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ABSTRACT

The large eddy simulation (LES) models for incompressible flow have found wide application in com-
putational fluid dynamics (CFD), including areas relevant to aeronautics such as computing drag and
lift coefficients and fluid-structure interaction problems [1, 2]. LES models have also found application
in climate science through modeling fluid-fluid (atmosphere-ocean) problems. Large eddy simulation
with correction (LES-C) turbulence models, introduced in 2020, are a new class of turbulence models
which rely on defect correction to build a high-accuracy turbulence model on top of any existing LES
model [3, 4, 5]. LES-C models have two additional benefits worth serious consideration. First, LES-C
models are easy to run in parallel: One processor can compute the defect (LES) solution, while the
other processor computes the LES-C solution. Thus, if one has access to a machine with more than
one computational core (essentially ubiquitous in modern architectures), the improved solution comes
at nearly no cost in terms of the “wall time” it takes a simulation to complete. Second, LES-C mod-
els readily lend themselves to coupling with other defect correction approaches including the several
options in numerical ordinary differential equations as in [2].

In this presentation, we will first discuss five LES-C models applied to several well-known benchmark
problems such as flow over the backward-facing step and flow around a cylindrical obstacle. Notably,
this section will conclude with first-ever numerical evidence that the LES-C models out compete their
LES counterparts in a truly turbulent setting by resolving turbulent channel flow on a coarse mesh.

Finally, we will build upon a prior result in which the LES model Navier-Stokes omega was adapted
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to fluid-fluid interaction problems, representing the first unconditionally stable and optimal order
turbulence model for such problems. It will be shown that expanding this model into its corresponding
LES-C model produces a yet more accurate solution, improving accuracy in time as well as in the LES
model parameter. The numerical results are backed by a full numerical analysis, showing that, like
its LES-C counterpart, Navier-Stokes omega with correction is unconditionally stable and of optimal
order accuracy [5].
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