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Abstract

Purpose: Traffic congestion is a large-scale problem in urban areas all over the world that can lead to substantial
costs for travellers and business operations. This paper focus on how to measure the way in which congestion
selectively affects different traffic streams, with special emphasis on light duty vehicles travelling around a city.

Methods: The idea is to integrate a dataset collecting Global Positioning System (GPS) vehicle traces with road side
data sources related to traffic conditions in a road network, which on the other hand usually lack focus on specific
traffic streams. The core of the data integration method is the creation of a specific indicator focusing on the time
lost in congestion. This is a Key Performance Indicator (KPI) of an urban network that is of paramount importance
as a decision support tool for policy makers, also because it has an impact on other key issues such as air pollution,
noise emissions, energy efficiency and health problems. Then, a method is proposed to quantify the congestion KPI
in a highly disaggregated fashion (each single vehicle travelling on each single link or street segment).

Results: This KPI can be used to inform a wide range of policy actions within the transport sector, both from the
viewpoint of a city and from that of an individual actor of the transport system, such as the operator of a fleet of
vehicles for urban freight deliveries. Some preliminary examples of how the aggregation of the KPI at different
scales can provide insights into the transport system are presented.

Keywords: Urban mobility, Data integration, GPS traces, Freight delivery logistics, Congestion, Passenger
mobility, KPI

1 Introduction
At the European Union level, the annual cost of the con-
gestion is estimated between € 146 and 243 billion (1 to
2% of the total GDP) [1]. Moreover, about 28% of green-
house gas emissions are caused by transport, with 84%
of these emissions coming from road transport, while
more than 10% of the carbon dioxide emissions resulted
from the urban road traffic [2]. Reducing congestion is
therefore one of the primary goals of virtually any trans-
port policy measure.
On the whole, data required for congestion manage-

ment could be very costly in terms of work required for

surveys to collect the data. Traditional traffic data sources
include roadside devices such as magnetic loops, road
tube counters, radar or, more recently, Bluetooth [3].
Since roadside measures usually cover only a tiny fraction
of all roads in an urban area and given the need to forecast
traffic conditions, traffic simulation models are usually im-
plemented through different techniques [4]. The resulting
traffic flow quantities (e.g. average speed, link occupancy,
corridor density …) are then analysed to identify different
road conditions, such as congestion, free-flow, etc.
Nowadays, the collection of traffic flow data can also

be more massively done with the help of on board track-
ing devices, such as Global Positioning System (GPS)
and mobile phone data from probe vehicles. These latest
technologies were proven feasible and helpful in
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analysing traffic trends, which could result in cost-effect-
ive measures to mitigate traffic congestion, and they can
even be exploited to derive travel demand (origin-destin-
ation pairs) patterns [5]. In particular, Floating Car Data
(FCD), has gained momentum due to its lower cost and
higher coverage [6], despite some reliability problems
[7]. The main idea behind FCD is the collection of real-
time traffic data by locating the vehicle via mobile
phones or GPS over the entire road network. Usually, in-
formation on car location, speed and direction of travel
are sent anonymously to a central processing centre.
These data could then be processed to derive measures
such as travel time or average speeds through road seg-
ments [8–10]. As GPS has become increasingly com-
mon, it is typically used to monitor fleet management
services such as taxi drivers, delivery vans or trucks [11,
12]. Since these vehicles are expected to travel around
the city for their duties, they could provide useful in-
sights on the traffic trends, so that urban congestion in-
formation could be extracted [13, 14].
Traffic-related measures that were introduced in the

previous two paragraphs show some complementary fea-
tures. Roadside devices allow for a continuous monitor-
ing of flows across a road section, thus enabling the
study of how traffic conditions evolve over time. How-
ever, these monitoring activities are spatially bound to
the road segments where the “hardware” is installed and
properly working. While some technologies such as
weight in motion can provide different figures by kind of
vehicle, it is in general not possible to obtain more dis-
aggregated information, for example to study which ori-
gin-destination patterns are more affected by congestion
in a given area.
On the other hand, vehicle-based measures are com-

pletely tracking each vehicle from trip origins to destina-
tions. However, fleet coverage is still fairly low in most
countries, while GPS traces are collected for a variety of
purposes by different stakeholders (e.g. transit fleets or
freight delivery monitoring, car insurance data used for as-
sistance in case of accidents, feedback from personal navi-
gation devices and crowdsourcing applications). This leads
to a fragmentation of available data, which compounds
with both privacy and commercial confidentiality issues in
making it difficult for public decision makers to gain ac-
cess to all potentially available information.
The state of the art in this sector can therefore be seen

as a transition from roadside to on board measures,
which will hopefully provide a complete monitoring of
traffic and congestion in a given area in the future. In
this situation, it might be interesting to jointly consider
both kinds of measures to exploit their strengths. This
aspect has been rarely considered in past research work.
In particular, in the present paper we compare vehicle-
based measures, such as GPS traces for a specific link,

with the corresponding roadside traffic flow measures to
better understand to which extent that specific vehicle is
affected by congestion. Related existing studies generally
focus in matching network links to GPS traces [15, 16].
The presented approach is however different, since the
goal is not to join the spatial information between the
datasets but rather to analyse travel times. It will there-
fore be shown in the methodological section that in such
cases it is both sufficient and less computationally inten-
sive to focus on the association between GPS recordings
and the two nodes at the extreme of each arc.
This paper therefore proposes a method to quantify in

a highly disaggregated fashion (each single vehicle travel-
ling on each single link or street segment) the time lost
in congestion, through the integration of different traf-
fic-related data sources that are typically available by
transport municipalities but that are seldom jointly
exploited. The related Key Performance Indicator (KPI)
is among those recommended at the European level
thanks to the work done in projects as DISTILLATE or
CONDUITS that have set a framework for a better
evaluation of urban mobility conditions [17, 18]. The
KPI proposed in the present paper looks at the so-called
Travel Time Index extending the traffic information to
all the time ranges of the day. Starting from the afore-
mentioned background, the KPI presented in this paper
can be used to inform a wide range of policy actions
within the transport sector, both from the viewpoint of a
city and from that of an individual actor of the transport
system, such as the operator of a fleet of vehicles for
urban freight deliveries. A vehicle level congestion KPI
can in fact augment the visualization of congestion maps
for more solid and tailored policy guidance [5].
The paper unfolds as follows. The following section in-

cludes the description of the two datasets collecting in-
formation about the mobility in the city of Turin on
whom the whole methodology is based. Section 3 de-
scribes how the two datasets are integrated, while the
definition of the KPI is presented hereafter. Finally, ex-
amples of visualization of the results are provided.

2 Datasets description
The work presented in this paper is part of the research
carried out within the European H2020 SUITS project.
SUITS (Supporting Urban Integrated Transport Systems:
Transferable tools for authorities – http://suits-project.
eu/) aims at increasing the capacity of local authorities
to develop and implement sustainable, inclusive, inte-
grated and accessible transport strategies, policies, prac-
tices and measures. Among the project activities, two
datasets have been made available by the City Council of
Turin, a city of about 900,000 inhabitants in the North-
West of Italy.
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The first dataset (Dataset1 throughout the paper) con-
tains the traffic flows collected in the month of May
2017 on the main roads of the city network, which is
made up of 5980 links (roads) of Turin and its surround-
ings. Moreover, latitude and longitude of all the nodes in
the graph of the city road network are provided in asso-
ciation with Dataset1. Graph density is higher in the
central area of the city, where virtually every street is
represented through the graph, whereas only the main
streets are included in the remainder of the metropolitan
area. Information is provided with a hourly frequency
for each arc and it contains: date, hour range (beginning
from midnight until 11 pm), average flow (veh/h), travel
time on the arc (sec), source of the data (measured on
field through inductive loops or estimated by a traffic
flow model). The traffic flow model used to estimate
flow conditions for arcs where measures are not avail-
able was implemented by 5T, an in-house company of
the Turin municipality and the Piedmont region that is
in charge of the implementation of technological sys-
tems to support mobility solutions [19]. This dataset is
very useful for both monitoring and planning purposes
given the detailed information on the traffic in the city.
However, its main limitations stand in the use of a com-
bination of measured and modelled data and in the ab-
sence of, for example, a partition between heavy and
light vehicles.
The second dataset (Dataset2 throughout the paper) in-

cludes the traces, i.e. GPS locations, of a fleet of logistic
vehicles that are delivering goods inside the city. There
are exactly 28 vehicles, for which the GPS traces that were
recorded over a month period (29/04/2017–29/05/2017)
are considered in this research. A special agreement be-
tween the City Council and the haulage companies oper-
ating these vehicles was concluded, granting easier access
conditions to travel inside the limited traffic zone in the
central part of the city against the disclosure of such GPS
traces. The data available for each record include the pos-
ition (latitude and longitude), the time and date of acquisi-
tion, the average speed, the direction (course) with a
sampling frequency of approximately 10 sec, leading to
360,820 recordings in total. One of the main drawbacks of
this dataset stands in its small sample size, since only 28
vehicles are tracked, thus not allowing to draw meaningful
information related to general traffic flow conditions. This
is a typical situation of many mid-sized cities, which might
have access to the GPS traces of a limited number of vehi-
cles that cannot constitute a statistically representative
sample for the whole network, 24 h a day and 365 days a
year. Moreover, the analysis of such kind of data usually
would require quite elaborate post processing to derive
general traffic flow measures.
The methodology presented in the paper is based on the

integration of these two datasets. GPS data provided by

vehicle fleets of trucks or delivery vans, such as those col-
lected in Dataset2, have usually been exploited to retrieve
information on various aspects, such as freight perform-
ance measures [20], commercial vehicle tour activity [21],
trucks routing behaviours [22] or delivery stops identifica-
tion [23]. Although some examples of traffic data fusion
coming from different sources could be found in literature
[24–26], one of the main innovative features of the pre-
sented methodology lies in the procedure used to inte-
grate a dataset coming from the road infrastructure side
with one derived from road users. In fact, the present
paper focuses on the GPS traces of the above mentioned
freight operators, since related routes cover a wider por-
tion of the whole network compared for example to the
routes of public transport bus lines. However the data fu-
sion methodology presented below can be used with any
kind of GPS traces.

3 Methodology
3.1 Analysis of GPS traces
The first step of the methodology requests the temporal
matching of the two datasets. Since traffic flow informa-
tion in Dataset1 are on an hourly basis, GPS positions
are consistently grouped according to the hour of their
registration, even if this induced the loss of those traces
spanning over two hourly intervals. Additionally, the
analysis was restricted to the five working days in the
week and GPS traces were available only for 23 out of
28 vehicles for these days.
The following point aims at spatially joining the ve-

hicle GPS positions and the network arcs. This point is
rather tricky since it implies the analysis of a large data-
set (Dataset2). The goal is to assign those GPS positions
to the different arcs of the network (Dataset1), checking
that the vehicle driving direction is coherent with the arc
direction. So, it is necessary to focus on a single vehicle
(out of the 23 in the dataset) travelling around the city in
a specific working day (out of the monthly observation
period). At the same time, information on the various arcs
of the city network from Dataset1 is considered, namely
the latitude and longitude of the nodes at their extremes.
Once a given arc has been selected, it is necessary to check
whether the chosen vehicle has passed along that road in
that day and in that hour range. This task is complicated
by the fact that the precision of GPS recordings is limited
and the vehicle trajectories can also transversally fluctuate
of several meters, especially in multi lane streets. To cope
with this, a round buffer with a radius that was tentatively
set to 18m is created around each of the two nodes identi-
fying the selected arc and a check is done to verify if at
least a GPS position is contained in these two areas. Map-
ping the vehicles at the nodes rather than along the arcs
increases the chance to detect them for low sampling
rates, since at intersections they spent usually more time,
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in particular if the traffic signal is red, and because the po-
sitioning accuracy based on the satellites line of sight is
generally higher.
In this stage of the analysis, it is fundamental to check

whether the vehicle has really moved along the arc in its
travel between the two nodes at the extremes. In fact, it
could happen that a vehicle has been registered at node
A and then at node B, but following a different route
that does not correspond to the selected arc. An add-
itional check is therefore made by comparing the course
of each GPS recording, i.e. the driving direction of the
vehicle, with the direction of the arc, i.e. the bearing
from node A to node B. More precisely, if the root mean
square error between all courses and the bearing is less
than 50 degrees, then the vehicle is assumed travelling
from A to B through the arc under consideration and
without deviations. This threshold has been selected in
order to avoid losing those course measures that are dif-
ferent from the arc bearing value simply because there is
a bend along the road. These last steps of the approach,
namely the association of the GPS recordings to the
nodes and the investigation of the driving directions of
the vehicles, allow avoiding the implementation of a
more complex procedure that would require the associ-
ation of all the traces to the different arcs, rather than to
the nodes, of the network [15, 16].
Once GPS traces are assigned to arcs and it has been

verified that the vehicle is travelling along the arc itself,
it is necessary to estimate the related travel time. This
value, called T_GPS in the following, is computed by
selecting the last recording in the boundary around the
origin node and the first recording registered in the
boundary around the end node, and then computing the
difference between the two corresponding timestamps.
However, T_GPS also includes all intermediate stops be-
tween the two nodes. These stops could be either due to
traffic conditions (congestion, traffic lights or yielding)
or to service stops e.g. for deliveries. It is clearly import-
ant to distinguish between the two, in order to have a
correct estimation of the time lost in congestion.
In this research, stops whose duration is shorter than

120 sec are considered as due to traffic conditions, since
this is a typical maximum duration of a stop for yielding
or due to the red phase of a traffic light, whereas service
stop are normally longer than that. Clearly such hard
threshold might lead to wrong classifications, since some
service stops where the vehicle is parked in close prox-
imity of the delivery point and one small package has to
be delivered could take less than 2 min. On the other
hand, vehicles might come to a complete stop due to
congestion for more than 2min. However this threshold
seemed the best compromise to minimise such mis-clas-
sifications and was also adopted in previous research
[21]. More specifically, the overall time interval for a

series of subsequent 0 speed recordings is calculated: if
it is larger than 2min, it is considered as a service stop.
The sum of the durations of all service stops for a

given arc that are identified through such threshold
is called T_GPS_ss. The final step is the computation
of the net travel time, i.e. the travel time not consid-
ering service stops, given by the difference between
T_GPS and T_GPS_ss. This analysis is done for all
arcs in the network and it is repeated for each ve-
hicle on every arc.

3.2 Combining the two datasets
As said previously, Dataset1 collects the flows and the
travel times along the arcs on the Turin road network
referring to different hour ranges and days of May 2017.
Thanks to such information, it is possible to empirically
evaluate the directional free-flow travel time on all arcs.
For each arc, the relationship between the travel times
in a certain hour range and the corresponding flow is vi-
sualized through a scatterplot of all the data available for
the month of May 2017. Fig. 1(a) reports an example of
such plot. Different colours and shapes represent data
recorded in different hour ranges. As it can be seen,
each hour range is represented by several points, since
all the values registered for the different days of the
month are represented.
This plot provides interesting information on the traf-

fic trends characterizing such road. On the left side of
the plot, it is possible to notice the hours of the day
when a low number of vehicles are passing along this
street (low values in x-axis), which corresponds to the
lowest travel time values on the y-axis. For example,
traffic flows between 4:00 am and 4:59 am are about 100
vehicles/hours while the corresponding travel time is
around 60 sec (these points are marked as yellow squares
in the scatterplot). This sounds reasonable since this arc
is approximately 1 km of length and the maximum speed
allowed is 50 km/h. On the other hand, this road is col-
lecting all the traffic entering the city from the south
and coming from a motorway, therefore prone to con-
gestion in peak hours. The top right side of the graphic
in Fig. 1(a) shows congested traffic conditions, character-
ized by high values of flows (more than 2000 veh/h) and
longer travel times (more than 3min). The shape of the
interpolating function linking travel times and flows
from Fig. 1(a) is clearly not linear and it could be repre-
sented through well know relationships such as the BPR
(Bureau of Public Roads) formula that are customarily
used in traffic assignment models [27]. However in the
following we are not assuming any functional relation-
ship between travel times and flows, which on the other
hand perform quite poorly especially in urban settings.
Pertinent measures such as saturation flow and free-flow
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travel times will be empirically derived from the GPS
measures, as detailed in the following paragraphs.
Starting from the scatterplot in Fig. 1(a), those experi-

mental points corresponding to the hour range in which
GPS traces were recorded on the arc under consider-
ation are selected. As an illustrative example, let us as-
sume that one vehicle travelled through that arc
between 8:00 am and 8:59 am. All points representing
traffic flow conditions in the same time interval from
Dataset1 are then represented through black squares in
the plot of Fig. 1(b). Then, the average flow value av_
flow of those selected points is computed and it is repre-
sented by a dashed bronze line in the same figure.
This average value is assumed to be the traffic flow

that was experienced by the 23 vehicles that were
monitored whenever they eventually travelled through
the arc under consideration in that specific hour
range, irrespective of the travel day and of the specific

vehicle. Assuming that this happened 10 times in the
1-month observation period, the corresponding “net
GPS travel time values” (that were introduced in the
previous subsection as the difference between T_GPS
– T_GPS_ss) are retrieved. Fig. 1(c) then represents
again the scatterplot with the addition of 10 experi-
mental points from GPS traces (brown squares), hav-
ing the same x-axis value (namely, av_flow) and the
net GPS travel time values as y-axis value. It is inter-
esting to notice that these net GPS travel time values
are fairly consistent with those coming from Dataset1.
In fact, y-axis values of brown squares in Fig. 1(c)
have a mean value (310 sec) that is similar to the one
found for y-axis values of black squares in Fig. 1(b)
(291 sec), i.e. the one referring to the same hour
range. As expected, net GPS travel times in Fig. 1(c)
show a larger variation around the mean, since travel
time values represented by the black squares in

Fig. 1 Visualisation of the different steps of the methodology: (a) scatterplot of flow (number of vehicles/hour) versus travel time for a selected
arc, (b) selection of experimental points within the time range 8:00–8:59 am, (c) the search for GPS travel time values, with focus on the same
time range, (d) the search for free flow travel time value T_0. The legend is available on the top left part of the figure
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Fig. 1(b) are averages over the entire flow for a spe-
cific time range and day.
The final step aims at estimating the free flow travel

time value for the arc under consideration. Hence, all
the flow measures from Dataset1 for the arc under con-
sideration within a ± 5% interval around the av_flow
value are selected (blue diamonds in Fig. 1(d)). Then, the
corresponding days in which these measures were taken
are selected (grey circles in Fig. 1(d)) and the minimum
travel time among all those registered in those days, irre-
spective of the hour range, is computed. The latter is
considered as the free flow travel time, namely T_0 in
the following (bronze square on the bottom left of
Fig. 1(d), marked by the arrow), for that specific arc. The
minimum observed travel time is not directly taken as
the free-flow measure to avoid outliers. For example, if
exogenous factors such as road works worsened traffic
conditions for the largest part of the 1 month observa-
tion period, the resulting increase of travel times should
not be considered as an effect of congestion. The free
flow travel time is then computed for all arcs that where
travelled by the fleet of vehicles.

3.3 Congestion KPI definition
The Key Performance Indicator related to traffic condi-
tions stems from the previously defined quantities and it
is consistent with the above reviewed European projects.
The analysis can be done at the maximum level of disag-
gregation, i.e. for every single vehicle k travelling
through a given arc j. The time lost in congestion can be
defined as follows:

KPI j;k ¼ T 0 j− T GPS j;k−T GPS ss j;k
� �

where T_0j is the free flow travel time of arc j, T_
GPSj,k is the total travel time of vehicle k moving along
arc j and T_GPS_ssj,k: is the service stopping time of ve-
hicle k along arc j.
However, if the goal is to compare the results obtained

for arcs with different length, it is necessary to have a
common scale and proportionality in the final value.
With this aim, the previous indicator can also be com-
puted in relative rather than absolute terms as follows:

RKPI j;k ¼
T 0 j− T GPS j;k−T GPS ss j;k

� �

T 0 j

Negative values of those indicators respectively repre-
sent absolute or relative measures of the time potentially
lost in congestion when vehicle k travelled along arc j.
Zero values indicate that the vehicle travelled at free
flow speed. Positive values have also been found, since
the reference value T_0j is an average and it might well

be possible that vehicles are travelling faster than that,
especially considering experienced drivers delivering
goods in the city.
The level of detail considered in computing this KPI

allows the decision maker to aggregate the results at dif-
ferent scales, according to the specific transport policy
questions that need to be answered. Hence, bearing this
in mind, it is interesting to highlight some ways to ag-
gregate and visualize the results. Examples discussed in
the following include a link-based aggregation to identify
critical road segments, a zonal-based aggregation to
check those areas with highest congestion problems, a
vehicle types-based aggregation to check whether goods
or passenger flows are most penalized etc. Both absolute
and relative values of the KPI can be used in this aggre-
gation step, according to the specific objectives.

4 Visualisation of the results and discussion
In the following some methods to extract and visualize
results from the previously defined KPI are discussed.
A first example of arc-based aggregation is proposed

in Fig. 2, where the minimum value of RKPI between all
vehicles travelling over arc j, i.e. the maximum time loss
due to congestion, is represented for different hourly in-
tervals. Please note that those maps are different from
the usual congestion maps that represent general traffic
conditions for all vehicles, since they rather highlight the
most problematic parts of the road network from the
viewpoint of the considered logistic fleet.
Since the arcs are directional, in the following figures

they are represented by arrows. Their different colours
aim at depicting the different levels of criticality con-
nected with the travelling along each arc: grey arrows in-
dicate a travel time under uncongested traffic flow
conditions, while a colour ranging from yellow to purple
indicates an increasing travel time considering the worst
case among the available GPS measures for that link. It
can be noted that very small KPI values in Fig. 2 are nor-
mally reported only for very short arcs, for which both
the boundary effects of what happens at nodes and other
issues related to the lack of precision have a much stron-
ger influence, given the fact that the proposed KPI is a
relative rather than an absolute measure.
The maps proposed in Fig. 2 show a selection of time

ranges of the day, namely two in the morning (8:00–8:
59 am, 9:00–9:59 am) and two in the afternoon (5:00–5:
59 pm, 6:00–6:59 pm), which represent two peaks given
the considerable number of GPS traces found in the
dataset. These maps have been selected to point out the
changing in the direction in which the arcs were trav-
elled. For example, Fig. 2(a) and Fig. 2(b) shows that the
vehicles are moving mainly towards the city centre in
the morning, mainly from 8:00 to 9:59 am, since they are
going to deliver to the shops and they can do it only
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when shops are open. A look at Fig. 2(c) and Fig. 2(d),
instead, shows that when the logistic fleet is usually leav-
ing the city during the late afternoon it is clashing with
the afternoon peak hour. Thanks to these maps, it is
possible to see where the vehicles lose time due to con-
gestion, with the most critical arcs identified in red and
purple. Not surprisingly, many arcs with the worst rela-
tive KPI value are very short and entering saturated
street crossings, where the time lost for yielding and red
traffic lights is considerable compared to the free-flow
travel time.
Additional insights can be gained at a higher level

of aggregation, namely considering the overall travel
time trends on each arc, irrespective of the day and
of the time range. To this effect, the following aver-
age indicator is computed for each arc j:

AKPI j ¼

Xn

m¼1

½T 0 j− T GPS j;m−T GPS ss j;m
� �

n
1

T 0 j

where all the differences between the free flow
travel time T_0 and the net GPS travel time (T_GPS
- T_GPS_ss) for all days and for all vehicles are
summed and divided by the number of the measures
(n) to obtain an average value. As done previously,
the final indicator is then derived by dividing by the
free flow travel time T_0 to allow a comparison
among arcs of different length. Consistently with the
visualization proposed in Fig. 2, the final results for
the Turin road network can be observed in Fig. 3.
Here, a zoom on the arcs in city centre is presented
to show the most critical arcs in terms of relative

Fig. 2 Values of the worst RKPIj,k for the arcs of the city newtork in the time ranges 8:00–8:59 am (a), 9:00–9:59 am (b), 5:00–5:59 pm (c), 6:00–6:59
pm (d). Different colours of the arrows represent different values of the indicator according to the scale in figure (a)
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mean travel time lost in congestion by the fleet. As
before, these are identified with purple, red and or-
ange arrows. The observation of the map in Fig. 3
shows that not all the roads of the city network are
represented. This limitation is due to the datasets
analysed, since Dataset1 does not include all the
streets of Turin while Dataset2 refers to a limited
number of vehicles travelling around, which therefore
are not likely to have travelled through all roads in
the network. It could also happen that a vehicle is
not properly assigned to a link if it is not detected at
its extremes, due to a missing position in the buffer
around that node. The ratio of the buffer has been
selected as an average value that could assure to find
all the possible passages of vehicles in all the cross-
ings around the city that are, obviously, of different
dimensions. A further refinement of the methodology
could lead to identify different buffers amplitude ac-
cording to the various kind of road crossing.
The analysis presented so far was mainly based on the

collection of the “feedbacks” given by the whole logistic
fleet travelling on the arcs composing the network.
However, a further challenging point is the focus on the
time loss affecting the path of a selection of those vehi-
cles. In more details, it could be interesting to select
those vehicles which are characterized by a low value of
KPI on a considerable number of arcs, irrespective of the
day and of the time range. This analysis is meaningful
because many of the vehicles in the considered fleet
travel a very similar delivery route every day within the
city. An illustrative example with two vehicles of the
fleet is here discussed. Fig. 4 (a) and (b) show all arcs
travelled by vehicle 32 and 16, respectively, in May 2017.
It is interesting to notice how these two vehicles are

delivering in different areas of Turin: both travel in the
city centre but the first one leaves the city mainly from
the northern part, while the latter from the southern.
Thanks to these maps, it is clearly possible to identify
those arcs (roads) where they mostly lost their time due
to congestion. The most critical arcs are represented, as
previously, by orange and red arrows.

5 Conclusions and future work
This paper has focused on how to measure the way in
which congestion selectively affects a specific traffic
stream through the creation of a congestion KPI defined
after the integration of different data sources, namely ve-
hicle-based GPS traces and road-based information of
traffic flows. Preliminary examples of how the aggrega-
tion of the KPI at different scales can provide insights
into the transport system are presented. Such method-
ology could help in potentially informing a wide range of
policy actions, identifying, for example, the most critical
arcs for given travel purposes (parcel services, commut-
ing), the most congested areas in relation with specific
user groups (if related metadata are associated with GPS
traces) or the most congested lines in a public transport
network. All these insights could be relevant for different
stakeholders at level of city administrations, transport
services operators and specific social groups. On a meth-
odological viewpoint, future work could refine the KPI
computation through both more sophisticated processes
to identify service stops along the arc and the consider-
ation of all GPS points, beyond those near the arc ex-
tremities, for a more precise representation of the
vehicle trajectories.
Among the different actions to be developed thanks to

the SUITS project activities, an important task is devoted

Fig. 3 Value of the mean indicator AKPIj computed for all the arcs of the road network (zoom in the city center)
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to contribute to capacity building of urban planners and
stakeholders through a better understanding of data col-
lection, analysis and knowledge discovery methods to
identify opportunities for improvement in urban transport
efficiency and environmental impact. The methodology
proposed in the current work could be exploited in the
domain of the so-called Sustainable Urban Logistics Plan -
SULP [28] and in the framework of commercial develop-
ment and city logistic plan [29], providing useful informa-
tion on the efficiency of the road network as perceived by
a selected kind of users (freight deliveries). For instance,
this KPI could be monitored in a certain range of time
when specific actions are proposed at city level in order to
evaluate the effectiveness of policies such as restricted ac-
cess at roads or areas to certain kinds of traffic.
The data analysed focus on the tours of a selected

number of vans (express courier) during a month of

registration. This first round of results provided interest-
ing feedbacks on the way the city congestion could affect
urban freight deliveries and these findings could be re-
fined adding the GPS recordings collected in other
months and from other vehicles. Moreover, future works
would request to further develop the method through
the use of alternative datasets to meet as much as pos-
sible, for example, the local conditions of a typical mid-
sized European city concerning the availability of data.
The recording of GPS positions of both people and vehi-
cles is nowadays more and more widespread and, in
some cases, the related datasets are openly available. So,
many works focus on the exploitation of GPS traces to
study urban mobility analysing data from taxis [30],
buses [31] or trucks [12]. The present paper contributes
to this research field by proposing a rather flexible meth-
odology that could work also with different datasets to

Fig. 4 Value of indicator for a selection of vehicle, namely vehicle 32 (a) and vehicle 16 (b)

Pirra and Diana European Transport Research Review           (2019) 11:41 Page 9 of 11



understand how congestion has a different impact on se-
lected road users. Moreover, it is certainly relevant to
explore the potentialities of this analysis method by find-
ing other ways to aggregate indicators (e.g. by individual
vehicle in a given day, to identify the worst arcs in terms
of overall time lost, to identify most penalized vehicle
according to the path it follows, to quantify daily or sea-
sonal variations). Concerning the latter point, it is also
possible to aggregate the congestion KPIs at the whole
network level, leading to a Network Fundamental Dia-
gram (NFD), or Macroscopic Fundamental Diagram
(MFD) indicator, whose usefulness to manage conges-
tion has already been proven in a number of applications
(e.g. [32, 33]).
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