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Abstract. This study examines the acoustic performance of a double-wall system with a 
porous layer and conducts a global sensitivity analysis of sound transmission loss. The authors 
use the transfer matrix method to predict sound transmission, which provides cost-effective 
modeling of complex acoustic interactions and detailed high-frequency information. The 
method employs transfer matrices to represent sound wave propagation in each layer, considers 
material characteristics and layer thickness, and incorporates interface matrices for boundary 
conditions. The poroelastic layer is modeled using the Biot-Allard approach with nine 
parameters. Morris and Sobol methods are applied for global sensitivity analysis, identifying 
significant parameters. The investigation focuses on eleven parameters, including foam 
properties and layer thicknesses. The findings indicate the impact of geometric parameters at 
lower frequencies and foam properties at higher frequencies. This study is the first to optimize 
sound transmission in double-wall systems with porous layers using sensitivity analysis 
methods, offering insights for system behavior and design. 
 
1 INTRODUCTION 

Double-wall structures with porous layers are widely employed in various industries due to 
their good acoustic and thermal insulation capabilities. Different approaches are utilized to 
characterize the sound transmission loss of multilayer systems depending on the frequency 
range of interest. At low frequencies, the finite element method is commonly used to study the 
system's response [1, 2, 3, 4], while for medium and high frequencies, more efficient methods 
such as the Transfer Matrix Method (TMM) [5] and Statistical Energy Method (SEA)[6] are 
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employed. The SEA models the structure as a set of subsystems coupled through energy transfer 
pathways, while the TMM analyzes the transmission of sound waves through multilayer 
systems using transfer matrices [5,7,8]. 

 
Sensitivity analysis plays a crucial role in assessing model robustness and optimizing 

performance. Two types of sensitivity analysis, local and global, are commonly used. Local 
sensitivity analysis examines small perturbations around a nominal value, while global 
sensitivity [9,10] analysis explores the effect of each input parameter across its entire range of 
variability. For global sensitivity, qualitative methods classify input parameters in order of 
relevance as the Morris method [11], while quantitative methods provide exact proportions of 
output variation attributed to each parameter as Sobol indices [12]. 

 
Although sensitivity analysis has been applied to various models, few studies have 

exclusively focused on porous material models . Some publications [13] have employed 
quantitative methods like Sobol indices and FAST to quantify the sensitivity of porous models 
to parameter variations. Flow resistivity has been identified as a crucial parameter affecting 
acoustic performance. Other parameters can also significantly impact the vibroacoustic 
behavior, depending on the frequency range. 

 
This work aims to predict sound transmission in a double-wall structure with poroelastic 

layers and investigate the sensitivity of acoustic indicators to uncertainties in geometric, 
mechanical, and acoustic parameters. The transfer matrix method (TMM) is utilized to model 
the system's vibroacoustic response to diffuse field excitation. Global sensitivity analysis 
techniques, including the Morris method and Sobol indices, are employed to identify influential 
parameters. A case study is presented, starting with the Morris method to eliminate non-
influential parameters, and subsequently utilizing Sobol indices to rank uncertain parameters 
by importance. All uncertain variables are assumed to follow a uniform distribution. To the best 
of our knowledge, this work is the first to apply the Morris method and Sobol indices to 
optimize sound transmission in a double-wall system with porous layers using sensitivity 
analysis. 

 

2 TMM FOR DOUBLE WALL WITH A POROUS LAYER 

2.1 General formulation  
The Transfer Matrix Method (TMM) is a efficient and simple technique used to predict the 

acoustic behavior of laterally infinite multilayered systems. It employs transfer matrices to 
represent plane wave propagation in different layers and interface matrices to account for 
boundary conditions. In this study, we apply the TMM to forecast the sound transmission loss 
of a double-wall structure consisting of plate, fluid, poroelastic, and plate layers (Figure 1). The 
system is subjected to an incident plane acoustic wave of angle 𝜃, and is surrounded by two 
external fluids (Fluids 1 and 2). The problem under consideration is two-dimensional, with the 
incidence plane denoted as (𝑥!, 𝑥"). 
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Figure 1: A double-wall with a porous layer subjected to an incident plane wave 

 
Each layer in the system is represented by a transfer matrix [𝑇] that describes the propagation 

of sound waves within that layer [5]: 
𝑉(⃗ (𝑀#) = [𝑇]𝑉(⃗ (𝑀#$!) (1) 

The transfer matrix [𝑇] depends on both the thickness ℎ% of each layer 𝑖  with 𝑖 = 1,2,3,4 
and the physical characteristics of the layer. It describes the sound wave propagation between 
two points, 𝑀# and 𝑀#$!	with 𝑛 = 1,2,3,4,5,6,7 located on the front and back faces of the layer, 
respectively. The vector 𝑉(⃗  contains the variables that describe the acoustic field at a given point 
𝑀 within the layer. 

2.2 Construction of the transfer matrix for each layer 
2.2.1. Thin elastic plate 
In the case of a thin elastic plate, only bending waves are considered for wave propagation. 

The harmonic equation (Equation (2)) of motion describes the relationship between the normal 
stress 𝜎""&  and normal velocity 𝑣"& of the plate at two points, 𝑀! and 𝑀'. Equation (3) describes 
the continuity of velocities. 

𝑍&(𝜔)𝑣"&(𝑀') = 𝜎""& (𝑀') − 𝜎""& (𝑀!	) (2) 
𝑣"&(𝑀') = 𝑣"&(𝑀!)	 (3) 

Equations (2) and (3) can be written in matrix form using the transfer matrix [𝑇&] and the 
acoustic field vector 𝑉&((((⃗ . 

>
𝜎""& (𝑀!)
𝑣"&(𝑀!)

? = 	 @1 −𝑍&(𝜔)
0 1

B >
𝜎""& (𝑀')
𝑣"&(𝑀')

? = 	 [𝑇&]𝑉&((((⃗ (𝑀') (4) 

The mechanical impedance 𝑍&(𝜔) captures the characteristics of the plate, incorporating 
factors such as bending stiffness 𝐷, mass density per unit area 𝑚, wave number 𝑘, and incidence 
angle 𝜃. Damping can be introduced through a complex Young's modulus. 

𝑍&(𝜔) = 𝑗𝜔𝑚G1 −	
𝐷(𝑘 sin 𝜃)(

𝜔'𝑚
K (5) 

2.2.2. Fluid layer 
The sound pressure 𝑝) and velocity 𝑣"

)  in the fluid layer is considered as a superposition of 
a progressive and a regressive wave in 𝑥" direction: 
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𝑝)(𝑥", 𝑡) = 	 N𝐴*𝑒%+!,! + 𝐵*𝑒-%+!	,!S𝑒-%/0 (6) 

𝑣"
)(𝑥", 𝑡) = 		

1
𝑍)
N𝐴*𝑒%+!,! − 𝐵*𝑒-%+!	,!S𝑒-%/0 (7) 

where 𝑘" =
/
1"

  is the component along 𝑥" direction of the wave number vector, 𝑐) the speed 
of sound in the considered medium. The amplitude of the progressive and the regressive wave 
are denoted respectively 𝐴* and 𝐵*. 𝑍) = 𝜌)𝑐) is the acoustic impedance depending on the 
density 𝜌) and the celerity 𝑐) of the fluid. 

  
Consider that 𝑥" is equal to zero on the right boundary of the fluid layer, the pressure 

𝑝)(0)	and the velocity 𝑣"
)(0)  at this boundary can be written:  

𝑝)(0) = 𝐴* + 𝐵*	; 	𝑣"
)(0) =

1
𝑍)
[𝐴* − 𝐵*] (8) 

Using these last Equations (8) combined with Equations (6) and (7), the pressure 𝑝)(−ℎ') 
and velocity 𝑣"

)(−ℎ') on the left-hand side of the layer, where  𝑥" = −ℎ'  , can be deduced 
from 𝑝)(0) and 𝑣"

)(0) in the following matrix form: 

G
𝑝)(−ℎ')
𝑣"
)(−ℎ')

K = 	 X
cos(𝑘"ℎ') 𝑖𝑍) sin(𝑘"ℎ')

𝑖
1
𝑍)
sin(𝑘"ℎ') cos(𝑘"ℎ')

[ G
𝑝)(0)
𝑣"
)(0)

K = 	 N𝑇)S𝑉)((((⃗ (0) (9) 

 where  N𝑇)S	 is the transfer matrix of the fluid layer, 𝑉)((((⃗  is the associated acoustic fields 
vector and ℎ' is the thickness of the fluid layer.  

 
2.2.3. Porelastic layer 
The propagation of acoustic waves in a poroelastic layer involves two compression waves 

and a shear wave for each phase. In total, there are six waves denoted as 𝜙!2, 𝜙'2,	𝜓'2 𝜙!3, 𝜙'3 
and 𝜓'3, which are defined by six independent acoustic quantities. These quantities include the 
velocity components of the solid phase 𝑣!2 and 𝑣"2, the velocity component of the fluid phase 
𝑣"3, the stress tensor components of the solid phase 𝜎""2  and 𝜎!"2 , and the stress component of 
the fluid phase 𝜎""3 . To simplify the representation, a state vector	𝑉4(((((⃗  is introduced, defined at 
any point 𝑀 with an abscissa of 𝑥"  in the poroelastic layer. 

	𝑉4(((((⃗ (𝑥") = 	[𝑣!2	𝑣"2	𝑣"3 	𝜎""2 	𝜎!"2 	𝜎""3 	]5 (10) 
By analyzing the material, we can determine a matrix [𝛤] that represents its characteristics. 

This matrix establishes a connection between the values of velocities and stresses at 𝑥" = 0  
(one end) and 𝑥" = ℎ" (opposite end) of the poroelastic layer, where ℎ" is the thickness of the 
layer. 

𝑉4(((((⃗ (0) = [𝛤(0)][𝛤(ℎ")]	-!𝑉
4(((((⃗ (ℎ) (11) 

N𝑇4S = 	 [𝛤(0)][𝛤(ℎ")]	-! (12) 
The transfer matrix N𝑇4S  characterizes the poroelastic layer and its components are provided 

in reference [5]. In practical applications, to simplify calculations and avoid matrix inversion, 
the origin of the 𝑥" axis can be shifted, allowing the use of the transfer matrix N𝑇4S =
	[𝛤(−ℎ")][𝛤(0)]	-!. 
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2.3 Coupling conditions 
2.3.1. Thin plate-fluid interface 
At the interface between the elastic plate and the acoustic fluid, the continuity equations 

express the following conditions: 
𝑣"&(𝑀') = 	𝑣"

)(𝑀") (13) 
𝜎""& (	𝑀') = 	−𝑝)(𝑀") (14) 

Equations (13) and (14) can be written in matrix form to represent the continuity of normal 
velocity and stress at the fluid-structure interface as follows: 

N𝐼&)S𝑉&((((⃗ (𝑀') + N𝐽&)S𝑉)((((⃗ (𝑀") = 0(⃗ (15) 

N𝐼&)S = 	 @
0 1
1 0B 	and		N𝐽&)S = 	 @

0 −1
1 0 B		

(16) 
 
2.3.2. Fluid-porous interface 

 
At the interface between the acoustic fluid and the porous medium, the continuity equations 

can be described as follows: 
𝑣"
)(𝑀() 	= 	 (1 − 𝜙)𝑣"2(𝑀6) + 𝜙𝑣"3(𝑀6) (17) 

−	(1 − 𝜙)𝑝)(𝑀() = 𝜎""2 (𝑀6)	 (18) 
0 = 𝜎!"2 (𝑀6)	 (19) 

−	𝜙𝑝)(𝑀() = 	𝜎""3 (𝑀6) (20) 
Where 𝜙 is the porosity of the porous medium. Equation (17) introduces the continuity of 

normal velocities between the porous medium and the acoustic fluid. Equation (18) establishes 
the continuity between the normal stress of the solid phase in the porous medium and the 
pressure of the acoustic fluid. Equation (19) assumes no shear in the solid phase of the porous 
material. Equation (20) presents the continuity between the normal stress in the fluid phase of 
the porous medium and the pressure in the fluid at the interface. These equations can be written 
in matrix form to represent the continuity conditions between the acoustic fluid and the porous 
medium. 

 
N𝐼)4S	𝑉)((((⃗ (𝑀() + N𝐽)4S𝑉4(((((⃗ (𝑀6) = 0(⃗ 	 (21) 

N𝐼)4S = d

0 −1
(1 − 𝜙) 0

0 0
𝜙 0

e 	and		N𝐽)4S = 	 d
0 (1 − 𝜙)

0 0
𝜙 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

e (22) 

 
2.3.3. Porous-thin plate interface 
 
For a thin plate in contact with a porous layer, the continuity equations at the interface can 

be expressed as follows: 
𝑣"2(𝑀7) = 	𝑣"&(𝑀8) (23) 
𝑣"3(𝑀7) = 	𝑣"&(𝑀8) (24) 

𝜎""2 (𝑀7) + 𝜎""3 (𝑀7) = 	𝜎""& (𝑀8) (25) 
𝜎!"2 (𝑀7) = 0 (26) 
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Equations (23) and (24) represent the continuity of the normal velocity at the porous-plate 
interface. Equation (25) represent the continuity of the stresses. Finally, Equation (26)  reflects 
absence of shear at the interface. These equations can be written in matrix form as follows: 

N𝐼4&S𝑉9((((⃗ (𝑀7) + N𝐽4&S𝑉&((((⃗ (𝑀8) = 0(⃗ (27) 

N𝐼4&S = X
0 −1
0 0

0 0
−1 0

0 0
0 0

0 0
0 0

0 −1
0 0

0 −1
−1 0

[ 	and		N𝐽4&S = 	 X
0 1
0 1
1 0
0 0

[	 (28) 

2.4 Computation of the transmission loss TL of the multilayer 
The application of the TMM leads to the following matrix problem to solve:  

[𝐷]𝑉(⃗ = 	0(⃗ (29) 
Where 𝑇 is the transmission coefficient, 𝑅 the reflection coefficient and [𝐷] is the assembled  

global transfer matrix given by: 

[𝐷] = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
[𝑇	0]
N𝐼)&S

[0]
N𝐽)&S[𝑇&]

[0]
[0] 	

[0]
[0]

[0]
[0]

[−(1 + 𝑅)	0]
[0]

[0]
[0]

N𝐼&)S
[0]

N𝐽&)SN𝑇)S
N𝐼)4S

[0]
N𝐽)4SN𝑇4S

[0]
[0]

[0]
[0]

[0]
[0]

[0]
[0]

[0]
[0]

N𝐼4&S
[0]

N𝐽4&S[𝑇&]
N𝐼&)S

0
N𝐽&)S ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(30) 

and 

𝑉(⃗ = 	 @𝑣)((((⃗ (𝐴)			𝑣&((((⃗ (𝑀')			𝑣)((((⃗ (𝑀()			𝑣4((((⃗ (𝑀7)			𝑣&((((⃗ (𝑀:)			𝑣)((((⃗ (𝐵)B
5

(31) 
Finally, the sound transmission loss is computed using the following equation  : 
 

𝑇𝐿 = −10 log X
∫ ∫ 𝜏(𝜃, 𝜑) sin 𝜃 cos 𝜃 𝑑𝜑𝑑𝜃';

*
<#$%
<#&'

∫ ∫ sin 𝜃 cos 𝜃 𝑑𝜑𝑑𝜃';
*

<#$%
<#&'

[	 (32) 

 
with 𝜏(𝜃, 𝜑), calculated from TMM, represents the transmission coefficient of the multilayer 

panel for a given angle of incidence 𝜃 varying from 𝜃=%# to 𝜃=>,. 
 

3 GLOBAL SENSITIVITY ANALYSIS 

3.1 Morris method 
The Morris method uses the mean and standard deviation of elementary effects to measure 

sensitivity. It categorizes input factors into three groups based on their effects: negligible effects 
(low average and low standard deviation), linear effects with no interaction high average and 
low standard deviation), and non-linear effects with interactions (high standard deviation). In a 
computational model, the output variable 𝑌 is determined by a deterministic function of 𝑀 
inputs represented by the vector 𝑋⃗. Sampling starts with a random point and each subsequent 
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sample varies only one factor at a time. Elementary effects are calculated by measuring the 
variation in the output caused by changing one parameter while keeping others constant. Morris 
introduced this method for sensitivity analysis [14]. 

𝐸?
(%) =	

𝑌w𝑋!, … , 𝑋? ± ∆,… , 𝑋B{ − 𝑌w𝑋!, … , 𝑋? , … , 𝑋B{
𝛥%

	 ; 𝑖 = 1,… , 𝑟 (33) 

where the pre-defined value  𝛥%  is the trajectory step. Each parameter 𝑋? is associated with 
one elementary effect yielded by one trajectory, and a set of 𝑟 trajectories create the finite 
distribution of these elementary effects. The total number of simulations needed is equal to 
𝑟 × (𝑀 + 1) . Two sensitivity indices can be estimated for each input factor, the mean of the 
absolute values of the effects 𝜇?∗ and the standard deviation of the effects 𝜎?: 

𝜇?∗ =	
1
𝑟�

�𝐸?
∗(%)�

D

%E!

(34) 

𝜎? = �	
1

𝑟 − 1
���𝐸?

∗(%)� − 𝜇?∗�
'
	

D

%E!

(35) 

where 𝐸?
∗(%) is the normalized elementary effect of 𝐸?

(%) associated to the parameter 𝑋? . Since 
certain elementary effects might eliminate each other in non-monotonic models, Campolongo 
et al. [15] recommend using the average of absolute elementary effects rather than the standard 
average. The technical purpose of this approach, as highlighted by Campolongo et al. [15], is 
to identify parameters that are deemed "unimportant" or negligible. 

 

3.2 Sobol indices 
3.2.1. Decomposition of Sobol 
The Sobol' decomposition method, introduced by I. M. Sobol [10], is widely used to analyze 

the impact of input variables on the system's output. This method quantitatively assesses the 
relative importance of each input variable by measuring its contribution to the output variance. 
By fixing a variable 𝑋% , and observing the decrease in the output variance, the method 
determines if 𝑋% is a significant contributor to the variance, indicating its importance. The Sobol' 
decomposition dissolves a function 𝑓 into its constituent parts based on the contributions of 
each input variable to the output variance [12]. 

𝑌 = 𝑓w𝑋⃗{ = 𝑓(𝑋!, … , 𝑋B) = 	𝑓* +�𝑓%(𝑋%)
B

%E!

+ � 𝑓%?(𝑋%
!F%F?FB

, 𝑋?) + ⋯+ 𝑓!,',…,B(𝑋!, … , 𝑋B)(36) 

 Where the constant 𝑓* and conditional expectations 𝑓% , 𝑓%? , … , 𝑓!,',…,B are expressed as 
follows: 

𝑓* = 	𝔼(𝑌) (37) 
𝑓%(𝑋%) = 	𝔼(𝑌|𝑋%) − 𝑓* (38) 

𝑓%?w𝑋% , 𝑋?{ = 𝔼w𝑌|𝑋% , 𝑋?{ − 𝑓* − 𝑓% − 𝑓? (39)	 
The total output variance 𝑉(𝑌) can be written as: 
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𝑉(𝑌) = 𝑉[𝔼(𝑌|𝑋%)] + 𝑉N𝔼w𝑌|𝑋% , 𝑋?{S − 𝑉[𝔼(𝑌|𝑋%)] − 𝑉N𝔼w𝑌|𝑋?{S +
…+ 𝑉N𝑓!,',…,B(𝑋!, … , 𝑋B)S	 (40)

 

3.2.2. Indices of Sobol 
Indices  of Sobol are defined in several categories: first-order, second order, ... 𝑀-order (𝑀 

being the number of random variables) and total sensitivity indices. The first-order sensitivity 
index of 𝑌 to the parameter 𝑋%, denoted 𝑆%, considers only the contribution due to the parameter 
𝑋% alone without interactions and is defined as [14]: 

𝑆% =	
𝑉w𝔼(𝑌|𝑋%){

𝑉(𝑌)
(41) 

The total sensitivity index 𝑆5% combines the contribution due to the parameter 𝑋% alone, 
which corresponds to the index 𝑆%, and the contribution due to the interaction of 𝑋% with the 
other parameters: 

𝑆5% = 	1 −	
𝑉w𝔼(𝑌|𝑋~%){

𝑉(𝑌) 	 (42) 

The term 𝑉w𝔼(𝑌|𝑋~%){	represents the variance of the conditional expectation knowing all 
parameters except 𝑋%.  

4 CASE STUDY 

4.1 Description of the uncertain parameters 
The given double infinite wall system consists of two PVC walls separated by an air gap and 

surrounded by a fluid domain. To improve sound transmission reduction, a poroelastic layer 
(polymer foam) is introduced between the walls bonded to the second PVC wall. The system is 
subjected to a diffuse excitation field with a power spectral density of 1 Pa2/Hz. The mechanical 
properties of the PVC are:  Young’s  modulus 𝐸4 = 2.8 × 10J	Pa, Poisson ratio 𝜈4 = 0.35, 
density 𝜌4 = 1460 kg/m3 and loss factor 𝜂4 = 0.04.	 The walls are separated by an air gap with 
its density 𝜌1 = 1.213 kg/m3 and its sound velocity 𝑐1 = 342.2 m/s. The fluid domain 
surrounding the walls is a semi-infinite space filled with air. These parameters are fixed to their 
nominal values. Uncertainty in the mechanical and acoustic properties of the materials was not 
considered due to its negligible impact compared to other sources of uncertainty in the system. 
Table 1 presents uncertain parameters and their corresponding bounds. The study focuses on 
11 parameters, including 9 for the polymer foam's material properties and their uncertainty 
ranges [13]. Only the thickness variation of plates and acoustic fluid is considered. 

Table 1. Uncertain parameters for the double-wall with a porous layer 
 

Domain 𝑿𝒊 Parameter Variable Nominal 
value 

Unit Lower 
bound 

Upper 
bound 

Porous 

𝑋! Porosity 𝜙 0.97 - 0.96 0.98 
𝑋' Flow 

resistivity 
𝜎 166 000 N.s/m4 119 000 212 000 

𝑋" Tortuosity 𝛼L 1.8 - 1.5 2.1 
𝑋( Viscous 

length 
Λ 6 × 10-6 m 4.1 × 10-6 7.9 × 10-6 
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𝑋6 Thermal 
length 

Λ′ 1.8 × 10-( m 1.37
× 10-( 

2.23 × 10-( 

𝑋7 Density 𝜌 39.5 kg/m3 39,1 39.9 
𝑋8 Young 

modulus 
𝐸 205500 Pa 170000 241000 

𝑋: Poisson 
ratio 

ν 0.45 - 0.435 0.465 

𝑋J Thickness 
of the 
foam 

𝑒= 0.03 m 0.028 0.033 

Plates 𝑋!* Thickness 
of the 
plates 

𝑒4 0.002 m 0.0018 0.0022 

Fluid 𝑋!! Thickness 
of fluid 
medium 

𝑒1 0.20 m 0.19 0.22 

 

4.2 Global sensitivity analysis using Morris method 
The Morris method was used to conduct a sensitivity analysis of the 11 uncertain parameters 

in the double wall structure, assuming they followed uniform distributions. This involved 
conducting 600 model simulations with 50 trajectories. The analysis results are shown in Figure 
2, presenting the average and standard deviation of the elementary effects for each parameter. 

 

 
 

(a) 
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Figure 2: Elementary Effects of the double-wall with a porous layer: (a) the mean and (b) the standard 
deviation 

 
Fig.2.a shows that in the lower frequency range (100 Hz to 315 Hz), the sound transmission 

loss response is highly sensitive to the system's geometrical parameters: plate thickness, foam 
thickness, and cavity thickness. The flow resistivity of the foam is also influential in this range. 
As the frequency exceeds 315 Hz, the foam's mechanical properties, including Young's 
modulus and Poisson's ratio, become more important. The foam's tortuosity only affects higher 
frequencies (4000 Hz to 5000 Hz). Fig.2.b reveals that the foam thickness, Young's modulus, 
and Poisson's ratio of the foam exhibit the highest standard deviation values. These parameters 
are sensitive to non-linear effects and/or interactions, indicating that small variations in them 
can significantly impact the sound transmission loss response of the double wall structure. 
Reducing the uncertainty associated with these parameters is crucial. We have been able to 
eliminate four least influence parameters as porosity, foam density, viscous length, and thermal 
length. 
 

4.3 Global sensitivity analysis using Sobol indices 
Using the Sobol method, a sensitivity analysis was conducted on the 7 most important 

parameters identified by the Morris method. Figure 3 displays the first order	𝑆% and total 𝑆5% 
Sobol indices for these parameters across a frequency range of 100 Hz to 5000 Hz per third 
band. A sample size of 𝑁	 = 	10( was used, resulting in a computational cost equivalent to 
90000 model simulations ((𝑀 + 2) × 𝑁) for each frequency. 

(b) 
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Figure 3:  Sobol indices of the seven most influential parameters 

The study exposes that tortuosity and cavity thickness had negligible impact on sound 
transmission loss. Instead, in the lower frequency range (100 Hz to 315 Hz), plate thickness, 
foam thickness, and resistivity were the most influential parameters. Between 315 Hz and 800 
Hz, plate thickness became the most influential, followed by resistivity, while foam thickness 
became less important. At higher frequencies (800 Hz to 5000 Hz), Poisson's ratio and Young's 
modulus were the primary contributors. These parameters were sensitive to interactions, 
particularly the coupling effects between the plate and porous material. Foam thickness also 
had some influence due to interactions in this frequency range. Plate thickness remained 
significant at high frequencies but to a lesser extent. Resistivity, tortuosity, plate thickness, and 
cavity thickness were found to be insensitive to interactions. 

5 CONCLUSION 
This study examined the acoustic performance of a double wall system with a poroelastic 

layer to reduce sound transmission. The matrix transfer method was used to calculate sound 
transmission loss of the multilayer. Morris and Sobol methods were employed for global 
sensitivity analysis to identify influential parameters. The study focused on 11 parameters, 
including porosity, resistivity, tortuosity, viscous length, thermal length, density, Young's 
modulus, Poisson's ratio of the foam, and plate, cavity, and foam thicknesses. Morris analysis 
indicated that geometric parameters like plate, foam, and cavity thickness were critical in the 
lower frequency range. In the higher frequency range, foam properties such as Young's modulus 
and Poisson's ratio became more significant. Sobol analysis further explored parameter 
interactions and highlighted the interaction between plate thickness and foam at higher 
frequencies. It is important to note that parameter hierarchy varies with frequency. This study 
underscores the significance of considering uncertain parameters and utilizing sensitivity 
analysis to optimize the design of double wall systems with poroelastic layers for noise 
reduction in diverse applications. 
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