improve the condition number «
based only on an analysis of the continuum system. Once a good candidate is found, it must be verified
how the corresponding critical Courant number is modified, since it is included also in the expression
for the r.o.c. (see Eq. (16)). This is performed by a standard stability analysis. There exist cases where
a given preconditioning improves the conditioning of the system but, after a stability analysis, it is

shown that this ‘gain’ is counteracted by a deterioration in the critical Courant number so that no
overall gain is produced.

2.4. Computation of condition number for multidimensional advective systems

Now, we extend the definition of the condition number to the general multidimensional case, laying
stress on the Euler equations. As we will use Fourier analysis, we restrict the analysis to the Cauchy

problem (infinite domain), linear, homogeneous (constant coefficicats) multidimensional advective
systems of equations

ol ol

M——gt—+A,a—xi=0, VxER™,:>0 (20)

where U(x, 1) € R" is the state vector, {A,} ", are the jacobians of the advective fluxes, A, € R™"", and
M ER™™"" is the mass matrix. Here and in what follows, the Einstein convention will be adopted. We
assume that the system is hyperbolic, i.e. for all X € R" the matrix k-A = kA, is diagonalizable with
real cigenvalues. Moreover, we will assume that the system is symmetrizable, i.e. there exists a
non-singutar matrix S, independent of k. for which S(k-A4)$ ™' is symmetric for all k. The Euler

equations fzll into both categories. We fook for eigenfunctions in the form of plane waves
Ulx,1) = [ eitkx-an (21)
Replacing (21) in (20) the following determinantal equation in @ is obtained

det(—wM + kA,) =0 (22)

and it results that U has to be an eigenvector corresponding to the eigenvalue w. For each k€ R"™ we
obtain a set of eigenvalues {w,(k)}_,, which are called the ‘branches of eigenvalues’. For the
non-preconditioned system M = I, the eigenvalues are /eal since the system is hyperbolic. This feature
must be kept by the preconditioning. For symmetrizable systems, a sufficient condition is that M must
be positive definite and symmetric in the basis where the jacobians are symmetric. Coming back to the
expression for the plane wave (21), we can see that constan! amplitude planes Re{U glhxmony o
constant, have a characteristic phase velocity
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w,
Ly (k) =5k (23)
However, it can be shown that energy and information propagate at the group velocity
dw,
Yen = ok (24)

For a complete description on Fourier analysis of discrete systems the reader is referred to [9]. It is easy
to see that the w,’s are homogeneous functions of degree one in k, i.e. w,(ak) = aw, (k) for a >0. As a
consequence, v, is homogeneous of degree 0 and then it depends only on the direction of k

k
v, (k)=v,, (-I?) (25)
The condition number « is extended tc the multidimensional case as
v
= l gplmax (26)
1vgulmin

where the maximum and minimum are taken over all [k|=1and u=1,...,m.
2.5. Numerical computation of group velocities

A first attempt to compute group velocities is to replace the derivatives in Eq. {24) by finite
quotients, but often the cigenvalues are computed with numerical routines and some kind of
continuation algorithm should be applied to identify the continuous branches. Moreover, singularities
exist in some cases. We present here a practical algorithm to compute them, that overcomes this
drawback. In this section the Einstein convention of sum:nation over repeated indices will be dropped.
Let us consider the eigenvalue decomposition of L kA,

A=s"(; k,A,)S (27)

with A a diagonal matrix. Of course. A and § are functions of k. By its definition, the w,’s are the
diagonai elements of A

W (Sl

The group velocity is, by (24)

dw, o
Vew =gk, =15 T'AS + D), (29)
where
D=(is”) Ska)s+s(Ska) > (30)
ok, ( ) 'A') (/7' ') ak,
Taking derivatives of the identity $~'S =1 the expression
9 g 198
(ak,s )5“' ok, = (31)

is obtained, from which (S "'/ dk,) can be eliminated and replaced in the expression for D and, after
some algebra

o .4.£) , (-.B_S)_A_
D= (s ok, A+A(S o) = EA+ AE (32)
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Now, we note that the diagonal elements of D are null
D, =-E, o +wE =0 (33)

ap

and then, the group velocities can be easily computed as

dw, 4
Uy = = {ST'AS), (34)
The numerical procedure consists in swecping the circle (sphere) |k| = 1 in 2D (3D) with a large amount
of wave number vectors and to compute the maximum and minimum group velocities (in absolute
value). Sometimes it is interesting to plot the locus of the group velocities in a (v, v,,) plane.

3. PMM for compressible flows (review)

The compressible Euler equations in conservative form are

ol aF, \
T @
where
P
U=|pu
Lpe ] (36)
pu

F=|puu"+pl,,..,

(pe+pu’

where U €R" is the state vector of the fluid, F € R™ "/ are the advective fluxes. p the density. # the
velocity vector, p the pressure, e = p/[p(y — 1)] + 1 /2 the total energy, y=1.4 and m =5 in 3D
(m=n,+2 in general). The jacobians of the fluxes are defined as

aF,
A=y 7

and can be written in compact form as
0 'y 0
kA, =| (@ ku+(y- 1)%1( uk" + (u k) - (y— ku'  (y— 1)k (38)
@By -t =vel (Lo = =Dk’ yw-k)

The system is symmetrizable and then hyperbolic, but it is not diagenalizable in the multi-dimensional
case. However, it is (trivially) diagonalizable in the one-dimensional case. We will show that for such
diagonalizable systems we have an optimal preconditioning.

For the one-dimensicnal case. the choice

M=|A] (39)
gives a decoupled system in the basis of cigenvectors of A, which looks like
i/'-‘-Jrsign(v )—61/5=0 w=1l... m (40)
ar er’ dx ' v

where V=5"'U are the new variables where the system is decoupled, and v,, are the corresponding
eigenvalues. (For such one-dimensional systems group velocities and phase velocities coincide with the
eigenvalues of the jacobian matrix.) It is clear from (40) that all components will propagate with the
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same uvnitary speed. For multidimensional diagonalizable systems (39) can be extended as M = 1A}, and
several possibilities are obtained depending on the chosen norm. In this paper we will consider

Ml.l=|A||+!A_\-I+iA;I (41)

M, = VA +A]+A] (42)

Again, we transform the syste: - into the basis where it is diagonal

v, v, IV,
o +'vgu’a—x1_n, w=1,....m (43)
where v,,, is the ith dimensional component of the group velocity for the uth equation of the
non-preconditioned system, and it can be shown that it corresponds to the pth diagonal component of
the jacobian A, in its diagonal form. (For a detailed discussion see [7]).) The norm appearing in (43) is
the same as that one chosen for the preconditioning matrix. It stems from this expression that the group
velocities for the preconditioned system are all O(1).

A first attempt to treat non-diagonalizable systems is to use (41) or (42) directly. The condition
number for a particular M is computed as described in Section 2.4, and we plot the condition number
for both the non-preconditivned system &, (sce Fig. 2) and the preconditioned ones «; , ;.. As can be
seen, some gain is dbtained for transcnic flow. The gain is a constant factor as M— 1 (x,, ,»/kyp—1/3
as M— 1), since both give a behavior O(]M — 1|)™" as M— 1. See Fig. 3 for logarithmic scaling in the
transonic region.

Another possibility is to take

M. =|sA| (44)

for some vector s. Such a choice will give optimal conditioning if only wave number vectors parallel to s
are considered. A natural choice for s is the streamline oriented unit vector and the corresponding
conditioning is shown in Fig. 8. A significant improvement is reached since it can be shown that the
conditioning behaves like k, = {1 — M*| '"2. Notwithstanding the singularity is not removed, a half-order
gain is achieved.

]

107

). |x \1||||m ST PR RYOTY

10tk L :
{AVEBSAEI LS K, | fine
At ' | fne
Kinc o /ELZ
Lt
=

10°
0

0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Fig. 2. Semi-logarithric plot of the condition number of the continuum system for several preconditionings.
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0

Fig. 3. Samc as Fig. 2, but with a logarithmic scaling in the transonic regime M— 1

4, PMM for incompressible flows

For the incompressible regime, none of the above-mentioned possibilitics succeeded in giving a
significant improvement in the conditioning of the system. See Fig. 4 for togarithmic scaling in the
incompressible region. In fact, the PMM's from Eqs. (41) or (42) have a condition number O(1) as
M — 0, so that it is clear that it cannot correct the singularity. Regarding the streamline based M, from
Eq. (44), the conditioning is even worse than the non-preconditioned system. In Figs. 5-8 we can see
the locus of the group velocity vector in the (v,,,v,,) plane for M =0.110 0.6 with AM =0.1 and M =1,
M, ... Asis well known, for the non-preconditioned system the locus for the branches corresponding
to pressure waves are circles of unit radius centered at (M, ). The entire branch for advection of
vorticity is collapsed in a point at (M, 0). For the L, and L, norm the circles are deformed in
quasi-circles with a nose pointing to (1. 0) and the advection of vorticity expands into a triangle which

2

[ S S 0 01 B S S i e o LS S L ML B 8 2

T=T T

[N ERT

T T T

102

T TTITT

Fig. 4. Same as Fig. 2. but with a iogarithmic scaling in the incompressibie regime M— 0.
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2

M-‘-Oé ,' Vg’| mir;i

-2 -l‘.S ~‘l 0.5 0 05 1 LS 2

Fig. 5. Locus of group velocities for the non-preconditioned system M = 1. The locus has been plotted for M = (.1 10 0.6 with a
step of 0.1. The branches of group velocities are indicated by points. For each Mach number two circles centered at the origin and
with radii |v,],,.. .. have been drawn.
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Fig. 6. Samc as Fig. S but for M= M, .
Fig. 7. Same as Fig. 5 but for M =M, ,.

diminishes in size as M — 0 and a single point at {1, 0). For the streamline based preconditioning (44),
the advection-of-vorticity branch expands in a triangle and collapses with the quasi-circle resulting in a
cardioid-shaped curve and a single point at (1,0).

4.1. Preconditioning by diagonal scaling

As was mentioned in the Introduction, the preconditioning we propose for the incompressible case
here s based on ‘tuning’ three different scaling parameters for the continuity. momentum and energy
equations. For the sake of simplicity we perform an analysis for the 2D Euler equations in primitive
variables. The jacobians are

0 pk' 0
kiAi = N,’ +]0 0.-:.,”:‘, k/p (45)
0 pck" 0
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Fig. 8. Same as Fig. 5 but for M =M .

Without loss of generality, we will suppose that u is parallel to the x axis. The proposed mass matrix is
M, = diag{ml, m2, m2, m3} (46)

These parameters will be chosen in such a way so as to improve, as far as possible, the conditioning for
the one-dimensional problem when &, = 0. It is expected that, if the conditioning works in this case, it
will work for the general & +#0 case, since the proposed matrix {46) is isotropic. This result is
confirmed afterwards.

The group velocities for k, = 0 have only x components (duc to symmetry about the x-axis), which is
obtained through the resoluiion of the following cigenproblem

de(A, — v, M) =0 47)
whose solution is, in the limit of low Mach numbers
M/m,
M/m,
ng = - 3 (48)
M(mz+m3)+ [ Mim, + m,) '+(1_M“)~+( )—'IIZ
2m,m, _\ 2m,m;, mom, Moy
In order to have a O(1) condition we must have
M M_ ., S
m, = m, =a”(m,m,) (49)

with a« a constant independent from Mach number. Since the mass matrix is defined up to a
muitiplicative constant, we can set m, = aM and then, m, =m, = aM and m, = 1/M are obtained from
(49).

Now we proceed to the ‘fine’ tuning of the preconditioning. i.e. the choice of the optimal value for a.
This is done by sweeping a for a fixed Mach number and plotting the condition number versus a. The
optimal value a*(M) which gives the lowest condition number is found and it can be seen that a*-—->2
when M— 0 (see Fig. 10). The final expression for M, is

1
M, = diag{ZM, 2M, 2M, ]\_/f} (50)
The locus of group veiocities for M=0.1 to 0.6 is shown in Fig. 9. Note that both circles at the

maximum and minimum group velocities approach a defined value #s M— 0, so that the condition
number remains bounded.
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Fig. 9. Same as Fig. S but for M =M .

Fig. 10. Optimal value for the a constant. Condition number of the preconditioned system (M = M,
for M =0.05, 0.1, 0.2,

. Eq. (50)) as a function of a

e

As was mentioned in the last paragraph of Section 2.3, we checked the stability of the discretized
preconditioned system. The integration scheme is the standard forward-Euler. The stability analysis is
done by Fourier analysis of the infinite problem. Stability is assessed for each plane wave corresponding
to a wave number vector k = (k,, k,). For each Mach vector u* = u/c = (u} . u} ) we sweep a number of
representative wave number vectors and the maximum admissible time step A(e*, k, 1) is computed
(for a detailed description see {7]). We are interested in the Courant number associated to the above
critical time step. The maximum admissible Courant number is calculated as

10, mas

Crun ="} min Ar(u™, k, ) (51)

In Fig. 11 we plot the Courant number versus the incidence angle 8 = tan™'(u? /u*) for several ju*| and
for both the preconditioned (right) and non-preconditioned (left) cases. We conclude that the stability
limits are not drastically affected by the preconditioning.

Regarding the cost of this preconditioning, it is negligible as compared to the cost of the evaluation of
the residual. It amounts mainly to the multiplication of the residual of each equation by the inverse of
the corresponding diagonal element in the preconditioning matrix. This multiplication must be
performed for each node, at update time.

4.2. Comparison with the artificial compressibility method

The preconditioning proposed in Section 4.1 has several aspects in common with the artificial
compressibility method of Chorin, and in this section we will analyze the advantages and similarities
with it. The ‘artificial compressibility equations’ can be cast as an advective diffusive system (35, 36)
with the foilowing definitions

P poctt 0 k'
v= [u:l ’ Fe= [uuT +Pln,;x"di| o Adki= [k wl+ uk"] (52)

c? is a positive parameter that can be chosen in such a way so as the improve the convergence to the
2 2 - .
steady state. In (5], a local value of ¢° = max(0.3, ru”) with 1 <r <5 is suggested.
We performed an analysis of the conditioning of the system based on the ratio between the maximum
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Fig. 11. Stability analysis for the non-preconditioned (left) and preconditioned (right) systems. We have the critical Courant
number (based on « + ¢) on the ordinates and angle of the low with the mesh axis in the ahscissac. Each curve corresponds to a
different Mach number for M=10', 10 ° 10 "

and minimum group velocities, and a sharper cstimation of the parameter was obtained. We consider
the linearized (i.e. with constant jacobians) version of (52) and we note that the condition of the system
depends only on the ‘artificial’ Mach number M,,, = u/c. The lowest condition number is obtained for
M, =1/V3 and the corresponding condition number is « = 3. The corresponding locus of group
velocities is shown in Fig. 12. M,,, = 1/V3 corresponds to an r value of 3.

Instead, a small improvement is obtained if the following form of the artificial compressibility
equations is considered

' ' ' vg] mox
s I gi
11vgl Vay e
L 1Vg] max qulmm
iF - ',-" YL UL Lo -
d Ivglmin ."" »'. o /
ost 4 - T \ 4
ot , . T A
s L . 4 -
--------- uX
s
Nis . tErgaapaxstt "/' 4
st ST 1
5oL 05 6 05t LS a5 1 95 0 05 1 13
Vgx Vox

Fig. 12. Locus of group velocities for the artificial compressibility equations in conservative form (52). The crosses indicate the
branch of group velocitics and two circles centered at v, = 0 of radii [v,},,,.. [v,],,, bave been drawn. The figure corresponds to
M, = 1/V3.

Fig. 13. The same as in Fig. 12 for the non-conservative form of the artificial compressibility couvations (53), for M, = 11v2,
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0 csz] (53)

Anciki = [k ud

This system is obtained if a term proportional to the continuity cquation is substracted from the
momentum equations. However, the conservative character of the equations is lost. The lowesi
condition number is obtained at M,,, =1/V2 and is x =2 (see Fig. 13), exactly the same as in our
proposed scheme.

Finally, if the conservative form of the equations is used together with a PMM as foliows

U  oF, 1o, ]
M Sy T 54
ot dx, [Jt/(‘" I (54

the same value of x =2 at M,,, = 1/ V2 is obtained (sce Fig. 14), but in a conservative form now.

The preceding results led to the following conclusions. First, both the artificial compressibility
method in conservative form of Eq. (52) and the PMM of Section 4.1 give optimal (i.e. k = O(1))
conditionings with a slight advantage for the PMM (x =2 against 3). The PMM is applicable to
incompressible flows (it suffices to consider an arbitrarily low Mach number) but also to compressible
flows with incompressible regions, whereas the artificial compressibility applies only to incompressible
flows. Both are almost equivalent if an incompressible flow is considered and either the non-
conservative version (53) or the preconditioned conservative one (54) is considered.

4.3. Accuracy improvement

Another topic to be discussed is how the preconditioning affects the accuracy of the solution. First of
all, we have to remark that preconditioning and discretization do not commute and, then, the discrete

solution for the steady state of the preconditioned system is not the same as for the non-preconditioned
one

U, (t=2% ) #Z Uyt ==,h) (55)
but
lim U, (¢ =, h) =lim Uyp(t = %, h) =U(t = =) (56)
l_s_ T I S ‘. -
Vgy LT - V9] max

.,m-u,;:.'.'./

It
ot

e . L |Vg| min
osh g )(
ok : e . ; . . ﬂ
05F iy - .
et
1 A Mtragagpaanttt 4
.|.5 R bt i

Fig. 14. 'l;l}_e same as in Fig. 12 for the conservative form of the artificial compressibility equations with preconditioning (54). for
M, =1/V2.
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where U is the continuous solution of the non-preconditioned problem, whereas U, vp stand for the
discrete solutions of the preconditioned and non-preconditioned problems. Of course, both converge to
the continuum steady solutions as the mesh is refined. The non-equivalence of the steady state discrete
solutions is due to the fact that the stabilizing ‘upwind’ terms (in our case, taken from SUPG) are not
the same. The question that ariscs is whether the numerical solution is improved or deteriorated by the
preconditioning. It is well known that accuracy problems can arise in nearly incompressible flows. The
subject has been extensively studied in the context of Navier-Stokes equations. For the Euler
equations, the problem has reccived much lesser attention because it is not so used to solve
incompressible inviscid flows with this system. However, ‘checkerboard’ type instabilities have been
reported in stagnation points [1].

Surprisingly enough, we have experimentally found that the numerical solutions are much improved
when this preconditioning is used, as will be reported in the numerical results. We do not have a full
explanation of this phenomenon, yet. At fiist sight, it seems reasonable that the stabilization scheme
will work better on a well-conditioned problem. Consider, for instance, the following system

U U [ e o] o
Geage=o o=lu] a-[f G1oalV ] e

-

This system is symmetric and non-diagonalizable. As usual, in an SUPG context, the stabilized system
on a square homogeneous mesh of size & looks like

oU au U

A =K ) (58)
where

num h 2 24172

K'™=Ag4, and 7=3(A]+A)) (59)

For the system described above (57) we have

2
h
- __.!L‘B_..__ Knum

h
————=1I and K)"= =7, M= —— (60)
01+ 82 21+ p? Vi + gt

This should be compared to the ‘optimal’ one-dimensional expressions

num, h h num. _h _h
Kxx ID:E!AJ=_2—BI' KY-V ID—ElAyl—El (61)

For B <<1 we have KJJ™ =K:;"‘"D which means that the upwinding is optimal in the y direction, but
K™™ = gK™™ P < k™™D and the numerical dissipation along the x-direction is insufficieni. Con-
versely, for B>>1 we have K[\ =K2™'" but Ko™ = 1/BKjy™'% << K}:™'?. For B =0(1) the
upwind is nearly optimal for all directions. Coincidently, the lowest conditioning (in the sense of Eq.
(26)) is obtained fo. 8 =1. This verifies the rule: ‘low conditioning implies better stabilization’.

However, this rule is not applicable to diagonalizable systems. since they are always optimally
stabilized, independent from the conditioning of the system.

5. Numerical results

Firstly, in this section we will show how the preconditioning mass matrix proposed here improves the
rate of convergence of nearly incompressible flows (M ~ 107°) for two model problems like the circular
bump and flow around a Joukowski profile.

In Fig. 16 we can see the convergence history for the circular bump (thickness = 12%, see Fig. 15)
with the non-preconditioned scheme (left) and the preconditioning mass matrix presented in this paper
(right). We notice that a significant improvement in the rate of convergence is achieved regardless of the
very low Mach number (M =107%), and also validate the improvement in the condition number.
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Fig. 16. Convergence history for wic Sump at M = 10 7, without (feft) and with (right) preconditioring. Each curve corresponds
to the r.m.s.-norm of the vector of nodal residuals of each equation: 1 (continuiiy), 2, 3 (x. y momentum) anc 4 (2nerey).

Initially, for the non-preconditioned case, the residual has a relatively high r.o.c. of roughly 60
iterations/order with a highiy oscillatory component, but it switches later to a smooth cuive with a low
and diminishing r.c.c. of 6000 iter/order. This behavior is explained as follows: initially the error is
mainly in the continuity cquation which generates pressure waves which have a high group velocity and
then a high rate of convergence. The oscillations are caused by reflections at the lateral slip boundaries
(absorbing boundary conditions ar¢ used at the inlet and outlet boundaries). At a certain moment the
component of the error in the form of pressure waves have been dissipated, and that component in the
form of vorticity remains almost with the same amplitude since it has a much lower group velocity.
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Fig. 18. C, distribution on the bump for the fine mesh. (O: Euler/FEM M =10 ', —: incompressible potential/ BEM).
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Fig. 19. Convergence history for the Joukowski profile (12% thickness. 4.6% camber) at an angle of attack a = —0.8872° and
M= 10", without (left) and with (right) prezonditioning. Labeling of the curves is the same as in Fig. 16.

From this point onwards, the r.0.c. is dominated by that of the vorticity waves, since they are the main
component of the error. Since vorticity is propagated downstream, there is uc possibility of refiections
at the slip boundaries. This explains the smooth behavior of the second part of the curve. With respect
to the preconditioned case, we can observe in the right plot that all equations have almost the same
slope, and it is so because we have got a condition number close to two.

The second example is a flow around a Joukowski profile (12% thickness, 4.6% camber) with an
angle of attack & = —0.8872° and a Mach number M = 107>, As in the previous case, Fig. 19 shows the
convergence histories for the non-preconditioned system (left) and for the proposed preconditioning
(right) and, again, we conclude that the rate of convergence experiences an important improvement
with similar rates for each equation.

Another interesting topic, treated in Suction 4.3, is the accuracy improvement. In this Kind of
problem one of the most important measures related to the quality of the results is got by the pressure
coefficient distribution around the profile. For both problems we have a pattern to validate the
numerical results. For the circular bump we have computed a pattern using a BEM (Boundary Element
Method) computation for potential flow that is very close to the real experiment due to the low
compressible effects. For the Joukowski profile example we have the analytic solution for incompress-
ible potential flow, obtained from conformal mapping techniques.

In Fig. 15 we show the mesh used for the final simulation on the bump. As we can see, we have
refined close to the profile to increase the accuracy. The first simulation was carriéd out with the basis
mesh (the mesh without refinement, not shown) and the results obtained with this mesh are plotted in
Fig. 17. In the upp.i part we show the C, distribution in y-axis versns the profile coordinates in the
x-axis for the non-preconditioned scheme. The other plot is the same for the preconditioned scheme
presented here. We can see how the checkerboard modes that appear in Euler codes near incompress-
ible regimes (upper plot), disappear with the preconditioned scheme (lower plot). In order to compare
to the pattern mentioned above we refined the mesh {see Fig. 15) and we present this comparison in



M. Storti et al. | Comput. Methods Appl. Mech. Engrg. 124 (1995) 231-252 251
08

061

0.4F

02

ok

-0.2

-cp

-04

Y 2

0.8

) S

.12 i H i ;
-1.5 -1 0.5 0 0.5 1

2% xkc

Fig. 20. C, distribution for the Joukowski profile. {C: Euler/FEM M =10 ', —: exact/incompressible potential).

Fig. 18. Note the good quality of these results even though morc refinements can be performed at the
leading and trailing edge in the case that the pressure distribution has to be adjusted more precisely.

Finally, in F°g. 20 we show the C, distribution for the second example (Joukowski profile at M = 107>
with angle of attack @ = —0.8872°). The numerical resuits have been marked with circles and the
analytical potential flow solution in dashed line. Good agreement between both results is observed.
Note also, the ability to capture the suction peak.

6. Conclusiens

An optimai local preconditioning for incompressible flows was developed in this paper. It preserves
the hyperbolicity of the system improving the rate of convergence to the steady state and the accuracy
of the numerical results. As regards of the rate of convergence, this shows a behavior independent of
Mach number. Unlike the artificial compressibility method of Chorin, the proposed preconditioning is
applicable not only to incompressible flows, but also to compressible flows with incompressible regions.
Both are almost equivalent if an incompressible flow is considered. This completes the work presented
in [7], covering the whole Mach number range, from incompressibie to supersoni¢. Such a method
allows to get the goal of unification of compressible and incompressible flows. Firstly, spurious
checkerboard oscillations are suppressed and, secondly, explicit schemes can be applied even at the
incompressible regime.
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