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Abstract. Linear stability of a steady flow of a chemically reacting fluid located in a ver-
tical fluid layer bounded by two infinite parallel planes is investigated. Steady convective
flow in the vertical direction is initiated due to the combined effect of internal heat genera-
tion and the temperature difference between the planes. Imposing small perturbations on
the base flow, linearizing equations of thermal convection under the Boussinesq approxi-
mation in the neighbourhood of the base flow and using the method of normal modes we
obtain an eigenvalue problem for a system of ordinary differential equations. Collocation
method is used to discretize the problem. Numerical calculations are performed in Mat-
lab. Fluid velocity, pressure, and temperature are the solutions of a nonlinear boundary
value problem. Properties of the nonlinear boundary value problem for the base flow are
investigated numerically using bifurcation analysis. It is shown that both the temperature
difference between the planes and intensity of internal heat generation have a destabilizing
influence on the base flow. The intensity of heat transfer in the direction perpendicular
to the main flow can promote instability and leads to more intensive mixing. This fact
can be used in design of bioreactors for biomass thermal conversion.
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1 INTRODUCTION

Development of our society in the near future will be dependent on the availability
of alternative sources of energy. One promising area of investigation is biomass thermal
conversion [1, 2]. Researchers try to understand experimentally the importance of different
factors (such as applied electrical field, intensity of chemical reactions, fluid mixing) on
the efficiency of the conversion process [3, 4]. Alternative approach is based on numerical
modeling [5]. Biomass thermal conversion is described by complex interaction of the
following processes: combustion, heat transfer, and fluid flow. One popular method of
investigation of complex processes in fluid mechanics is stability analysis [6, 7]. Stability
of convective flows is a topic of continuous interest due to numerous applications in physics
and engineering. In some cases (biomass thermal conversion is one example) instability
is desired since it results in more intensive mixing and (possibly) in more efficient energy
conversion. Linear stability analysis of a steady convective flow due to internal heat
generation in a vertical fluid layer is analyzed in [7]. Stability of a stationary flow in an
annulus in the presence of a nonlinear heat source is analyzed in [8]. In the present paper
we consider a linear stability problem that takes into account heat generated in the fluid
as a result of chemical reaction and the tempetature difference across the fluid layer.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

Chemical reactions occurring in the fluid generate heat and new components. Changes
in temperature and concentration lead to a non-uniform density. As a result, convective
flows are developed. If thermal effect of the reaction is large enough we can neglect the
dependence of the generated heat on the concentration of the components. Convection
is then generated due to internal heat sources distributed within the fluid in accordance
with the Arrhenius’ law:

Q = Q0 exp

(
− E

RT

)
, (1)

where T is the temperature, R is the universal gas constant and E is the parameter
characterizing reaction.

Consider an infinitely long vertical fluid layer filled with viscous incompressible fluid.
The walls x̃ = ±h are maintained at constant temperatures T̂ and −T̂ , respectively.
We let the measures of length, time, velocity, temperature and pressure be h, h2/ν,
ĝβ̂h2T̂ /(νE), RT̂ 2/E, ρĝβ̂hRT̂ 2/E, respectively. Here ρ is the density, β̂ is the coefficient
of thermal expansion, ĝ is the acceleration due to gravity and ν is the kinematic viscosity.
Let (x, y, z) be a system of Cartesian coordinates whose origin lies in the middle of the
two planes x̃ = ±h and the z-axis ir directed upwards. The flow is described by the
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system of equations of thermal convection under the Boussinesq approximation:

∂v

∂t
+Gr(v∇)v = ∇p+ ∆v + Tk, (2)

∂T

∂t
+Grv∇T =

1

Pr
∆T +

F

Pr
expT, (3)

∇v = 0, (4)

where v and p are the velocity and pressure, respectively, and k is the unit vector in
the positive z-direction. The flow is characterized by three dimensionless parameters:
the Grashof number Gr = ĝβ̂RT̂ 2h3/(ν2E), the Frank-Kamenetskii parameter F =
Q0Eh

2/(κRT̂ 2) exp (−E/(RT̂ )) and the Prandtl number Pr = ν/χ, where χ = κ/(ρcp),
κ is the thermal conductivity, cp is the specific heat. The Frank-Kamenetskii transforma-
tion is used to represent the source term in (3). Thus, there are two factors that induce
convection: (a) internal heat sources (1) and temperature gradient across the layer due
to difference in the temperatures of the walls.

These two factors generate a steady convective flow in the vertical direction. Equations
(2)–(4) have a steady solution of the following form

v0 = (0, 0, v0(x)), T0 = T0(x), p0 = p0(z). (5)

Substituting (5) into (2)–(4) we obtain

v′′0 + T0 = C, (6)

T ′′0 + F exp(T0) = 0, (7)

where C = dp0/dz is a constant. The boundary conditions are

v0(±1) = 0, (8)

T0(∓1) = ±1. (9)

The layer is assumed to be closed so that the total fluid flux through the cross-section is
equal to zero: ∫ 1

−1

v0(x)dx = 0. (10)

It is seen from (6)–(10) that the problem for the temperature distribution T0(x) can be
solved independently. In the next section we consider solution of the boundary value
problem for T0(x).

3 SOLUTION OF THE NONLINEAR BOUNDARY VALUE PROBLEM

Let F be a positive number. Consider the boundary value problem (7), (9). Let T0(x)
be a solution of (7), (9). Then, T ′′0 (x) = −FeT0(x) < 0 for every x ∈ [−1, 1] and thus
T0(x) is a strictly concave function in the interval [−1, 1] and T ′0(1) < 0.
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Let us consider the initial value problem (7),

T0(1) = −1, T ′0(1) = −β < 0. (11)

It follows from (7), (11) that

T ′20 (x) = β2 + 2Fe−1 − 2FeT0(x). (12)

Integrating (12), we have∫ T0(x)

−1

du

±
√
β2 + 2Fe−1 − 2Feu

= x− 1, (13)

where “+” sign is valid on intervals, where T0(x) increases and, consequently, “−” sign is
for intervals, where T0(x) decreases.

Using formula 1.3.1.8 on p. 137 in [10], we obtain from (13) that

T0(x) = ln

 4(β2 + 2Fe−1)e−1+(x−1)
√
β2+2Fe−1[

β
(
−1 + e(x−1)

√
β2+2Fe−1

)
+
√
β2 + 2Fe−1

(
1 + e(x−1)

√
β2+2Fe−1

)]2


(14)

solves the initial value problem (7), (11). For T0 defined by (14), T ′0(x) = 0 if and only if
x = x∗, where

x∗ = 1 +
1√

β2 + 2Fe−1
ln

(√
β2 + 2Fe−1 − β√
β2 + 2Fe−1 + β

)
.

Notice that x∗ < 1. On account of (12), T0(x∗) = max
x∈R

T0(x) = ln
(

2F+eβ2

2eF

)
.

If T0(x) is defined by (14), then the equation T0(−1) = 1 defines a bifurcation curve Γ
in the positive quadrant of the (F, β)-plane which determine all solutions of the boundary
value problem (7), (9). By calculations, T0(−1) = 1 if and only if G(F, β) = 0, where

G(F, β) := 4e
2
(
−1+
√
β2+2Fe−1

)
(β2 + 2Fe−1)−

−
[(

1− e2
√
β2+2Fe−1

)
β +

(
1 + e2

√
β2+2Fe−1

)√
β2 + 2Fe−1

]2

,

and thus Γ =
{

(F, β) ∈ R2 : F > 0, β > 0, G(F, β) = 0
}

; the curve Γ is depicted
in Figure 1. Notice that G(0, 1) = 0. The curve Γ has a turning point A0 = (F0, β0) =
(0.7887, 2.5363) (the brown point in Figure 1) from right to left. We conclude that the
boundary value problem (7), (9) has exactly two solutions if F ∈ (0, F0), exactly one
solution if F = F0, and has no solutions if F > F0.

Let us introduce the region D :=
{

(F, β) ∈ R2 : F > 0, β > 0, x∗ > −1
}

and the
curve Λ := {(F, β) ∈ R2 : F > 0, β > 0, x∗ = −1}; see the shaded region and the black
curve, respectively, in Figure 1. We mention some properties of solutions to (7), (9).
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1. For the points (F, β) ∈ Γ that are located in D, the corresponding solutions T0 of
(7), (9) have a maximum in the interval [−1, 1], which is greater than one, and thus
T ′0(−1) > 0; see Figure 2 and the blue solutions depicted in Figure 3, 4.

2. The curves Γ and Λ have a unique intersection point

A2 =

(
1

8e
ln2
(

2e
√
e2 − 1 + 2e2 − 1

)
,

√
e2 − 1

2e
ln
(

2e
√
e2 − 1 + 2e2 − 1

))
;

see Figure 1. The solution T0 of (7), (9) that corresponds to the point A2 is strictly
decreasing in the interval [−1, 1] and T ′0(−1) = 0; see the green solution in Figure 3.

3. For the points (F, β) ∈ Γ that are located outside ofD and that are different from A2,
the corresponding solutions T0 of (7), (9) are strictly decreasing in the interval [−1, 1]
and T ′0(−1) < 0; see the green solution in Figure 4. We note that for such solutions

T0 the formula (12) should be used with “−” sign and
∫ 1

−1
du√

β2+2Fe−1−2Feu
= 2.
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Figure 1: The bifurcation curve Γ (red).
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Figure 2: Three solutions of (7), (9) correspond-
ing to the points A1 = (0.65, 1.8102) ∈ Γ, B1 =
(0.65, 3.5329) ∈ Γ, and A0 = (0.7887, 2.5363) ∈ Γ
depicted in Figure 1.

The results presented in this section allow one to select a physically realizable solution
(corresponding to a point that is located on the lower branch of Γ), which is used later in
linear stability analysis.
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Figure 3: Two solutions of (7), (9) correspond-
ing to the points A2 = (0.5053, 1.5412) ∈ Γ and
B2 = (0.5053, 4.1538) ∈ Γ depicted in Figure 1.
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Figure 4: Two solutions of (7), (9) correspond-
ing to the points A3 = (0.3, 1.2791) ∈ Γ and
B3 = (0.3, 5.1406) ∈ Γ depicted in Figure 1.

4 LINEAR STABILITY ANALYSIS

Consider a perturbed flow of the form

v = (0, 0, v0(x)) + v′, T = T0(x) + T ′, p = p0(z) + p′, (15)

where flow quantities with primes represent small perturbations. Substituting (15) into
(2)–(4), linearizing the resulting equations in the neighborhood of the base flow, intro-
ducing the normal modes

ψ′ = ϕ(x)e−λt+ikz, T ′ = θ(x)e−λt+ikz, (16)

where ψ′ is the stream function for the perturbed velocity field and λ = λr + iλi is a
complex eigenvalue, we obtain the eigenvalue problem

ϕ(4) − 2k2ϕ
′′

+ k4ϕ+ ikGr(ϕv
′′

0 − v0ϕ
′′

+ k2v0ϕ) + θ′ = −λ(ϕ
′′ − k2ϕ), (17)

1

Pr
(θ
′′ − k2θ) +

F

Pr
eT0θ + ikGr(ϕT ′0 − v0θ) = −λθ, (18)

ϕ(±1) = 0, ϕ′(±1) = 0, θ(±1) = 0. (19)

Problem (17)–(19) is solved by collocation method. The functions ϕ(x) and θ(x) are
approximated as follows

ϕ(x) =
N∑
n=0

an(1− x2)2Tn(x), θ(x) =
N∑
n=0

bn(1− x2)Tn(x), (20)
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Figure 5: Marginal stability curves for F = 0.3 (red curve), F = 0.5 (green curve) and F = 0.7 (blue
curve). The value of the Prandtl number is fixed at Pr = 0.79.
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Figure 6: Marginal stability curves for F = 0.3 (red curve), F = 0.5 (green curve) and F = 0.7 (blue
curve). The value of the Prandtl number is fixed at Pr = 3.
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where Tn(x) is the Chebyshev polynomial of the first kind of order n. The collocation
points are

xj = cos
πj

N
, j = 0, 1, . . . , n (21)

Using (20), (21) we transform (17)–(19) to the generalized eigenvalue problem of the
form

(A+ λB)a = 0, (22)

where a = (a0a1...anb0b1...bn)T . Problem (22) is solved numerically in Matlab for different
values of the parameters of the problem.

Marginal stability curves for the case Pr = 0.79 are shown in Fig. 5 for three values
of the parameter F . Black points on each graph represent calculated values.
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Figure 7: Marginal stability curves for Pr = 3 (red curve), Pr = 10 (green curve) and Pr = 100 (blue
curve).

Calculated marginal stability curves for the case Pr = 3 are shown in Fig. 6. Compar-
ing Figs. 5 and 6 we see that there are two destabilizing factors: the flow becomes less
stable if the parameters F (the intensity of the chemical reaction) and Pr increase.

Another set of calculations is performed for the case F = 0.3 and three different Prandtl
numbers. The results are plotted in Fig. 7. It is seen that for moderate range of the
Prandtl numbers (3 < Pr < 10) the stability boundary is insensitive to the change in
Pr (the red and green curves almost coincide in Fig. 7). For large Prandtl numbers
(Pr = 100) the critical Grashof number decreases considerably. In addition, the most
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Figure 8: Marginal stability curves for F = 0.3 (red curve), F = 0.5 (green curve) and F = 0.7 (blue
curve). The value of the Prandtl number is fixed at Pr = 0.79.

unstable mode in this case corresponds to perturbations with larger wave length (smaller
wave numbers).

The graphs in Figs. 5–7 correspond to the case where there are two factors inducing
convective flow: (a) internal heat generation and (b) constant dimensional temperature
difference 2T̂ between the walls. Let us compare our results with the case where only
factor (a) is present (both wallls are maintained at equal and constant temperatures T̂ ,
see [8]). Marginal stability curves for the case Pr = 0.79 with equal wall temperatures are
shown in Fig. 8. Comparing Figs. 5 and 8 we see that the presence of the temperature
gradient between the walls considerably destabilizes the flow. In addition, the minimum
of the marginal stability curve is shifted to the left in the (k,Gr)-plane. This means that
perturbations of longer wavelength become more unstable as the Prandtl number grows.

5 CONCLUSIONS

Linear stability analysis of a steady flow of a chemically reacting fluid in a vertical
layer bounded by two planes maintained at different constant temperatures is performed
in the paper. Base flow solution is described by a nonlinear boundary value problem. The
properties of this problem are investigated using bifurcation analysis. Results of linear
stability calculations show that there are several destabilizing factors that affect linear
stability: (a) the Prandtl number, (b) the Frank-Kamenetskii parameter. In addition, the
presence of horizontal temperature gradient leads to considerable destabilization of the
base flow in comparison with the case of equal temperatures of the walls.
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