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Strain localization and failure mechanics for elastoplastic damage solids
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Abstract

This work investigates systematically strain localization and failure mechanics for elastoplastic damage solids.

Two complementary methodologies, i.e., traction-based discontinuities localized in an elastic solid and strain lo-

calization of a stress-based inelastic softening solid, are addressed. In the former it is assumed a priori that the

discontinuity (band) forms with a continuous stress field and along the known orientation. A traction-based failure

criterion is introduced to characterize the discontinuity (band) and the orientation is determined from Mohr’s maxi-

mization postulate. If the (apparent) displacement jumps are retained as independent variables, the strong/regularized

discontinuity approaches follow, requiring constitutive models for both the bulk and discontinuity (band). Elimination

of the displacement jumps at the material point level results in the embedded/smeared discontinuity approaches in

which an overall inelastic constitutive model fulfilling the static constraint suffices. The second methodology is then

adopted to check whether the assumed strain localization can occur and identify its consequences on the resulting

approaches. The kinematic constraint guaranteeing stress boundedness/continuity upon strain localization is estab-

lished for general inelastic softening solids. Application to a unified elastoplastic damage model naturally yields all

the ingredients of a localized model for the discontinuity (band), justifying the first methodology. Two dual but not

necessarily equivalent approaches, i.e., the traction-based elastoplastic damage model and the stress-based projected

discontinuity model, are identified. The former is equivalent to the embedded/smeared discontinuity approaches,

whereas in the later the discontinuity orientation and associated failure criterion, not given a priori, are determined

consistently from the kinematic constraint. The bi-directional connections and equivalence conditions between the

traction- and stress-based approaches are classified. Closed-form 2D results under plane stress condition are also

given, with the classical Rankine, Mohr-Coulomb, von Mises and Drucker-Prager criteria analyzed as the illustrative

examples. A generic failure criterion of either elliptic, parabolic or hyperbolic type, is then considered in a unified

manner, resulting in many failure criteria frequently employed in practice.
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1. Introduction

Overall responses of inelastic softening solids are characterized by strain localization, i.e. a manifestation of

concentration of micro-structural defects. Depending on the material interested, the phenomena resulting from strain

localization may be diverse: dislocations of order of microns in crystal metals, cracks of order of millimeters in con-

crete, and shear bands of order ranging from millimeters to kilometers in granular and geological problems. From the

structural point of view these localization band may be regarded as a fracture surface of small or even negligible width

compared to the length scale of the structure. Structural collapse is often induced by formation of such localization

bands. Therefore, it is of utmost significance to evaluate (residual) structural safety once strain localization occurs,

and to prevent potential catastrophic collapse caused by localized failure. However, despite the recent progresses

made, the modeling of strain localization and subsequent structural collapse still remains a challenging issue.

Strain localization inevitably induces strain/displacement discontinuities, hindering the applicability of classical

continuum mechanics. With respect to the strategies for the approximation of such discontinuities and resulting

consequences on material or structural responses, different approaches have been proposed ever since the pioneering

work of Ngo and Scordelis [35] and Rashid [50]. Generally speaking, existing approaches can be classified into the

nonlinear fracture mechanics based discontinuous models or the generalized continuum mechanics based continuous

models. In the computational context, they correspond to the discrete and smeared discontinuity methods, respectively.

In the discontinuous (discrete) approach strain/displacement jumps are explicitly accounted for by embedding

the discontinuities into a solid matrix along preferred orientations. It is generally assumed that energy dissipation

mechanisms are localized into the discontinuities while the bulk remains elastic. The traction continuity condition is

imposed between them. The overall inelastic behavior is of anisotropy by construction. To characterize the dissipative

behavior lumped in the discontinuities, vectorial traction-based cohesive models furnished with the fracture energy

are introduced. Generally, displacement discontinuities are regarded as zero-width failure surfaces characterized

by tractions vs. displacement jumps [3, 4, 17, 22]. Alternatively, strain discontinuities across the localized band

with a finite width can be represented in terms of tractions vs. inelastic deformations (i.e., apparent displacement

jumps normalized with respect to the bandwidth) [9, 10]. Depending on the recoverable/irreversible properties of the

discontinuities, traction-based cohesive models of either plastic [7, 62, 66], damage [1, 2, 24] or combined plastic-

damage [67, 70] type can be established.

Contrariwise, the continuous approach relies on the introduction of a generalized continuum, so that stress-based

constitutive models with regularized softening regime can be used. In this approach, the strain/displacement disconti-

nuities are regularized (smeared) so that the classical concepts of (average) stress and strain still apply. It is no longer

necessary to make distinction between the elastic bulk and the inelastic localization band. But rather, the overall

nonlinear behavior of the weakened medium is described by generalized constitutive laws in terms of stress vs. strain

tensors equipped with softening internal variables. In this way, plasticity and damage mechanics or their combination

[15, 25] can be employed to develop appropriate inelastic constitutive laws. Induced anisotropy can be considered
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either theoretically [19, 31, 70] or in the computational context [12, 13]. Furthermore, to guarantee objectivity of the

energy dissipated during the fracture process, the softening regime has to be regularized with respect to the length

scale of localization band. The fracture energy – a material property measuring the dissipation per fracture surface,

and an appropriately identified localization band width [5, 38], are fundamental ingredients for this purpose.

In the traction-based approached for the modeling of localized failure in solids, a crucial step is to determine the

discontinuity orientation. This is a non-trivial goal for a new or propagating discontinuity whose orientation is not

pre-defined or known a priori. To this end, ad hoc strategies have to be introduced, usually in an heuristic manner.

For instance, the maximum tensile stress (i.e., Rankine) criterion is often adopted for mode I failure in quasi-brittle

materials. For more general cases, selecting the discontinuity orientation according to some makeshift condition

and fixing it afterwards becomes a superimposed condition on the material behavior. Fortunately, the occurrence of

necessary requisites for a certain type of failure to be initiated during the whole deformation process in inelastic solids

provides useful information. In this aspect, the pioneering works by Hill [20, 21], Thomas [64] and Rice [51, 57] have

been widely adopted in the literature. The necessary conditions for discontinuous bifurcation and strain localization

of elastoplastic materials were identified and formulations for the orientation of shear bands were obtained; see [58]

and the references therein. Discontinuous bifurcation analysis, based on the assumption of linear comparison solid

(inelastic loading state both inside and outside the localization band) and the traction continuity condition, has now

become the standard tool to analyze propagation of strain or weak discontinuities.

For strong discontinuities in solids with strain softening regimes, there is no consensus for the determination of the

discontinuity orientation. For instance, Simó et al. [61] and Oliver [39] suggested using the discontinuous bifurcation

condition with perfect (null) softening/hardening modulus to determine the discontinuity orientation. This necessary

discontinuous bifurcation condition in general does not guarantee the occurrence of strong discontinuities [40, 41].

To remedy this problem, a variable band width model was proposed in the last reference, so that weak discontinuities

can evolve smoothly to a strong one at a later stage. However, for strain localization to occur in a softening solid and

develop eventually into a fully softened discontinuity at the final stage of the deformation process, material points

inside the discontinuity (band) undergo inelastic loading while those outside it unload elastically. That is, the actual

loading state is not consistent with the assumption of linear comparison solids. Therefore, the limit decohesion cannot

be guaranteed in general cases and stress locking occurs due to the mis-prediction of the discontinuity orientation.

Furthermore, due to the singular strain field associated with displacement discontinuities, traction continuity alone is

not sufficient to guarantee physically meaningful results, but rather, stress boundedness also has to be invoked [39–

42, 61]. Noticing this fact, Cervera et al. [11] recently used the kinematic compatibility condition resulting from stress

boundedness to determine the discontinuity orientation, so that the stress locking-free property can be guaranteed for

a fully softening discontinuity. The analytical results, obtained for von Mises (J2) plastic materials in the cases of

plane stress and plane strain, were validated by numerical simulations.

Failure criterion is another indispensable ingredient for the modeling of localized failure in solids. It defines an

elastic domain outside which nonlinear energy dissipation mechanisms are active. In discontinuous approaches a
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traction-based failure criterion is in general adopted. For mode-I failure a trivial Rankine criterion can be employed.

For mixed mode failure, the simple linear Mohr-Coulomb criterion is in general insufficient and more complex func-

tion has to be introduced, usually in an ad hoc manner. For instance, either elliptical [6, 24, 49, 70], parabolic [33, 36]

or hyperbolic [7, 14, 34, 66] function has been postulated in the literature to describe mixed-mode failure in quasi-

brittle materials. However, the involved parameters are essentially mesoscopical entities hard to be determined from

rather limited experimental tests. This shortcoming restrains heavily the application of traction-based discontinuous

approaches. On the other hand, situations are totally different for the continuous approaches. Large quantities of

stress-based failure criteria have been suggested based on triaxial test data, especially for concrete-like quasi-brittler

materials [15].

Traction-based discontinuity methods and stress-based material models with regularized softening regime both

have been widely adopted for the modeling of localized failure in solids, though they are motivated from different

methodologies and usually regarded as unconnected ones. It would be of great significance to establish a solid the-

oretical connection between results obtained from strain localization analysis of stress-based inelastic materials and

from traction-based discontinuities localized into the elastic matrix. Such a correspondence will serve as a guidance

how to select an appropriate approach when modeling localized failure in solids. Furthermore, it will also bridge the

gap in identifying those mesoscopic parameters involved in the traction-based failure criterion from the easily obtained

macroscopic properties of materials. In the literature, some attempts have been made to link them each other. For

instance, Oliver and coworkers [40–44] derived the traction-based discontinuity models by projecting inelastic stress-

based constitutive laws onto the discontinuity orientation. They managed deriving in closed-form the traction-based

failure criterion for the isotropic damage model in total form [42–44]. Except for the Rankine and plane strain von

Mises criteria [40, 41], stress-based plastic and plastic-damage models with general failure criterion have not been

sufficiently accounted for. More importantly, the discontinuity orientation is determined through the discontinuous

bifurcation condition. Accordingly, the resulting traction-based discontinuity model is in general inconsistent with

the original stress-based counterpart and some mismatches are observed in the discontinuity kinematics [44, 45].

Recent investigations [68, 69] show that upon strain localization the stress field not only is bounded, but also is

continuous, providing only the discontinuity modes caused by relative rigid body motions (translations and rotations)

are considered [67]. Satisfaction of such a stress boundedness/continuity condition upon strain localization not only

allows the formation of a fully softened discontinuity, but also establishes a bridge connecting the stress- and traction-

based approaches motivated from rather different viewpoints. This work is to make further contributions to the above

topics. Two complementary methodologies, i.e., traction-based discontinuities localized in an elastic solid and strain

localization of a stress-based inelastic solid, are presented. Both strong and regularized discontinuities are considered.

Regarding the strategies dealing with the orientation and failure criterion of the discontinuity, the connections and in

particularly, the equivalence conditions, between traction- and stress-based approaches are investigated systematically.

Compared to the existing literature, the theoretical connections are bi-directional, making it possible to bridge the gaps

between the stress- and traction-base approaches. For instance, the proposed strain localization approach directly
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motivates the necessary modifications to be made to the stress-based failure criterion, so that strain localization can

occur under some unfavorable stress states while maintaining its equivalence to the corresponding traction-based

counterpart.

This paper is organized as follows. After this introduction, the kinematics and governing equations of localized

failure in solids are briefly presented in Section 2. Within the first methodology of discontinuities localized in an elas-

tic solid, several traction-based approaches are discussed in Section 3. To justify the first methodology, an alternative

one, i.e., strain localization of a stress-based inelastic solid, is then considered in Section 4. The kinematic constraint

guaranteeing the stress boundedness/continuity condition is derived for general inelastic softening solids and applied

to a unified elastoplastic damage model. Two dual (formally identical) but not necessarily equivalent approaches, i.e.,

the traction-based elastoplastic damage model and the stress-based projected discontinuity model, are identified. Sec-

tion 5 addresses the bi-directional connections, in particular, the equivalence conditions, between the aforementioned

traction- and stress-based approaches. In Section 6 closed-form results in plane stress condition are given, and the

classical Rankine, Mohr-Coulomb, von Mises (J2) and Drucker-Prager failure criteria are analyzed as prototype ex-

amples. Section 7 addresses the application to a generic stress-based failure criterion from which many traction-based

counterparts widely employed in practice are recovered as the particular cases. Some relevant conclusions are drawn

in Section 8. For the sake of completeness, two appendices are also attached to close this paper.

Notation. Compact tensor notation is used in this paper as far as possible. As a general rule, scalars are denoted

by italic light-face Greek or Latin letters (e.g. a or �); vectors and second-order tensors are signified by italic boldface

minuscule and majuscule letters like a and A, respectively. Fourth-order tensors are identified by blackboard-bold

majuscule characters (e.g. A). Symbols I and I represent the second-order and symmetric fourth-order identity

tensors, respectively. Superscripts ‘T’ and ‘sym’ indicate the transposition and symmetrization operations, respectively.

The inner products with single and double contractions are denoted by ‘�’ and ‘:’, respectively. The dyadic product

‘�’ and the symmetrized Kronecker product � are defined as

�
A ˝B

�
ijkl
D AijBkl ;

�
A �B

�
ijkl
D
1

2

�
AikBjl C AilBjk

�
2. General formulation of localized failure in solids

Let us consider the domain ˝ � Rndim .ndim D 1; 2; 3/ shown in Fig. 1. It is occupied by a solid with reference

position vector x 2 Rndim . The boundary is denoted by � � Rndim�1, with an external unit normal vector n�.

Deformations of the solid are characterized by the displacement field u W ˝ ! Rndim and the infinitesimal strain

field � WD rsymu, with r.�/ being the spatial gradient operator. The solid is subjected to a distributed body force

b� W ˝ ! Rndim per unit volume. Surface tractions t� W �t ! Rndim and displacements u� W �u ! Rndim are imposed

on the disjoint and complementary parts �t � � and �u � � of the boundary � , respectively.

At the early stage of the deformation process, standard compatibility relations of a continuum medium apply.

That is, both the displacement and strain fields are continuous and regular (bounded). Upon satisfaction of a specific
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Figure 1: Problem setting in an elastic solid medium with an internal discontinuity

criterion, strain localization occurs, inevitably inducing strain/displacement jumps. To approximate these jumps, a

strong discontinuity or a regularized one may be introduced. In either case, the standard kinematics no longer applies

and is replaced by Maxwell’s compatibility condition.

2.1. Kinematics of discontinuities

Displacement jumps can be described by a strong discontinuity. As depicted in Fig. 2(a), the strong discontinuity

S splits the solid ˝ into two parts ˝C and ˝�, located “ahead of” and “behind” S, respectively, in such a way that

˝C [˝� [S D ˝. The discontinuity orientation characterized by a unit normal vector n, pointing from˝� to˝C

and fixed along time (i.e., Pn D 0); see Appendix A for the details. The strong discontinuity S causes displacement

jumps w WD u.x 2 ˝C \ S/ � u.x 2 ˝� \ S/ across it. In this case, the displacement field u.x/ is expressed as

u.x/ D Nu.x/CHS .x/ Ou.x/ (2.1a)

so that the strain field �.x/ is given by

�.x/ WD rsymu.x/ D rsym
Nu.x/C

�
w� n

�sym
ıS .x/ (2.1b)

where Nu.x/ denotes the continuous part of the displacement field; HS .x/ is Heaviside function defined at the interface

S, i.e., HS .x/ D 0 if x 2 ˝� [ S and HS .x/ D 1 otherwise; ıS .x/ denotes Dirac-delta at the discontinuity S. By

construction, the relative displacement field Ou.x/ W ˝ ! Rndim , satisfying the property Ou.x 2 S/ D w, describes

how the part ˝C moves as a relative rigid body (e.g. translations and rotations) with respect to the other one ˝�; see

Wu [67]. Accordingly, though the relative displacement field Ou.x/ itself is not necessarily constant, its contribution

to the strain field vanishes, i.e., rsym Ou.x/ D 0. If only relative rigid body translations are considered, the relative

displacement field Ou.x/ is constant and coincident with the displacement jump w.
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(b) Regularized discontinuity

Figure 2: Strong and regularized discontinuities in a solid

The unbounded strain field (2.1b) resulting from the discontinuous displacement field (2.1a) can be regularized

over a discontinuity band B of finite width b. Here, the width b is not a physical length but a regularization parameter

which can be made as small as desired. As shown in Fig. 2(b), the regularized discontinuity (or discontinuity band)

B is delimited by two surfaces SC and S� parallel to the discontinuity S, i.e., ˝C [˝� [ B D ˝. In this case, the

displacement field u.x/ is continuous, with an apparent displacement jumpw WD u.x 2 ˝C\SC/�u.x 2 ˝�\S�/
across the discontinuity band B. Accordingly, the C0-continuous displacement field u.x/ can be expressed as

u.x/ D Nu.x/CHB.x/ Ou.x/ (2.2a)

and the singular strain field (2.1b) is regularized as

�.x/ D rsym
Nu.x/C

�
e � n

�sym
�B.x/ (2.2b)

where the inelastic deformation vector e WD w=b is defined as the apparent displacement jump w normalized with

respect to the band width b; HB.x/ is a regularized ramp function defined as HB.x/ D 0 if x 2 ˝�, HB.x/ D

1
b

�
x � x�

�
� n if x 2 B and HB.x/ D 1 otherwise, with x� being the spatial coordinates of point x projected along

the direction �n to the surface S�; �B.x/ denotes the collocation function within the discontinuity band B, i.e.,

�B.x/ D 1 if x 2 B and �B.x/ D 0 otherwise.

In summary, the strong discontinuity S induces a discontinuous displacement field u.x/ and a singular (un-

bounded) strain field �.x/; see Fig. 3(a). Contrariwise, as shown in Fig. 3(b), the kinematic of a regularized dis-

continuity is characterized by a continuous displacement field u.x/ and a regular (bounded) strain field �.x/.

Remark 2.1 As the discontinuity band width b tends to zero, it follows that

lim
b!0

HB.x/ DHS .x/; lim
b!0

1

b
�B.x/ D ıS .x/; lim

b!0
e�B.x/ D wıS .x/ (2.3)
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(a) Displacement/strain fields around a strong discontinuity

x

u

ū(x)

w

x

ε

xS

xS

∇symū

1

b
(w ⊗ n)sym

b

(b) Displacement/strain fields around a regularized discontinuity

Figure 3: Kinematics of strong/regularized discontinuities

That is, the strong discontinuity can be regarded as the limit of a regularized one, with a vanishing band width b ! 0.

Reciprocally, a discontinuity band can be regarded as the convenient regularization of a strong discontinuity. �

Remark 2.2 For either the strong or regularized discontinuity, the strain field �.x/ remains continuous across it, i.e.,

�C
S
D ��

S
D �˙

S
(2.4)

where �C
S
WD �.x 2 ˝C \ SC/ and ��

S
WD �.x 2 ˝� \ S�/ represent the strains “ahead of” the surface SC and

“behind” the surface S�, respectively. Therefore, in this work no distinction is made between �C
S

and ��
S

, and are

both denoted by �˙
S

. Contrariwise, the strain �S WD �.x 2 S/ at the discontinuity (band) exhibits a jump with respect

to the strain �˙
S

outside it, which verifies Maxwell’s compatibility condition

J�K WD �S � �
˙

S
D
�
e � n

�sym
D
1

b

�
w� n

�sym (2.5)

The strain jump J�K is inversely proportional to b for a regularized discontinuity (or unbounded for a strong one). �

2.2. Governing equations

Restricting the discussion to quasi-static loading, the governing equations of the above problem are expressed as

Balance of linear momentum: r � � C b� D 0 in ˝nS
Traction continuity condition: �C

S
� n D ��

S
� n D t in S

(2.6)
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subjected to the following boundary conditions

Traction boundary condition: � � n� D t� in �t

Displacement boundary condition: u D u� in �u
(2.7)

where the second-order tensor � W ˝nS ! Rndim�ndim denotes the stress field in the bulk ˝nS D ˝C [ ˝�, with

�C
S
WD � .x 2 ˝C \ S/ and ��

S
WD � .x 2 ˝� \ S/ being the stresses “ahead of” and “behind” the interface S,

respectively; the vector t W S ! Rndim represents the cohesive tractions transferred across the discontinuity S.

3. Discontinuities localized in elastic solids

Once strain localization occurs, it is generally assumed that the bulk material remains elastic during the whole

deformation process and all inelastic behavior is localized within the discontinuity (band). This is methodology

considered in this section, i.e., inelastic discontinuities localized in elastic solids along preferred orientation.

3.1. General framework

Confining the discussion to a purely mechanical theory, the second law of thermodynamics requires thatZ
˝

D d˝ D
Z
˝

�
� W P� � P 

�
d˝ � 0 (3.1)

with the (local form) energy dissipation D per unit volume defined as

D WD � W P� � P � 0 (3.2)

where � and � denote the second-order stress and strain tensors, respectively;  is the free energy density function

of the material; P./ represents the rate with respect to the (pseudo-) time. As the strain field in the solid ˝ is non-

uniform upon strain localization, the global form (3.1), instead of the local counterpart (3.2), is employed to establish

consistent constitutive laws for both the bulk and discontinuity (band).

Upon the methodology of inelastic discontinuities localized in elastic solids, the strain field �.x/ is expressed as

�.x/ D �e.x/C �in.x/ (3.3)

where �e.x/ D rsym Nu.x/ represents the elastic strain field; the inelastic strain field �in.x/ is given by

�in.x/ D
�
w� n

�sym
ıS .x/ or �in.x/ D

�
e � n

�sym
�B.x/ (3.4)

localized within the discontinuity (band).

Similarly, the free energy density  .x/ is also split into an elastic part  e.x/ and a localized inelastic one  in.x/

 .x/ D  e.x/C  in.x/ (3.5)
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where the elastic free energy density  e.x/ is expressed as a quadratic function, i.e.,

 e.x/ D
1

2
�e.x/ W E0 W �e.x/ (3.6)

with E0 being the fourth-order elasticity tensor. The inelastic free energy density  in.x/, independent of the elastic

strain tensor �e.x/, is discussed later according to the singular or regularized kinematics.

Making use of standard arguments, one arrives at

� .x/ D
@ e

@�e D E0 W �e.x/; �e.x/ D C0
W � .x/ (3.7)

or equivalently, in rate form

P� .x/ D E0 W P�e.x/; P�e.x/ D C0
W P� .x/ (3.8)

with the fourth-order elastic compliance tensor C0 WD
�
E0
��1. Note that the constitutive relations (3.7) and (3.8),

together with the kinematic decomposition (3.3), hold for both the elastic bulk and the discontinuity (band).

Furthermore, the inelastic behavior of the discontinuity (band) is constrained additionally by the second law of

thermodynamics (3.1), i.e.,Z
˝

D d˝ D
Z
˝

�
� W P�in

� P in� d˝ � 0 (3.9)

Once the inelastic free energy density function  in is defined, a consistent (regularized) cohesive model, characterized

by a specific traction-based failure criterion, can be established for the discontinuity (band).

Remark 3.1 As the inelastic strains �in are localized completely within the discontinuity (band), the elastic strain

field �e is continuous in the entire solid. It follows from the constitutive relations (3.7) that, though the strain field

may be discontinuous or even singular, the resulting stress filed is continuous across the discontinuity (band), i.e.,

�C
S
D ��

S
D � S (3.10)

for the stress � S WD � .x 2 S/ at the discontinuity (band). This conclusion, applicable for both strong and regularized

discontinuities, is exactly the stress continuity condition upon strain localization in inelastic softening solids; see

Section 4.1 for the details. In this case, the traction continuity condition (2.6)2, which describes the relation between

the bulk stresses �C
S
D ��

S
and tractions t transferred by the discontinuity (band), coincides with the classical static

constraint at the material level, i.e.,

t D � S � n; Pt D P� S � n (3.11)

where the material character Pn D 0 has been considered. The static constraint is employed in the embedded/smeared

crack models [2, 55] and traction-based elastoplastic damage models [70] discussed later in this work. �

Remark 3.2 Calling for the relations (3.1) and (3.5), the external energy supplied to the solid during whole failure

process is evaluated as

W WD

Z
˝

Z 1
0

� W P� dT d˝ D
Z
˝

Z 1
0

�
P in
CD

�
dT d˝ (3.12)

where the result
R1
0
P e dT D 0 has been considered for the time T 2 Œ0;1� and the state variable  e. �
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3.2. Failure criterion and orientation of the discontinuity (band)

To characterize the discontinuity (band), a traction-based failure criterion yf .t; q/ � 0, is introduced. Without

loss of generality, let us consider the homogeneous failure function yf .t; q/ of degree M � 1, i.e.,

yf .t; q/ D
1

M

�
@t yf � t C @q yf � q

�
D

1

M

�
y
 � t � yh � q

�
� 0 (3.13)

where q.�/ denotes the cohesive strength of the discontinuity (band), dependent on a displacement-like internal vari-

able Q� (or a strain-like one �); the derivatives y
 and yh are expressed as

y
 WD
@ yf

@t
; yh WD �

@ yf

@q
(3.14)

As will be clear, the vector 
 characterizes the evolution laws of the inelastic discontinuity (band).

The above failure criterion yf .t; q/ � 0 is expressed in terms of the traction t D � � n (hereafter the subscript

‘S ’ associated with � S is dropped for brevity), or equivalently, of the stress tensor � and the normal vector n of the

discontinuity (band). With the local orthogonal base vectors .n;m;p/ introduced in Eqs. (A.2), the tractions t.�/

acting on the surface with normal vector n.�/ can be expressed as Eqs. (A.3) and (A.4), in terms of the principal

stresses �i and the characteristic angles � . Accordingly, the discontinuity orientation n has to be determined, usually

in an heuristic manner (e.g., along the major principal stress for mode-I fracture) which might be insufficient for

general cases. Owing to the static constraint (3.11), Mohr’s maximization postulate [32] is adopted in this work for a

given traction-based failure criterion yf .t; q/ � 0. That is, a discontinuity is initiated on the orientation upon which

the tractions t.�cr/ maximize the failure function yf
�
t.�/; q

�
, i.e.,

y�
cr
D arg max yf

�
t.�/; q

�
8� (3.15)

where the characteristic angles y�
cr

define the discontinuity orientation. The corresponding stationarity condition reads

@ yf

@�

ˇ̌̌̌
y�

cr
D

�
y
 �

@t

@�

�
y�

cr
D

�
y
n
@tn

@�
C y
m

@tm

@�
C y
p

@tp

@�

�
y�

cr
D 0 (3.16)

together with a negative definite Hessian matrix

�� �
@2 yf

@�2

ˇ̌̌̌
y�

cr
� �� < 0 8�� (3.17)

where the local Cartesian components .y
n; y
m; y
p/ of the vector y
 are expressed as

y
n D
@ yf

@tn
; y
m D

@ yf

@tm
; y
p D

@ yf

@tp
(3.18)

Recalling the traction components (A.4), the stationarity condition (3.16) results in a set of nonlinear equations so

that the discontinuity angles y�
cr

can be solved. Note that, providing the solution exists, it depends only on the given

traction-based failure criterion and the stress state.

Remark 3.3 For an active discontinuity (band), it follows that

yf .t; q/ D 0 H) y
 � t D yh � q (3.19)

This relation will be used later in evaluation of the energy dissipation and fracture energy. �
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3.3. Strong/regularized discontinuity approaches

With respect to the strategies dealing with the kinematic unknowns w (or e WD w=b), two approaches can be

identified from the methodology of inelastic discontinuities localized in elastic solids. Either the singular kinematics

(2.1) or the regularized one (2.2) can be incorporated in both approaches.

Let us first consider the strong/regularized discontinuity approaches in which the kinematic unknowns w (or e)

associated to the discontinuity (band) are retained as independent variables. With the singular kinematics (2.1), the

governing equations (2.6) and the traction boundary condition (2.7)1 can be cast as: Find u 2 U such that [30]Z
˝

r
symı Nu W � d˝ C

Z
S
ıw � t dS D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� 8ıu 2 V (3.20)

where the trial function u 2 U and its variation ıu 2 V are chosen from the spaces

U W D
˚
u
ˇ̌
u D NuCHS OuI u D u

� in �uI Ou D w in S
	

(3.21a)

V W D
˚
ıu
ˇ̌
ıu D ı NuCHS ı OuI ıu D 0 in �uI ı Ou D ıw in S

	
(3.21b)

Alternatively, if the regularized kinematics (2.2) is employed, the weak form (3.20) becomes: Find u 2 U such thatZ
˝

r
symı Nu W � d˝ C

Z
B
ıe � t dB D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� 8ıu 2 V (3.22)

where the trial function u 2 U and its variation ıu 2 V are chosen within the spaces

U W D
˚
u
ˇ̌
u D NuCHB OuI u D u

� in �uI Ou D w in S
	

(3.23a)

V W D
˚
ıu
ˇ̌
ıu D ı NuCHB ı OuI ıu D 0 in �uI ı Ou D ıw in S

	
(3.23b)

In the weak form (3.20) or (3.22), the displacement boundary condition (2.7)2 are enforced in strong form, and the

variations .ı Nu; ı Ou/ are of sufficient regularity.

To proceed, the above weak form (3.20) or (3.22) has to be supplemented with constitutive relations for both the

bulk stress � and tractions t transferred across the discontinuity (band). The linear elastic relation (3.7) is assumed

for the bulk. As the tractions t are work conjugated to the displacement jumps w, a cohesive model in terms of

tractions vs. displacement jumps (or inelastic deformations) should be fed to the discontinuity (band). This task can

be accomplished within the framework of irreversible thermodynamics.

3.3.1. Cohesive model for the discontinuity

The discontinuity (band) induces both stiffness degradation and irreversible deformations. To account for them,

the displacement jump w and the resulting singular inelastic strain �in are decomposed as

w D wd
Cwp; �in

D �d
C �p (3.24)

where .wd;wp/ represent the recoverable/unrecoverable parts of the displacement jump w; the resulting damage

(recoverable) strain �d D
�
wd � n

�sym
ıS and plastic (unrecoverable) strain �p D

�
wp � n

�sym
ıS are both singular.

12



Similarly, the inelastic free energy density field  in in Eq. (3.5) is also singular, i.e.,

 in
D z in ıS ;

z in
D z d.wd; zE

d
/C Q�. Q�/ (3.25)

where the damage free energy function z d.�; �/ is expressed in terms of a second-order (variable) stiffness tensor zE
d

and the recoverable displacement jumps wd as

z d.wd; zE
d
/ D

1

2
wd
� zE

d
�wd (3.26)

The inelastic potential function Q�.�/ is characterized by a displacement jump-like internal variable Q�.

t

w0

Ẽd

dwpt dC̃d

dwdis

dt

dw

dC̃d

1

wp wd

w

Figure 4: 1D definition of the dissipative jump rate and its damage/plastic components for an increment deformation

With above definitions, the second law of thermodynamics (3.9) becomesZ
˝

D d˝ D
Z
S

�
t � Pw �

Pz in� dS � 0 (3.27)

Accordingly, standard arguments yield the following cohesive relations

t D
@ z d

@wd D
zE

d
�wd
D zE

d
�
�
w �wp�; wd

D w �wp
D zC

d
� t (3.28)

or the rate forms

Pt D zE
d
�
�
Pw � Pwdis�; Pw D zC

d
� Pt C Pwdis (3.29)

where zC
d
WD

�
zE

d��1 denotes the second-order (variable) compliance tensor of the discontinuity; Pwdis represents the

dissipative displacement jump rate meaningful only in rate sense, defined as

Pwdis
D
PzC d
� t C Pwp (3.30)

13



with PzC d
� t and Pwp being its damage and plastic components; see Fig. 4.

In the above cohesive relations, the compliance zC
d

(or the stiffness zE
d
), the unrecoverable displacement jump wp

and the displacement-like variable Q� are all internal variables. Their evolution laws have to fulfill the second law of

thermodynamics (3.27), or equivalently, the following energy dissipation inequalityZ
˝

D d˝ D
Z
S
zD dS � 0 (3.31)

for the localized energy dissipation zD

zD D
1

2
t �
PzC d
� t C t � Pwp

C
�
q0 � q

�
� PQ� � 0 (3.32)

where the strength decay q0 � q WD �@ Q�=@ Q� is work conjugate to the internal variable Q�, with q0 being the initial

value of the cohesive strength q. Q�/, i.e., q0 WD q. Q� D 0/.

In analogy to the classical plasticity theory, associated evolution laws can be derived from the postulate of max-

imum energy dissipation [59]. That is, for a given admissible state
˚
t; q

	
constrained by the failure criterion (3.13),

the rates
˚ PzC d; Pwp; PQ�

	
are those maximizing the energy dissipation zD . The resulting evolution laws are given by

Pwdis
D
PzC d
� t C Pwp

D Q�
; PQ� D Q�h (3.33)

where the localized Lagrangian multiplier Q� satisfies the following Kuhn-Tucker loading/unloading rules

Q� � 0; yf � 0; Q� yf D 0 (3.34)

for the dissipative flow vector 
 D y
 and softening function h D yh given in Eq. (3.14).

To discriminate between damage and plastic contributions to the dissipative displacement jump rate Pwdis, a material

parameter � 2 Œ0; 1� is introduced so that

Pwp
D
�
1 � �

�
Pwdis
D
�
1 � �

�
Q�
 (3.35a)

PzC d
� t D � Pwdis

D � Q�
 (3.35b)

The postulate of maximum energy dissipation determines only the components of the compliance zC
d

appearing in the

product t � PzC d
� t, leaving the remaining ones undefined. A particular evolution law satisfying Eq. (3.35b) is given by

PzC d
D � Q�


 � 


 � t

(3.36)

as long as the denominator 
 � t ¤ 0. The cases � D 0 and � D 1 correspond to cohesive models of pure plastic

and pure damage types, respectively. For the intermediate value � 2 .0; 1/, the discontinuity compliance zC
d

and the

plastic displacement jump wp are both internal variables and a combined plastic-damage cohesive model follows.

When the discontinuity is inactive, i.e., yf .t; q/ < 0, it follows from Eq. (3.34) that Q� D 0; when the discontinuity

evolves, i.e., Q� > 0, it follows that yf .t; q/ D 0, and the consistency condition reads

Pyf D 
 � Pt � Q�h � zH � h D 
 � zE
d
�
�
Pw � Q�


�
� Q�h � zH � h D 0 (3.37)
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so that the localized Lagrangian multiplier Q� > 0 is solved as

Q� D

 � zE

d
� Pw


 � zE
d
� 
 C h � zH � h

D

 � Pt

h � zH � h
(3.38)

for the softening modulus zH WD @q=@ Q� < 0.

Combination of Eqs. (3.29) and (3.33) then yields the following rate constitutive relations

Pt D zE �
�
Pw � Q�


�
D zE

d
tan � Pw (3.39a)

Pw D zC � t C Q�
 D zC
d
tan � Pt (3.39b)

where the tangent stiffness and compliance are expressed as

zE
d
tan D

zE
d
�

zE
d
�
�

 � 


�
� zE

d


 � zE
d
� 
 C h � zH � h

(3.40a)

zC
d
tan D

zC
d
C


 � 

h � zH � h

(3.40b)

both being symmetric due to the associated evolution laws adopted.

Remark 3.4 Calling for the evolution laws (3.33) � (3.36), the energy dissipation (3.32) is evaluated as

zD D
�
1 �

1

2
�
�
Q�
 � t C

�
q0 � q

�
� PQ� D

�
q0 �

1

2
�q
�
� PQ� � 0 (3.41)

where the relation (3.19) has been considered for an active discontinuity. As can be seen, non-negative energy dissi-

pation is automatically guaranteed for any softening law q. Q�/ � q0. �

3.3.2. Regularized cohesive model for the discontinuity band

Correspondingly to the decomposition (3.24), the inelastic deformation vector e WD w=b and the resulting inelastic

strain �in admit similar additive forms

e D ed
C ep; �in

D �d
C �p (3.42)

where the damage and plastic strains .�d; �p/, localized within the discontinuity band, are expressed as

�d
D
�
ed � n

�sym
�B ; �p

D
�
ep � n

�sym
�B (3.43)

for the recoverable and unrecoverable deformation vectors ed WD wd=b and ep WD wp=b, respectively.

Similarly to the inelastic strain (3.5)2, the inelastic free energy density field  in is expressed as

 in
D x in�B ;

x in
D x d.ed;E d/C x�.�/ (3.44)

where the damage free energy function x d.�; �/ is expressed in terms of the stiffness E d of the discontinuity band

x d
D
1

2
ed
�E d
� ed (3.45)
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The inelastic potential function x�.�/ is characterized by the strain-like internal variable �.

In this case, the second law of thermodynamics (3.9) becomesZ
˝

D d˝ D
Z
B

�
t � Pe � Px in� dB � 0 (3.46)

Standard arguments yield the following regularized cohesive relations

t D
@ x d

@ed D E
d
� ed
D E d

�
�
e � ep�; ed

D e � ep
D C d

� t (3.47)

or the rate forms

Pt D E d
�
�
Pe � Pedis�; Pe D C d

� Pt C Pedis (3.48)

where the second-order tensor C d
D
�
E d��1 represents the compliance of the discontinuity band; the dissipative

deformation rate Pedis is defined as

Pedis
D PC

d
� t C Pep (3.49)

with PC
d
� t and Pep being its damage and plastic components, respectively; see Fig. 5.

t

e0

Ed

dept dCd

dedis

dt

de

dCd

1

ep ed

e

Figure 5: 1D definition of the dissipative deformation rate and its damage/plastic components for an increment deformation

Moreover, the second law of thermodynamics (3.46) gives the following energy dissipation inequalityZ
˝

D d˝ D
Z
B
xD dB � 0 (3.50)

for the localized energy dissipation xD

xD D
1

2
t � PC

d
� t C t � Pep

C
�
q0 � q

�
� P� � 0 (3.51)
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where q0 � q WD �@ N�=@� is work conjugate to the strain-like internal variable �, with q0 being the initial failure

strength q.�/, i.e., q0 WD q.� D 0/.

Similarly to the strong discontinuity model, the evolution laws for the internal variables
˚
C d; ep; �

	
are derived

from the maximization conditions of the energy dissipation xD constrained by the traction-based failure criterion

(3.13), i.e.,

Pedis
D P�
; P� D �h (3.52)

where the dissipative flow vector 
 D y
 and softening function h D yh are also given in Eq. (3.14); the regularized

Lagrangian multiplier � satisfies the Kuhn-Tucker loading/unloading rules

� � 0; yf � 0; � yf D 0 (3.53)

Furthermore, a material parameter � 2 Œ0; 1� is introduced so that

Pep
D .1 � �/ Pedis

D .1 � �/ �
 (3.54a)

PC
d
� t D � Pedis

D � �
 H) PC
d
D � �


 � 


 � t

(3.54b)

as long as 
 � t ¤ 0.

For an active discontinuity band, it follows from the consistency condition Pyf .t; q/ D 0 that

Pyf D 
 � Pt � �h �H � h D 
 �E d
�
�
Pe � �


�
� �h �H � h D 0 (3.55)

Accordingly, the regularized Lagrangian multiplier � > 0 is solved as

� D

 �E d

� Pe


 �E d
� 
 C h �H � h

D

 � Pt

h �H � h
(3.56)

for the strain-driven softening modulus H WD @q=@� < 0.

Therefore, the rate constitutive relations for the regularized discontinuity are expressed as

Pt D E d
�
�
Pe � �


�
D E d

tan � Pe (3.57a)

Pe D C d
� Pt C �
 D C d

tan � Pt (3.57b)

with the following tangent stiffness and compliance

E d
tan D E

d
�

E d
�
�

 � 


�
�E d


 �E d
� 
 C h �H � h

(3.58a)

C d
tan D C

d
C


 � 

h �H � h

(3.58b)

As expected, the above tangent tensors are also symmetric due to the associated evolution laws adopted.

17



3.3.3. Fracture energy and the equivalence conditions

For a strong discontinuity with the singular inelastic free energy (3.25), it follows from Eq. (3.12) that

W D

Z
S

Z 1
0

�
PQ�C zD

�
dT dS D

Z
S

Z 1
0

�1
2
t �
PzC d
� t C t � Pwp

�
dT dS (3.59)

Substitution of the evolution laws (3.33)2 and (3.35) yields the fracture energy Gf, defined as energy dissipation per

unit of discontinuity area AS , i.e.,

Gf WD
W

AS

D

�
1 �

1

2
�
� Z 1

0

Q�
 dT D
�
1 �

1

2
�
� Z 1

0

q. Q�/ d Q� (3.60)

where the relation (3.19) has been considered. Once the displacement-driven softening law q. Q�/ is given, the fracture

energy Gf can be evaluated explicitly from Eq. (3.60). In other words, the parameters involved in the softening law

q. Q�/ can be determined for the given fracture energy Gf, usually regarded as a material property.

Similarly, for the regularized discontinuity with the inelastic free energy (3.44), Eq. (3.12) gives

W D

Z
B

Z 1
0

�
PN�C xD

�
dT dB D

Z
B

Z 1
0

�1
2
t � PC

d
� t C t � Pep

�
dT dB (3.61)

Calling for the relation (3.19) and the evolution laws (3.54), the fracture energy Gf is evaluated as

Gf WD
W

AS

D
W

VB=b
D b

�
1 �

1

2
�
� Z 1

0

�
 dT D b
�
1 �

1

2
�
� Z 1

0

q.�/ d� (3.62)

for the volume VB D bAS of the discontinuity band. It can be concluded that for the given fracture energy Gf, the

softening function q.�/ also depends on the band width b.

The fracture energy (3.62) allows introducing the so-called specific fracture energy gf, i.e., the dissipation per unit

volume of the discontinuity band VB , in a straightforward manner

gf WD
W

VB

D

Z 1
0

� W P� dT D
1

b
Gf (3.63)

This is exactly the relation between the crack band theory [5] and the fictitious crack model [22].

For the case of a vanishing band width b ! 0, the relation gf D Gf ıS holds. It then follows that

W D

Z
B
gf dB D

Z
B
Gf ıS dB D

Z
S
Gf dS (3.64)

which recovers the classical definition of fracture energy.

For the same traction-based failure criterion yf .t; q/ � 0 and equivalent softening laws q.�/ D q. Q�/, the results

(3.60) and (3.62) imply that identical fracture energies Gf can be obtained for both models, providing that

� D
1

b
Q�; P� D

1

b
PQ� ” � D

1

b
Q�;

1

H
D
1

b

1

zH
(3.65)

Upon satisfying the above conditions, it follows from the damage evolution laws (3.36) and (3.54b) that

C d
D
1

b
zC

d
; zE

d
D
1

b
E d (3.66)

18



That is, the strong discontinuity transforms into an equivalent regularized counterpart with a finite band width b ¹ 0.

Contrariwise, for the regularized discontinuity with a vanishing band width b ! 0, the conditions (3.65) become

� D Q�ıS ; P� D PQ�ıS ” � D Q�ıS ;
1

H
D

1

zH
ıS (3.67)

so that the following relations hold

C d
D zC

d
ıS ;

zE
d
D E dıS (3.68)

In this case, the regularized discontinuity localizes into an equivalent strong discontinuity.

As can be seen, all the kinematic variables are inversely proportional to the band width b for the regularized

discontinuity or even singular for a strong one. The above results, together with kinematic equivalence stated in

Remark 2.1, clearly show that the strong and regularized discontinuity approaches are consistently related.

3.4. Embedded/smeared discontinuity approaches

Providing the cohesive model for the discontinuity (band) is known, e.g., as developed in Section 3.3, it is possible

to establish alternative embedded/smeared discontinuity approaches.

In such approaches, the weak form of the governing equation (2.6)1 and the traction boundary condition (2.7)1

can be re-stated as: Find u 2 U such thatZ
˝

r
symıu W � d˝ D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� 8ıu 2 V (3.69)

with the stress � S at the discontinuity (band) determined from an inelastic material model satisfying the static con-

straint (3.11). Here, U is the trial space introduced in Eq. (3.21a) for a strong discontinuity or in Eq. (3.23a) for a

regularized one; the standard test space V is defined as

V WD
˚
ıu of sufficient regularity

ˇ̌
ıu D 0 on �u

	
(3.70)

As can be seen, the traction continuity condition (2.6)2 and the displacement jump w (or the inelastic deformation

vector e) are not explicitly considered in the weak form (3.69). But rather, they are accounted for indirectly at the

local (material constitutive) level through the inelastic material models fulfilling the classical static constraint (3.11).

Owing to the equivalence shown in Section 3.3.3, only the smeared discontinuity model employing the regularized

kinematics (2.2) is addressed. Its correspondence to the embedded counterpart is briefly discussed in Remark 3.5.

To derive the smeared discontinuity model, let us recall the constitutive relations (3.8) and (3.57a). It follows from

the static constraint (3.11)2 that

E d
tan � Pe D E0 W

h
P� �

�
Pe � n

�sym
i
� n D

�
E0 W P�

�
� n �

�
n � E0 � n

�
� Pe (3.71)

Accordingly, the inelastic deformation vector rate Pe is determined in terms of the strain rate P� as

Pe D
�
E d

tan C n � E
0
� n
��1
�
�
E0 W P�

�
� n (3.72)
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Therefore, the stress rate P� is given from Eq. (3.8), i.e.,

P� D E0 W
h
P� �

�
Pe � n

�sym
i
D Etan W P� (3.73)

where the tangent stiffness tensor Etan is expressed as

Etan D E0 � E0 W
h�
E d

tan C n � E
0
� n
��1 �Nisym

W E0 (3.74)

with a second-order geometric tensor N WD n� n.

Alternatively, it follows from the relation (3.57b) and the static constraint (3.11)2 that

P�in
D
�
Pe � n

�sym
D

h�
C d

tan � P� � n
�
� n

isym
D
�
C d

tan �N
�sym
W P� (3.75)

The strain rate P� is given from Eq. (3.3)

P� D P�e
C P�in

D Ctan W P� (3.76)

for the tangent compliance Ctan expressed as

Ctan D C0
C
�
C d

tan �N
�sym (3.77)

Note that the tangent compliance Ctan can also be directly derived from Eq. (3.74) through the Sherman-Morrison-

Woodburg formula [18].

The above constitutive relations correspond exactly to those in the smeared crack model [54–56], as an extension of

the original form proposed by Rashid [50]. As can be seen, owning to stress continuity (3.10) upon strain localization,

the kinematic unknowns w (or e WD w=b) can be eliminated at the local material-point level through the static

constraint (3.11), resulting in a single constitutive model to describe the overall inelastic behavior of the solid.

Remark 3.5 If the singular kinematics (2.1) is adopted, constitutive relations similarly to Eqs. (3.73) and (3.76) can

be obtained for the embedded discontinuity model, after accounting for the relations (3.68). For instance, the inelastic

strain rate P�in is expressed as

P�in
D
�
zC

d
tan �N

�sym
ıS W P� (3.78)

so that the tangent compliance in Eq. (3.76) becomes

Ctan D C0
C
�
zC

d
tan �N

�sym
ıS (3.79)

Other correspondences can be similarly established; the details are omitted here. �

Remark 3.6 Calling for the decomposition (3.24) or (3.42), the strain � at the discontinuity (band) is additively split

into its elastic, damage and plastic parts

� D �e
C �in

D �e
C �d

C �p (3.80)
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This is the kinematic decomposition suggested by Armero and Oller [2]; see Fig. 6. Accordingly, the above em-

bedded/smeared discontinuity models fit the framework developed in that reference. As shown in next section, an

equivalent traction-based elastoplastic damage model can be developed based on an alternative kinematic decompo-

sition. �
σ

εεp εd

εeεin

ε

εe

Cd

1

E0 E0E

ψd ψe

Figure 6: Different kinematic decompositions adopted in the elastoplastic damage framework

4. Strain localization of inelastic solids

In the methodology employed in Section 3, it is implicitly assumed a priori that strain localization occurs with

a continuous stress field and the discontinuity (band) orientation is already known. However, on one hand, whether

such strain localization can occur has not been checked yet; even though it can, the effects of stress continuity on

the discontinuity orientation have not been identified, either. On the other hand, the traction-based failure criterion

characterizing the discontinuity (band) is usually introduced in a heuristic or even ad hoc manner, and it is hard to

determine the involved parameters from available experimental data.

In this section, an alternative methodology, i.e., strain localization in inelastic softening solids, is considered. As

is well-known, for strain localization to occur in a softening solid and to develop eventually into a fully softened

discontinuity at the final stage of the deformation process, material points inside the discontinuity (band) undergo

inelastic loading while those outside it unload elastically [11, 40, 41]. This fact imposes a kinematic constraint on

the discontinuity kinematics. Application of the resulting kinematic condition to an inelastic material model, e.g., a

thermodynamically consistent unified elastoplastic damage model considered in this section, naturally yields all the

ingredients characterizing the discontinuity (band), i.e., localized constitutive laws, traction-based failure criterion

and discontinuity orientation, etc.
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4.1. Maxwell’s kinematic constraint upon strain localization

To discuss the stress field � around the discontinuity (band), let us consider the generic inelastic constitutive

relations (3.7) or the rate forms (3.8). Owing to the strain continuity (2.4) at both sides of the discontinuity (band),

the stresses �C
S
WD � .x 2 ˝C \ SC/ “ahead of” the surface SC and ��

S
WD � .x 2 ˝� \ S�/ “behind” the surface

S� are equal and denoted by �˙
S

. Being the material outside the discontinuity (band) elastic, they are determined as

�C
S
D ��

S
D �˙

S
D E0 W �˙

S
(4.1)

Comparatively, the stress � S WD � .x 2 S/ at the discontinuity (band) is expressed as

� S D E0 W �e
S
D E0 W

�
�S � �

in
S

�
(4.2)

for the corresponding elastic and inelastic strains .�e
S
; �in

S
/. Accordingly, the stress jump J� K WD � S � �

˙

S
is given by

J� K D E0 W
�
J�K � �in

S

�
D E0 W

h�
e � n

�sym
� �in

S

i
(4.3)

where the strain jump J�K is described by Maxwell’s compatibility condition (2.5).

Once the discontinuity (band) forms, the traction continuity condition (2.6)2 has to be fulfilled, i.e.,

JtK WD � S � n � �
˙

S
� n D J� K � n D 0 (4.4)

Note that, owing to the relation (4.1) traction continuity between �C
S
� n and ��

S
� n, necessary for the balance laws

[39, 60], is automatically satisfied.

As the strains �˙
S

and the resulting stresses �˙
S

outside the discontinuity (band) are regular, the traction continuity

condition (2.6)2 requires that both the traction t D � S � n and the stress � S are bounded [42]. Therefore, though the

strain jump J�K and the inelastic strain �in
S

are both inversely proportional to the band width b (see Remark 4.4), the

stress jump J� K has to be regular (bounded) and independent of b.

For the strong discontinuity with a vanishing band width b ! 0, stress boundedness requires cancellation of the

unbounded strain jump [11, 40–42], i.e.,

J�K D �in
S
D
�
e � n

�sym
D
1

b

�
w� n

�sym (4.5)

This is equivalent to satisfaction of the stress continuity condition (3.10). As the stresses should not depend on the

band width b, even if the deformation vector e and the strain � do, the above arguments also hold for the regularized

discontinuity with a finite band width b ¹ 0. Note that the stress continuity condition (3.10) and the equivalent

kinematic constraint (4.5) can also be written in rate form.

The kinematic constraint (4.5) states that, if strain localization can occur with a continuous stress field, dif-

ference in the strains between interior and exterior points of the discontinuity (band), i.e., the strain jump char-

acterized by Maxwell’s compatibility condition, has to be completely inelastic. This conclusion is consistent with
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the methodology employed in the strong/regularized and embedded/smeared discontinuity approaches discussed in

Section 3.

Remark 4.1 For a fully softened discontinuity (band) to develop at the final stage of the deformation process (i.e.,

the internal variable � !1), the bulk stresses have to unload completely and the transferred tractions should vanish,

i.e.,

lim
�!1

� D 0; lim
�!1

t D 0 (4.6)

In this case, the stress continuity condition (3.10) is also necessary for satisfaction of the above decohesion condition.

Contrariwise, the traction continuity condition (2.6)2 generally guarantees neither the stress continuity (3.10) nor the

limit decohesion (4.6). Therefore, the stress continuity condition (3.10) is more stringent than the traction continuity

condition (2.6)2. �

4.2. A unified elastoplastic damage framework

To analyze strain localization in general inelastic softening solids, a thermodynamically consistent unified elasto-

plastic damage framework [31, 70] is presented in this section. Both stress- and traction-based elastoplastic damage

models can be developed within this framework.

4.2.1. Stress–strain relations

To account for both stiffness degradation and irreversible deformations, the free energy density function  in Eq.

(3.2) is postulated as

 D  ed.� � �p;E/C �.�/ (4.7)

where the stored strain energy density function  ed.�; �/ depends on the recoverable (elastic and damage) strain tensor

� � �p and the (variable) fourth-order material (unloading) stiffness tensor E, with �p being the irreversible plastic

strain tensor; �.�/ is the inelastic potential function characterized by a single strain-like internal variable �.

For a linear hyperelastic material, the stored strain energy density  ed.�; �/ can be expressed as a quadratic form

 ed
D
1

2

�
� � �p�

W E W
�
� � �p� (4.8)

Making use of standard arguments yields the following constitutive relations

� D
@ ed

@
�
� � �p

� D E W
�
� � �p� (4.9a)

� D C W � C �p (4.9b)

for the (variable) fourth-order material (unloading) compliance tensor C D E�1. As both the compliance C (or the

stiffness E) and the plastic strain �p are internal variables, their evolution laws have to be consistently postulated.
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Figure 7: 1D definition of the dissipative strain rate and its damage/plastic components for an infinitesimal increment strain

By time differentiation, it follows that

P� D E W
�
P� � P�dis�; P� D C W P� C P�dis (4.10)

where the dissipative strain tensor rate P�dis is defined as

P�dis
WD PC W � C P�p (4.11)

with PC W � and P�p being its damage and plastic components, respectively; see Fig. 7. Note that the dissipative strain

tensor rate P�dis does not correspond to an actual “strain”; it is only defined in rate form when the involved energy

dissipative mechanisms, i.e., damage evolution and plastic flows, are active.

As previously mentioned in Remark 3.6 and shown in Fig. 6, the strain tensor � and the rate P� can also be rewritten

as the kinematic decomposition adopted in the classical smeared crack model [2, 54]

� D �e
C �in

D C0
W � C �in; P� D P�e

C P�in
D C0

W P� C P�in (4.12)

so that

� D E0 W �e
D E0 W

�
� � �in�; P� D E0 W P�e

D E0 W
�
P� � P�in� (4.13)

with E0 and C0 being the elastic stiffness and compliance of the material, respectively. In the above constitutive

relations, the elastic and inelastic strain tensors .�e; �in/ are given by

�e
D C0

W � ; �in
D �d

C �p
D Cd

W � C �p (4.14)

where the damage strain tensor �d WD Cd W � represents the recoverable inelastic strain; the fourth-order damage

compliance Cd is defined as Cd WD C �C0, with identical evolution law PCd D PC.
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Remark 4.2 Similarly to the kinematic decomposition (4.12), the stored strain energy density (which is equal in

magnitude to the complementary energy density for a linear hyperelastic material)  ed defined in Eq. (4.8) can be

decomposed as

 ed
D
1

2
� W C W � D  e

C  d (4.15)

where the elastic and damage strain energy densities (also equal in magnitude to their complementary counterparts)

. e;  d/ are given by

 e
D
1

2
� W C0

W � D
1

2
� W �e

D
1

2
�e
W E0 W �e (4.16a)

 d
D
1

2
� W Cd

W � D
1

2
� W �d

D
1

2
�e
W E0 W �d (4.16b)

Note again the recoverable nature of the damage strain �d and the corresponding energy density  d upon unloading

as shown in Fig. 6. �

4.2.2. Evolution laws and rate constitutive relations

Besides the above constitutive relations, the following energy dissipation inequality has to be satisfied

D D
1

2
� W PC W � C � W P�p

� P� D
1

2
� W PC W � C � W P�p

C
�
q0 � q

�
� P� � 0 (4.17)

where q0 � q WD �@�=@� denotes the internal variable conjugate to the strain-like one �, with q0 being the initial

value of the residual material strength q.�/, i.e., q0 WD q.� D 0/.

In analogy to the classical plasticity theory, the evolution laws for the compliance tensor C (or the damage one

Cd) and the strain-like internal variables
˚
�p; �

	
can be derived from the postulate of maximum energy dissipation

[59]. That is, for a given admissible stress state
˚
� ; q

	
, the rates PC D PCd and

˚
P�p; P�

	
are those values maximizing

the energy dissipation (4.17). Without loss of generality, let us consider a rate-independent inelastic softening solid

characterized by the following convex, smooth and differentiable failure criterion

F.� ; q/ � 0 (4.18)

where the loading function F.� ; q/ is a homogeneous function of degree M � 1, i.e.,

F.� ; q/ D 1

M

�
@�F W � C @qF � q

�
D

1

M

�
� W � � h � q

�
(4.19)

for the derivatives � WD @F=@� and h WD �@F=@q. The homogeneous loading function (4.19), frequently encoun-

tered in practice, automatically guarantees the energy dissipation inequality (4.17) for any softening law q.�/; see

Remark 4.3. Furthermore, the dissipative flow tensor � WD @F=@� , being coaxial to the stress tensor � [23], can be

expanded in the local base system .n;m;p/ as shown in Appendix A. In particular, the local tensorial components

can be expressed in terms of the principal values �i and the characteristic angles � .
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Accordingly, the postulate of maximum energy dissipation can be transformed into an optimization problem of

the following constrained Lagrangian functional L

L D �D C �F.� ; q/ D �
�
1

2
� W PC W � C � W P�p

C
�
q0 � q

�
� P�

�
C �F.� ; q/ (4.20)

where the Lagrangian multiplier � satisfies the classical Kuhn-Tucker loading/unloading conditions

� � 0; F.� ; q/ � 0; �F.� ; q/ D 0 (4.21)

The stationarity conditions of the functional (4.20) give the following associated evolution laws

P�dis
D PC W � C P�p

D ��; P� D �h (4.22)

where the tensor� WD @F=@� , normal to the failure surface F.� ; q/ D 0, is referred to as the dissipative flow tensor.

To differentiate the damage and plastic contributions to the dissipative strain tensor rate P�dis, a material parameter

� 2 Œ0; 1� is introduced so that [31, 46, 70]

P�p
D
�
1 � �

�
P�dis
D
�
1 � �

�
�� (4.23a)

PC W � D � P�dis
D � �� (4.23b)

The cases � D 0 and � D 1 correspond to the classical plasticity model [15] and the elastic damage (degradation)

model [8, 71], respectively. For the parameter � 2 .0; 1/, both the material compliance C (or the damage one Cd) and

the plastic strain �p are internal variables, resulting in a combined plastic-damage model.

The principle of maximum dissipation determines only the components of the material compliance C appearing

in the product � W PC W � , leaving the remaining ones undefined. For the homogeneous loading function (4.19), the

evolution law for the compliance C satisfying Eq. (4.23b) is given by [31, 70]

PC D PCd
D � �

���
� W �

(4.24)

as long as the condition � W � ¤ 0 is satisfied.

When the material is unloading, i.e., F.� ; q/ < 0, it follows that � D 0; for the loading case, � > 0 is solved

from the consistency condition PF.� ; q/ D 0, i.e.,

PF.� ; q/ D � W P� � �h �H � h D 0 (4.25)

or, equivalently

� D
� W E W P�

� W E W �C h �H � h
D

� W P�

h �H � h
(4.26)

Therefore, the rate constitutive relations are given by

P� D Etan W P�; P� D Ctan W P� (4.27)
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where the material tangents Etan and Ctan for the loading state (i.e., � > 0) are expressed as

Etan D E �
E W

�
���

�
W E

� W E W �C h �H � h
(4.28a)

Ctan D C C
���
h �H � h

(4.28b)

both being symmetric due to the associated evolution laws considered.

Remark 4.3 For the homogeneous loading function (4.19), substitution of the evolution laws (4.22) and (4.23)

yields the following energy dissipation

D D �
�
1 �

1

2
�
�
� W � C

�
q0 � q

�
� P� D

�
q0 �

1

2
�q
�
� P� � 0 (4.29)

where the following relation resulting from satisfaction of the failure criterion F.� ; q/ D 0

F.� ; q/ D 0 H) � W � D h � q (4.30)

has been considered. Thus, the energy dissipation inequality (4.17) is automatically satisfied for any softening law

q.�/ � q0. �

4.3. Fracture energy

Calling for Eqs. (3.2), (4.7), (4.15) and (4.17), the external energy density supplied to the solid during the failure

process can be evaluated asZ 1
0

� W P� dT D
Z 1
0

�
P ed
C P�CD

�
dT D

Z 1
0

�
1

2
� W PCd

W � C � W P�p
�

dT (4.31)

with T being the (pseudo-) time. Note that the identity
R1
0
P ed dT D 0 holds for the state variable  ed. Substitution

of the evolution laws (4.23) yieldsZ 1
0

� W P� dT D
�
1 �

1

2
�
� Z 1

0

�� W � dT D
�
1 �

1

2
�
� Z 1

0

�h � q.�/ dT (4.32)

where the relation (4.30) has been recalled.

Calling for the evolution law (4.22)2, it is possible to define the so-called specific fracture energy (i.e., energy

dissipation per unit volume) gf from Eq. (4.32)

gf D

Z 1
0

� W P� dT D
�
1 �

1

2
�
� Z 1

0

q.�/ d� D
Gf

b
(4.33)

where Gf is the fracture energy (i.e., energy dissipation per unit surface area), assumed as a material property; b is a

band width (see the discussion in next section) where the energy dissipation localizes. Therefore, the softening law

q.�/ has to be regularized with respect to the localized band width b in such a way that the energy dissipation during

the whole failure process does not depend on it.
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The above regularized procedure was advocated in the crack band theory [5]. It is equivalent to the cohesive

(fictitious) crack model [3, 4, 17, 22]. In this latter context, Eq. (4.33) is rewritten as

Gf D bgf D

�
1 �

1

2
�
� Z 1

0

q.�/b d� D
�
1 �

1

2
�
� Z 1

0

q. Q�/ d Q� (4.34)

It then allows introducing the softening law q. Q�/ expressed in terms of an alternative displacement-like internal vari-

able Q�

Q� WD b�; PQ� D Q�h H) zH D
1

b
H; � D

1

b
Q� (4.35)

where H WD @q=@� and zH WD @q=@ Q� denote the strain- and displacement-driven softening moduli, respectively;

Q� � 0 is an alternative Lagrangian multiplier. Note that the above definitions coincide with the conditions (3.65) upon

which the regularized discontinuity model is equivalent to a strong one.

Remark 4.4 It is concluded from Eqs. (4.35) that, both the strain-driven softening law q.�/ and the displacement-

driven one q. Q�/ are equivalent in the modeling of localized failure in solids and give identical results for the same

fracture energy Gf. Furthermore, the kinematic internal variables characterizing the inelastic behavior of the material,

e.g., the damage compliance Cd, the plastic strain �p and the inelastic strain �in, etc., are all inversely proportional to

the band width b. �

4.4. Strain localization analysis of the elastoplastic damage solid

Let us now consider strain localization in an inelastic solid characterized by the above elastoplastic damage model.

To this end, the kinematic constraint (4.5) has to be accounted for appropriately. More specifically, upon strain

localization the dissipative flow tensor characterizing the evolution laws evolves into a particular structure expressed

uniquely in terms of a dissipative flow vector and the discontinuity orientation. That is, the flow tensorial components

in the directions orthogonal to the discontinuity orientation have to vanish. This property allows introducing a traction-

based failure criterion and developing a localized plastic-damage model for the discontinuity (band).

4.4.1. Strain localization analysis

For the inelastic strain (4.14) of the elastoplastic damage model, the kinematic condition (4.5) upon strain local-

ization is particularized into

�in
D
�
e � n

�sym
D �d

C �p
D Cd

W � C �p (4.36)

In the right hand side of the kinematic relation (4.36), the damage/plastic strains .�d; �p/ correspond to the recoverable

and unrecoverable components of the inelastic strain �in, respectively. Therefore, the (apparent) displacement jump w

and the inelastic deformation vector e WD w=b have to admit similar decompositions, i.e.,

w D wd
Cwp; e D ed

C ep (4.37)
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such that�
ep � n

�sym
D �p (4.38a)�

ed � n
�sym
D �d

D Cd
W � (4.38b)

where the damage and plastic deformation vectors, ed WD wd=b and ep WD wd=b, are defined as the recoverable and

unrecoverable displacement jumps .wd;wp/ normalized with respect to the band width b.

It follows from Eqs. (4.23a) and (4.38a) that�
Pep � n

�sym
D P�p

D
�
1 � �

�
�� (4.39)

which implies the existence of a dissipative flow vector 
 satisfying

Pep
D
�
1 � �

�
�
;

�

 � n

�sym
D � (4.40)

Note that, owing to the static constraint (3.11), the following identity holds

� W � D 
 �
�
� � n

�
D 
 � t (4.41)

between the dissipative flow tensor � and vector 
 .

Pre-multiplying relation (4.40)2 by the symmetric fourth-order identity tensor I and then by the orientation n, it

follows that [42]


 D 2n �� � n�nn D 
nnC 
mmC 
pp (4.42a)

where the components .
n; 
m; 
p/ of the dissipative flow vector 
 in the local orthogonal system .n;m;p/ of the

discontinuity (see Appendix A) are expressed as


n WD 
 � n D �nn; 
m WD 
 �m D 2�nm; 
p WD 
 � p D 2�np (4.42b)

Substitution of the above dissipative flow vector 
 into the relation (4.40)2 yields

� D
�

 � n

�sym
D �nn

�
n� n

�
C 2�nm

�
n�m

�sym
C 2�np

�
n� p

�sym (4.43)

Its comparison with the dissipative flow tensor (A.5) gives the following constraints

�mm.�
cr/ D 0; �pp.�

cr/ D 0; �mp.�
cr/ D 0 (4.44)

where �cr denote the characteristic discontinuity angles upon which the kinematic condition (4.5) and the resulting

relation (4.43) are satisfied.

It can be seen from the constraints (4.44) that, upon strain localization, the failure criterion F.� ; q/ � 0 no

longer depends on the stress components �mm; �pp and �mp , but is only a function of the tractions t WD � � n D˚
�nn; �nm; �np

	T acting on the discontinuity with the orientation n.�cr/. Therefore, as long as the characteristic

angles �cr satisfying the kinematic constraints (4.44) exist, it is always possible to introduce an appropriate traction-

based failure criterion to characterize the discontinuity (band). This topic is deferred to Section 4.5.
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4.4.2. Localized constitutive model for the discontinuity (band)

Owing to the particular structure (4.43) of the dissipative flow tensor � upon strain localization, the evolution

laws (4.22) � (4.24) are naturally projected onto the discontinuity orientation n. This property allows developing a

localized plastic-damage model for the discontinuity (band).

For the dissipative flow tensor (4.43), the damage evolution law (4.24) can be rewritten as

PC D PCd
D
�
PC

d
�N

�sym
H) Cd

D
�
C d �N

�sym (4.45)

where N WD n � n is a second-order geometric tensor; C d denotes the second-order compliance tensor of the

discontinuity (band), with the following evolution law

PC
d
D � �


 � 


 � t

(4.46)

In other words, upon strain localization, the damage behavior of the material is sufficiently characterized by a second-

order internal variable C d rather than the original fourth-order one Cd; see Remark 4.5 for more details.

Accordingly, the damage strain tensor (4.38b) is given by

�d
D
�
ed � n

�sym
D

h�
C d
� t
�
� n

isym
(4.47)

That is, the discontinuity (band) can be described by the following localized plastic-damage relations

ed
D e � ep

D C d
� t; t D E d

� ed
D E d

�
�
e � ep� (4.48)

for the second-order stiffness tensor E d
WD
�
C d��1 and the localized plastic evolution law (4.40)1.

By time differentiation, the rate constitutive relations are expressed as

Pt D E d
�
�
Pe � Pedis�; Pe D C d

� Pt C Pedis (4.49)

where the dissipative deformation vector rate Pedis is defined as

Pedis
WD PC

d
� t C Pep

D �
 H)
�
Pedis � n

�sym
D P�dis

D �� (4.50)

with PC
d
� t and Pep being its damage and plastic components, respectively; see Fig. 5.

Upon strain localization, for an active discontinuity the corresponding consistency condition PF.� ; q/ D 0 in Eq.

(4.25) becomes

PF D
�

 � n

�sym
W P� � h �H � h D 
 � Pt � h �H � h D 0 (4.51)

from which the multiplier � > 0 is solved as

� D

 �E d

� Pe


 �E d
� 
 C h �H � h

D

 � Pt

h �H � h
(4.52)
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Combination of Eqs. (4.49), (4.50) and (4.52) yields the following rate constitutive relations

Pt D E d
�
�
Pe � �


�
D E d

tan � Pe; Pe D C d
� Pt C �
 D C d

tan � Pt (4.53)

where the tangent stiffness E d
tan and compliance C d

tan are expressed as

E d
tan D E

d
�

E d
�
�

 � 


�
�E d


 �E d
� 
 C h �H � h

(4.54a)

C d
tan D C

d
C


 � 

h �H � h

(4.54b)

for the active discontinuity (band).

For the above localized plastic-damage model, the strain-like internal variable � is employed in the softening law

q.�/. Accordingly, the resulting localized constitutive laws are expressed in terms of the traction t and the inelastic

deformation vector e. Recalling the relations (4.35), an equivalent traction t versus displacement jump w localized

model can also be developed. The details are omitted here.

Remark 4.5 For the damage compliance tensor Cd in Eq. (4.45)2, the (complementary) damage free energy density

function  d introduced in Eq. (4.16b) localizes within the discontinuity (band), i.e.,

 d
D
1

2
� W Cd

W � D
1

2
t � C d

� t D
1

2
ed
�E d
� ed (4.55)

Similarly, the energy dissipation (4.17) becomes

D D
1

2
t � PC

d
� t C t � Pep

C
�
q0 � q

�
� P� � 0 (4.56)

Accordingly, the above localized plastic-damage model can also be derived as in Section 3.3. In particular, the material

compliance C can be related to the discontinuity (band) compliance C d as follows

C D C0
CCd

D C0
C
�
C d �N

�sym (4.57a)

Inversely, the material stiffness tensor E is obtained from the Sherman-Morrison-Woodburg formula [18]

E D C�1 D E0 � E0 W
h�
E d
C n � E0 � n

��1 �Nisym
W E0 (4.57b)

Note that both the material compliance C and stiffness E are symmetric. �

Remark 4.6 It follows from the Sherman-Morrison-Woodburg formula [18] that the material tangents given in Eqs.

(4.28) and (4.57) coincide with those in Eqs. (3.74) and (3.77). In summary, though they are developed based on

different methodologies, the embedded/smeared discontinuity models are equivalent to the elastoplastic damage

model, providing an identical traction-based failure criterion is employed in both methods. �

4.5. Failure criterion

As already shown in previous sections, upon strain localization, the discontinuity (band) can be sufficiently char-

acterized by a traction-based localized model. With respect to the strategies dealing with the discontinuity orientation

n, two dual but not necessarily equivalent approaches can be followed.
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4.5.1. Elastoplastic damage model with an explicit traction-based failure criterion

Let us first consider the elastoplastic damage model [70] with an explicit traction-based failure criterion. Providing

the discontinuity orientation is known, say, n D n.y�
cr
/ for the characteristic angles y�

cr
, the following failure criterion

can be introduced as

F.� ; q/ D yf .� � n; q/ D yf .t; q/ � 0 (4.58)

Consistent with the condition (4.19), yf .t; q/ is also a homogeneous function of degree M � 1, i.e.,

yf .t; q/ D
1

M

�
@t yf � t C @q yf � q

�
D

1

M

�
y
 � t � yh � q

�
� 0 (4.59)

for the dissipative flow vector y
 WD @ yf =@t and the softening function yh WD �@ yf =@q.

Accordingly, the dissipative flow tensor � WD @F=@� is evaluated directly in terms of the known discontinuity

orientation n.y�
cr
/ and the given dissipative flow vector y
 , i.e.,

� D
@ yf

@�
D
@ yf

@t
�
@t

@�
D y
 �N D

�
y
 � n

�sym (4.60a)

or in the form (4.43)

� WD
�

 � n

�sym
; 
 D y
 WD

@ yf

@t
(4.60b)

where the Cartesian components of the third-order tensor N D @t=@� is expressed as Nijk D 1
2

�
ıijnk C ıiknj

�
for

the Kronecker-delta ıij and the components nk of the normal vector n.y�
cr
/.

In the above traction-based elastoplastic damage, the kinematic constraint (4.60) holds for any arbitrary orientation

n.y�
cr
/ so that the stress continuity condition (3.10) is always guaranteed, i.e.,

� WD
�
y
 � n

�sym
H) J� K D 0 (4.61)

In other words, it is implicitly assumed a priori that strain localization with stress continuity can always occur.

Consequently, the discontinuity orientation n.y�
cr
/ cannot be determined uniquely based on the given traction-

based failure criterion yf .t; q/ � 0, unless extra auxiliary conditions are introduced. Similarly to the strong/regularized

discontinuity approaches, the classical Mohr’s maximization postulate [32] presented in Section 3.2 can be adopted.

Remark 4.7 Owning to the relation (4.41), the failure criterion yf .t; q/ � 0 can be rewritten as

F.� ; q/ WD yf .t; q/ D
1

M

�
y
 � t � yh � q

�
D

1

M

�
� W � � yh � q

�
� 0 (4.62)

That is, once the discontinuity orientation n.y�
cr
/ is known, the given traction-based failure criterion yf .t; q/ � 0 can

be equivalently expressed as a stress-based counterpart F.� ; q/ � 0. �
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4.5.2. Projected discontinuity model with a stress-based failure criterion

Alternatively, the failure criterion F.� ; q/ � 0 can also be expressed in terms of stress invariants and is then

projected to the yet-unknown discontinuity orientation n.�cr/ through the kinematic relation (4.43). Without loss of

generality, the following failure function is considered

F.� ; q/ WD yF .I; q/ � 0 (4.63)

so that the dissipative flow tensor � is given by

� D y� WD
@ yF

@�
D
@ yF

@�1
v1 � v1 C

@ yF

@I1
I C

@ yF

@J2
sC � � � (4.64)

where I WD
˚
�1; I1; J2; � � �

	
collects the invariants of the stress tensor � ; �1 WD v1 � � � v1 denotes the major

principal stress, with v1 being the corresponding principal vector; I1 WD tr.� / is the first invariant of the stress � , and

J2 WD
1
2
s W s represents the second invariant of the deviatoric stress s WD � � 1

3
tr.� /I , respectively.

Accordingly, the relation (4.43) becomes

�

 � n

�sym
D �; � D y� WD

@ yF

@�
(4.65)

If and only if the discontinuity orientation n.�cr/ and the associated dissipative flow vector 
 satisfying the kinematic

constraint (4.65) exist for the given dissipative flow tensor y�, i.e.,

J� K D 0 ” y� D
�

 � n

�sym (4.66)

can strain localization with stress continuity be guaranteed, and vice versa.

In the above stress-based projected discontinuity model, the orientation n.�cr/ cannot be assumed arbitrarily as in

the first approach. But rather, it has to be determined consistently from the kinematic constraints (4.44) together with

the relations (A.6b) for the given stress-based dissipative flow tensor � D y�. On one hand, as the resulting set of

equations are nonlinear, the solution may not exist at all. On the other hand, providing the solution exists, it depends

only on the given failure criterion and the stress state, but not on the elastic properties (i.e., Poisson’s ratio).

Once the discontinuity orientation n.�cr/ is so determined, the corresponding dissipative flow vector 
 can be

obtained from Eqs. (4.42a) and (4.42b). As the relation (4.41) holds for the given dissipative flow tensor � D y�, the

projected traction-based failure criterion f .t; q/ � 0 can be determined as

f .t; q/ WD yF .� ; q/ D
1

M

�
y� W � � yh � q/ D

1

M

�

 � t � yh � q/ � 0 (4.67)

Note that the above traction-based failure function f .t; q/ � 0, projected from the given stress-based one yF .� ; q/ �

0, does not necessarily coincide with the counterpart yf .t; q/ � 0 assumed a priori in the first approach.

Therefore, providing the kinematic constraint resulting from the stress continuity condition is fulfilled, consis-

tent traction-based constitutive relations for the discontinuity (band) naturally emerges from the strain localization

analysis of stress-based models with regularized softening regime.

33



5. Comparisons and discussion

Though different methodologies are employed, both the traction-based embedded/smeared discontinuity models

(or the equivalent elastoplastic damage model) and the stress-based projected discontinuity model can be developed

within the unified framework presented in in Section 4. It is worthwhile to investigate the bi-directional connections

between these two families of models, in particular, the conditions upon which they are equivalent.

5.1. Evolution laws

In both families of models, the inelastic behavior, completely localized within the discontinuity (band), is charac-

terized by a dissipative flow tensor �, expressed as the unified form (4.43) in terms of the dissipative flow vector 


and the orientation n; see Eqs. (4.60) and (4.65), respectively. However, the physical interpretations are different.

For the traction-based embedded/smeared discontinuity models, the inelastic flow vector is given as 
 D y
 WD

@ yf =@t. In this case, the discontinuity orientation n.y�
cr
/ can be assumed arbitrarily. That is, the relation (4.60) imposes

no kinematic constraint. But rather, it acts only as a definition, from which the dissipative flow tensor� is determined

straightforwardly in such a way that the stress continuity (3.10) is always satisfied a priori upon strain localization.

Comparatively, in the stress-based projected discontinuity model both the dissipative flow vector 
 and the ori-

entation n.�cr/ are unknown and even might not exist at all. In this case, the relation (4.65) imposes necessary and

sufficient kinematic constraint on the occurrence of strain localization with a continuous stress field. Accordingly, the

discontinuity orientation n.y�
cr
/ can only be determined from the kinematic constraints (4.44) for the given dissipative

flow tensor� D y� WD @ yf =@� . If such discontinuity orientation exists, the dissipative flow tensor 
 is given from the

relations (4.42). Otherwise, strain localization cannot occur with stress continuity.

In summary, even if the dissipative flow vectors coincide in both families of models, the resulting evolution laws,

characterized by the dissipative flow tensor (4.43), are not necessarily identical, since the discontinuity orienta-

tions might be different. An interesting question then naturally arises: whether and when would the discontinuity

orientations in both families of models coincide?

5.2. Orientation of the discontinuity (band)

As mentioned before, for the embedded/smeared discontinuity models the orientation n.y�
cr
/ cannot be deter-

mined uniquely from the given traction-based failure criterion yf .t; q/ � 0. After recalling the relations (4.42b), the

stationary condition (3.16) of the Mohr’s maximization postulate can be rewritten as

@ yf

@�

ˇ̌̌̌
y�

cr
D

�
�nn

@�nn

@�
C 2�nm

@�nm

@�
C 2�np

@�np

@�

�
y�

cr

D �

�
�mm

@�mm

@�
C 2�mp

@�mp

@�
C�pp

@�pp

@�

�
y�

cr
D 0 (5.1)

Note that the identity � W .@�=@�/ D 0, resulting from the coaxial property between the tensors � WD @ yf =@� and

� , has been considered. As the failure function yf .t; q/ � 0 depends only on the tractions t WD
˚
�nn; �nm; �np

	T, the
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condition (5.1) is fulfilled for arbitrary values of the remaining stress components .�mm; �mp; �pp/. This fact yields

�mm.y�
cr
/ D 0; �pp.y�

cr
/ D 0; �mp.y�

cr
/ D 0 (5.2)

These relations correspond exactly to the kinematic constraints (4.44). Note that the maximization condition (3.17)

should be verified for the discontinuity angles y�
cr

determined from Eqs. (5.2).

Inversely, in the projected discontinuity model with a given stress-based failure criterion, strain localization with

a continuous stress field can occur, if and only if the critical angles �cr satisfying the kinematic constraints (4.44)

exist. Upon this condition, a traction-based failure criterion f .t; q/ � 0 can always be obtained by projecting the

given stress-based one yF .� ; q/ � 0. Accordingly, for the discontinuity (band) to form along the orientation n.�cr/,

the projected traction-based failure criterion f .t; q/ D 0 is activated. Meanwhile, no discontinuity (band) forms at

any other orientation n.�/ ¤ n.�cr/. The above facts transform into

f
�
� � n.�/; q

�
� f

�
� � n.�cr/; q

�
D 0 (5.3)

That is, the tractions � � n.�cr/ maximize the failure function f .t; q/ D f Œ� � n.�/; q�. Therefore, the discontinuity

angles �cr satisfying Eqs. (4.44) coincide with those determined from Mohr’s maximization postulate.

Remark 5.1 For the traction-based models, it is assumed a priori that strain localization with stress continuity can

always occur. Therefore, if the solution to Eqs. (5.2) does not exist, the discontinuity angles y�
cr

should be determined

from another set of solution to Eqs. (5.1)

@�mm

@�

ˇ̌̌̌
y�

cr
D 0;

@�mp

@�

ˇ̌̌̌
y�

cr
D 0;

@�pp

@�

ˇ̌̌̌
y�

cr
D 0 (5.4)

Contrariwise, for the stress-based projected discontinuity model, if the solution to the kinematic constraints (4.44)

does not exist, the strain localization with stress continuity cannot occur. In this situation, the given stress-based

failure criterion can be modified based on the solution to Eq. (5.4) in such a way that both families of models are

completely equivalent; see the 2D cases presented in Sections 6 and 6.3. �

5.3. Equivalence conditions between traction- and stress-based localized models

With the above arguments, it can be concluded that:

� An embedded/smeared discontinuity model is equivalent to the projected discontinuity model with a given

stress-based failure criterion yF .� ; q/ � 0, providing the traction-based failure criterion in the former is adopted

as yf .t; q/ D f .t; q/ � 0 and Mohr’s maximization postulate is used to determine the discontinuity orienta-

tion. Here, the traction-based failure criterion f .t; q/ � 0 is projected from the given stress-based counterpart

yF .� ; q/ � 0 to the orientation n.�cr/ which satisfies the kinematic constraint (4.65).

� A projected discontinuity model is equivalent to the embedded/smeared discontinuity model with a traction-

based failure criterion yf .t; q/ � 0 and the discontinuity orientation n.y�
cr
/ determined from Mohr’s maximiza-

tion postulate, if the stress-based failure criterion in the former is adopted as yF .� ; q/ D yf
�
� � n.y�

cr
/; q
�
� 0.
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In this case, the discontinuity orientation n.�cr/ and the associated dissipative flow vector 
 satisfying the

kinematic constraint (4.65) coincide with the given ones n.y�
cr
/ and y
 WD @ yf =@t.

Upon the above conditions, the inelastic evolution laws coincide for both families of models, i.e.,


 D y
; n.�cr/ D n.y�
cr
/ ” � D y� (5.5)

Providing identical softening laws q.�/ or q. N�/ are used, the traction-based embedded/smeared discontinuity models

(or the equivalent elastoplastic damage model) and the stress-based projected discontinuity model are equivalent to

each other.

6. Closed-form 2D results and prototype examples

In this section the general results presented in previous sections are particularized to the 2D conditions of plane

stress (�3 D 0) and plane strain (�3 D 0). As shown in Figure 8, a 2D solid ˝ � R2 with a discontinuity S
is considered. The unit normal vector n and the tangential vector m of the discontinuity S are on the plane of

interest, with the other tangential vector p perpendicular to that plane. The in-plane principal stresses are denoted

by �1 and �2 (�1 � �2), respectively, while the third one �3 is orthogonal to that plane. In such 2D cases, the

discontinuity orientation can be characterized by the inclination angle (anti-clockwise) � 2 Œ��=2; �=2� between

the normal vector n and the principal vector v1 of the stress tensor; see Appendix A. The task is to derive explicitly

the discontinuity angle � cr and the traction-based failure criterion f .t; q/ � 0 projected from the given stress-based

counterpart yF .� ; q/ � 0. Several classical failure criteria, i.e., Rankine, Mohr-Coulomb, von Mises and Drucker-

Prager models, are considered as prototype examples.

6.1. Discontinuity angle

For a given stress-based failure criterion yF .� ; q/ � 0, the discontinuity angle � cr can be determined explicitly

through the projection relation (4.65) or, more specifically, through Eqs. (4.44). This requires cancellation of all the

out-of-plane components of the dissipative flow tensor y�, i.e.,

y�mm.�
cr/ D 0; y�pp.�

cr/ D 0; y�mp.�
cr/ D 0 (6.1)

Note that in 2D cases the last constraint y�mp.� cr/ D 0 is automatically satisfied.

It follows from Eqs. (A.10) and the constraint y�mm.� cr/ D 0 that

sin2 � cr
D �

y�2

y�1 � y�2
; cos2 � cr

D
y�1

y�1 � y�2
(6.2a)

or, equivalently,

cos.2� cr/ D
y�1 C y�2

y�1 � y�2
; sin.2� cr/ D 2sign.�nm/

q
� y�1 y�2

y�1 � y�2
(6.2b)
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Figure 8: Definition of the discontinuity angle in 2D cases

with sign.�/ being the sign function. Note that the above results apply upon the conditions y�1 � 0 and y�2 � 0. The

exceptional case is referred to Section 6.3.

Obviously, the discontinuity angle � cr depends on the ratio y�2= y�1 or more precisely, the stress state upon strain

localization. Regarding the remaining condition, y�pp D 0, the conditions of plane stress and plane strain have to be

considered independently.

6.1.1. Plane stress

In the case of plane stress, the out-of-plane stress component �pp D �3 D 0 vanishes. That is, the corresponding

dissipative flow component y�pp D y�3 D 0 needs not be considered, and no extra constraint imposes on the stress

state upon strain localization. Therefore, once the initial failure surface, i.e., the elastic limit yF .� ; q0/ D 0, is reached,

strain localization occurs at the same instant, with the orientation determined from Eqs. (6.2).

Note that for the material model with associated evolution laws the discontinuity angle � cr determined from Eqs.

(6.2) coincides with that obtained from the classical discontinuous bifurcation analysis [58].

6.1.2. Plane strain

In the case of plane strain (i.e. �3 D 0), on one hand, the out-of-plane stress �3 in the elastic regime is given by

�3 D �
�
�1 C �2

�
(6.3)

with � being the material Poisson’s ratio. On the other hand, the condition y�pp D 0 determines the stress state upon

strain localization, i.e.,

y�pp D y�3 D 0 H) �3 D �1
�
�1 C �2

�
C �2q (6.4)
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where �1 and �2 are related to the parameters involved in the specified stress-based failure criterion OF .� ; q/ � 0; see

the examples presented later. As the in-plane principal values y�1 and y�2 depend on the out-of-plane stress �3 ¤ 0,

the discontinuity angle � cr, still determined from Eq. (6.2), is affected by this extra plane strain localization condition.

σ

εεp(κ)

E0 E(κ)

ft

q(κ)

(a) Stress vs. strain curve

σ

ε

ft

q(κ̄)

εp(κ̄)

E0

E(κ̄)

Onset of strain localization

(b) Continuous deformations prior to strain localization

ε

ft

σ

q(κ̄)

εp(κ̄)

E(κ̄)

Onset of strain localization

(c) Discontinuous deformations post strain localization

t

e

q(κ̄)

ft

(d) Traction vs. localized inelastic deformation vector

Figure 9: Delayed strain localization in the condition of plane strain. Here, N� denotes the corresponding value of the strain-like internal variable �

at the onset of strain localization.

The out-of-plane stress (6.4), necessary for plane strain localization, is in general different from the elastic value

(6.3). Furthermore, the initial limit surface yF .� ; q0/ D 0 will be reached earlier with the elastic out-of-plane stress

(6.3) than with the localized one (6.4). Accordingly, except for very particular cases, strain localization cannot occur at

the onset of softening. Rather, some (continuous) inelastic deformations and substantial rotation of the principal strain

directions have to occur first at the beginning of the softening regime, until the plane strain localization condition (6.4)
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is fulfilled. From that moment on, the (continuous) inelastic deformations in the bulk material are frozen (unloading),

and the discontinuous inelastic deformations within the discontinuity (band) occur due to strain localization. That

is, similarly to the continuous-discontinuous failure [24], the bulk material is considered as linear elastic after strain

localization occurs, however, with degraded (unloading) stiffness and plastic deformations corresponding to those at

the time when strain localization is initiated; see Fig. 9 for the illustration.

This delayed strain localization in the plane strain condition was numerically observed in [11] for von Mises (J2)

model. As shown later, it also occurs for general failure criteria like the classical Drucker-Prager criterion.

6.2. Traction-based failure criterion

With the discontinuity angle � cr determined from Eq. (6.2), the dissipative flow vector 
 given in Eqs. (4.42a)

and (4.42b) simplifies to


 D 
nnC 
mm (6.5)

where the normal and tangent components .
n; 
m/ are given by


n D y�nn.�
cr/ D

�
y�1 � y�2

�
cos.2� cr/ D y�1 C y�2 (6.6a)


m D 2 y�nm.�
cr/ D

�
y�1 � y�2

�
sin.2� cr/ D 2sign.�nm/

q
� y�1 y�2 (6.6b)

In accordance with Eq. (4.67), the traction-based failure criterion f .t; q/ � 0 is projected from the stress-based

counterpart yF .� ; q/ � 0 as

f .t; q/ D
1

M

h�
y�1 C y�2

�
tn C 2

q
� y�1 y�2

ˇ̌
tm
ˇ̌
� yh � q

i
� 0 (6.7)

Similarly, the projected traction-based failure criterion (6.7) holds for the cases y�1 � 0 and y�2 � 0.

Remark 6.1 For the traction-based failure criterion (6.7), its first-order derivative with respect to � reads

@f

@�
D �

�
�1 � �2

�h

n sin

�
2�
�
� 
m cos

�
2�
�i

D �
1

2

�
�1 � �2

� h�
y�1 C y�2

�
�
�
y�1 � y�2

�
cos.2�/

i
sin.2�/ (6.8a)

together with the following second-order one

@2f

@�2
D �

�
�1 � �2

� h�
y�1 C y�2

�
cos.2�/ �

�
y�1 � y�2

�
cos.4�/

i
(6.8b)

where the relations (A.10) have been considered. For the discontinuity angle � cr given from Eq. (6.2), it follows that

@f

@�

ˇ̌̌̌
�cr
D 0;

@2f

@�2

ˇ̌̌̌
�cr
< 0 (6.9)

Therefore, providing strain localization with stress continuity can occur, the tractions .tn; tm/ do maximize the pro-

jected traction-based failure criterion f .t; q/ � 0, as proved in Section 5. �
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6.3. Exceptional 2D cases

For the cases y�2 > 0 or y�1 < 0, the discontinuity angle determined from Eq. (6.2) does not hold. It implies that

strain localization with stress continuity cannot occur for the given stress-based failure criterion yF .� ; q/ � 0. In this

situation, the given stress-based failure criterion can be modified as suggested in Remark 5.1, so that the projected

traction-based one (6.7) still applies. In 2D cases, the corresponding maximization conditions (6.8) and (6.9) give the

following discontinuity angle

sin.2� cr/ D 0 H) � cr
D

8̂<̂
:0

y�1 > y�2 > 0

�=2 y�2 < y�1 < 0

(6.10)

which corresponds to the limit values y�2 D 0 and y�1 D 0, respectively.

Accordingly, the given stress-based failure function yF .� ; q/ is modified as

yF .� ; q/ D

8̂̂<̂
:̂
1

M

h�
y�1

ˇ̌̌
y�2D0

�
�1 � yh � q

i
y�1 > y�2 > 0

1

M

h�
y�2

ˇ̌̌
y�1D0

�
�2 � yh � q

i
y�2 < y�1 < 0

(6.11)

As will be clear, this modification introduces tension- and compression-extensions into the original stress-based failure

criterion yF .� ; q/ � 0. Similarly, the projected traction-based failure function f .t; q/ is expressed as

f .t; q/ D

8̂̂<̂
:̂
1

M

h�
y�1
ˇ̌
y�2D0

�
tn � h � q

i
y�1 > y�2 > 0

1

M

h�
y�2
ˇ̌
y�1D0

�
tn � h � q

i
y�2 < y�2 < 0

(6.12)

where the tangential traction is removed from the failure criterion (6.7). With the above modifications, the stress- and

traction-based models are completely equivalent to each other.

6.4. Example: Rankine criterion

The Rankine criterion, widely adopted for the modeling of tensile failure in quasi-brittle materials, is expressed in

terms of the major principal stress �1 D v1 � � � v1 > 0 as

yF .� ; q/ D h�1i � q DH .�1/ �1 � q � 0 (6.13)

where the Macaulay brackets h�i and Heaviside function H .�/ are defined as: hxi D x, H .x/ D 1 if x > 0, and

hxi D 0, H .x/ D 0 otherwise, respectively.

As the out-of-plane principal value y�3 D 0 vanishes in both plane stress and plane strain conditions, it follows

from Eq. (6.2) that

sin2 � cr
D 0 H) � cr

D 0 (6.14)
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As expected, only a mode I discontinuity (in the context of fracture mechanics) can be initiated from the Rankine

criterion. With the critical angle (6.14), the traction-based failure criterion (6.7) becomes

f .t; q/ DH .�1/tn � q D htni � q � 0 (6.15)

where the relation �1 D n � � � n D tn has been considered for mode-I failure.

6.5. Example: Mohr-Coulomb criterion

Let us then consider the Mohr-Coulomb criterion, with the failure function defined as

yF .� ; q/ D

8̂̂̂̂
<̂
ˆ̂̂:
1
2

h�
�1 C �3

�
sin' C

�
�1 � �3

�i
� q cos' Region 1 W �1 � �2 � �3

1
2

h�
�1 C �2

�
sin' C

�
�1 � �2

�i
� q cos' Region 2 W �1 � �3 � �2

1
2

h�
�3 C �2

�
sin' C

�
�3 � �2

�i
� q cos' Region 3 W �3 � �1 � �2

(6.16)

where the internal friction angle ' 2 Œ0; �=2� is determined from

sin' D
� � 1

�C 1
” � D

1C sin'
1 � sin'

(6.17)

for the ratio � WD fc=ft � 1 between the uniaxial compressive strength fc and the tensile one ft .

In the case of plane stress (�3 D 0), the principal values y�i of the inelastic flow tensor y� are given by8̂̂̂̂
<̂
ˆ̂̂:
y�1 D

1
2

�
1C sin'

�
; y�2 D 0 Region 1 W �1 � �2 � �3

y�1 D
1
2

�
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�
; y�2 D

1
2

�
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�
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y�1 D 0; y�2 D
1
2

�
� 1C sin'

�
Region 3 W �3 � �1 � �2

(6.18)

Accordingly, it follows from Eq. (6.2) that � cr D 0 in Region 1 and � cr D �=2 in Region 3, respectively; in Region 2

(i.e., �1 � �3 � �2), the discontinuity angle � cr is determined as

sin2 � cr
D
1

2

�
1 � sin'

�
H) � cr

D ˙

��
4
�
'

2

�
(6.19)

The above results coincide with those obtained from Mohr’s maximization postulate.

In the case of plane strain, the principal values y�i of the inelastic flow vector y� are expressed as8̂̂̂̂
<̂
ˆ̂̂:
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�
; y�2 D 0; y�3 D

1
2

�
� 1C sin'

�
Region 1 W �1 � �2 � �3

y�1 D
1
2

�
1C sin'

�
; y�2 D

1
2

�
� 1C sin'

�
; y�3 D 0 Region 2 W �1 � �3 � �2

y�1 D 0; y�2 D
1
2

�
� 1C sin'

�
; y�3 D

1
2

�
1C sin'

�
Region 3 W �3 � �1 � �2

(6.20)

In Regions 1 and 3, the extra constraint y�3 D 0 cannot be satisfied in general; only in Region 2 (i.e., �1 � �3 � �2)

can strain localization occur, with the same discontinuity angle (6.19).
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For the discontinuity angle (6.19), in Region 2 (�1 � �3 � �2) the traction-based failure criterion (6.6) reads

f .t; q/ D cos'
�
tn tan' C

ˇ̌
tm
ˇ̌
� q

�
� 0 (6.21a)

or, equivalently,

tan' � tn C
ˇ̌
tm
ˇ̌
� q � 0 (6.21b)

in both cases of plane stress and plane strain. This is exactly the classical Mohr-Coulomb criterion.

Remark 6.2 Tresca’s criterion is recovered for the friction angle ' D 0 in the Mohr-Coulomb criterion (6.16). In

Region 2 (�1 � �3 � �2), the discontinuity angle is then � cr D �=4, and the corresponding traction-based failure

criterion is expressed as

f .t; q/ D
ˇ̌
tm
ˇ̌
� q � 0 (6.22)

for both cases of plane stress and plane strain. �

6.6. Example: von Mises (J2) criterion

The von Mises (J2) criterion is now considered

yF .� ; q/ D
p
3J2 � q D

r
3

2



s

 � q � 0 (6.23)

in terms of the second invariant J2 WD 1
2
s W s or the norm



s

 WD s W s of the deviatoric stress tensor s.

The discontinuity angle � cr is given from Eq. (6.2) as

sin2 � cr
D �

s2

s1 � s2
; cos2 � cr

D
s1

s1 � s2
(6.24)

for the principal values si .i D 1; 2; 3/ of the deviatoric stress tensor s.

6.6.1. Plane stress

In the case of plane stress (�3 D 0), the in-plane principal values of the deviatoric stress s are evaluated as

s1 D .2�1 � �2/=3 and s2 D .2�2 � �1/=3, respectively. Accordingly, the discontinuity angle � cr is determined as

sin2 � cr
D

�1 � 2�2

3
�
�1 � �2

� ; cos2 � cr
D

2�1 � �2

3
�
�1 � �2

� (6.25)

if the conditions �1 � 1
2
�2 and �1 � 2�2 are satisfied. The resulting discontinuity angles � cr for different stress ratios

�1=�2, summarized in Table 1, are depicted in Fig. 10.

With the discontinuity angle (6.25), the corresponding normal and tangential tractions .tn; tm/ are evaluated from

Eqs. (A.9) as

tn D �nn D
2

3

�
�1 C �2

�
; t2m D �

2
nm D �s1s2 (6.26)
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Table 1: Discontinuity angles � cr for the von Mises criterion in the condition of plane stress

Stress ratio �1=�2

-1: -2 -1: -5 0: -1 1: -5 1: -1 1: 0 1: 0.25 1: 0.5

� cr 90:00ı 60:00ı 54:74ı 51:42ı 45:00ı 35:26ı 28:12ı 0:00ı

σ2

σ1

1/0.5
θcr = 0.00◦

-1/-2

θcr = 90.00◦

1/0.0
θcr = 35.26◦

1/-1
θcr = 45.00◦

0/-1

θcr = 54.74◦

(a) Principal stress space

tm

tn

2θ̂cr = 70.53◦2θ̂cr = 109.47◦

σ1/σ2 ≤ 2

1/0.5

1/0.01/-1σ1/σ2 ≤ 0.5

-1/-2

0/-1

(b) Traction space

Figure 10: Discontinuity angles of the von Miese criterion in the condition of plane stress
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so that

J2 D
1

3

�
�21 C �

2
2 � �1�2

�
D
1

4
t2n C t

2
m (6.27)

Substitution of the result (6.27) into Eq. (6.23) yields the following traction-based failure function

f .t; q/ D

r
3
�1
4
t2n C t

2
m

�
� q � 0 (6.28)

The above failure criterion can also be derived from the definition (6.7). For the equi-biaxial tension/compression

stress state, i.e., �2 D ��1 and tn D 0, the expected pure shear failure criterion is recovered.

Remark 6.3 For the cases �1 � 1
2
�2 or �1 � 2�2, the discontinuity angle � cr in Eq. (6.10) applies. Accordingly, the

modified stress- and traction-based failure criteria are given from Eqs. (6.11) and (6.12), respectively, i.e.,

yF .� ; q/ D

8̂̂<̂
:̂
p
3

2
�1 � q 0 < �2 < �1 < 2�2

�

p
3

2
�2 � q 2�1 < �2 < �1 < 0

(6.29a)

f .t; q/ D

p
3

2

ˇ̌
tn
ˇ̌
� q � 0 (6.29b)

The above modified failure criteria with tension- and compression-extensions are also illustrated in Fig. 10. �

6.6.2. Plane strain

In the case of plane strain, the condition (6.4) requires that

y�3 D 0 H) s3 D 0; �3 D
1

2

�
�1 C �2

�
(6.30)

That is, �1 D 1=2 and �2 D 0 for the out-of-plane principal stress (6.4).

Upon the above stress state, the in-plane principal values of the deviatoric stress tensor s are expressed as

s1 D �s2 D
�1 � �2

2
� 0 (6.31)

The discontinuity angle � cr is determined from Eq. (6.24) as

sin2 � cr
D �

s2

s1 � s2
D
1

2
H) � cr

D 45ı (6.32)

As can be seen, in the condition of plane strain the discontinuity angle is fixed as � cr D 45ı independently of the

stress ratio �1=�2.

For the discontinuity angle (6.32), the traction-based failure function (6.7) is expressed as

f .t; q/ D
p
3
ˇ̌
tm
ˇ̌
� q � 0 (6.33)

As expected, for the von Mises criterion a pure mode II discontinuity forms upon strain localization, whatever the

stress state is.
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σ2

σ1

Elastic limit surface
Initial failure surface

Figure 11: Elastic limit surface and initial failure surface of the von Miese criterion in the condition of plane strain

Remark 6.4 With the elastic out-of-plane stress (6.3) in the case of plane strain, the limit surface yF .� ; q0/ D 0 is

expressed asq�
1 � � C �2

��
�21 C �

2
2

�
�
�
1C 2� � 2�2

�
�1�2 D q

0 (6.34)

With the out-of-plane stress (6.30) upon plane strain localization, the failure criterion yF .� ; q/ � 0 becomes two

parallel straight lines, i.e.,

yF .� ; q/ D

p
3

2

ˇ̌
�1 � �2

ˇ̌
� q � 0 (6.35)

As depicted in Fig. 11, only for the particular cases � D 0:5 or �2 D ��1 can strain localization occur at the onset

of strain softening. For all other cases, the elastic limit surface (6.34) will be reached first and then strain softening

occurs accompanied with (continuous) inelastic deformations. Only when the re-orientation of the principal strain

directions is completed so that the plane strain localization condition (6.30) is fulfilled, strain localization may be set

in motion while guaranteeing stress continuity. �

6.7. Example: Drucker-Prager criterion

Finally, let us consider the following Drucker-Prager criterion

yF .� ; q/ D
1

1C ˛

�
˛I1 C

p
3J2

�
� q � 0 (6.36)

where the parameter ˛ D .� � 1/=.� C 1/ 2 Œ0; 1/ is related to the ratio � WD fc=ft � 1 between the uniaxial

compressive strength fc and the tensile one ft . For an activated discontinuity, it follows from the fact yF .� ; q/ D 0
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thatr
2

3



s

 D 2

3

h�
1C ˛

�
q � ˛I1

i
� 0 (6.37)

This relation is useful for later derivation of the traction-based failure criterion f .t; q/ � 0.

The discontinuity angle � cr is computed from Eq. (6.2) as

sin2 � cr
D �

p
2=3 ˛



s

C s2
s1 � s2

; cos2 � cr
D

p
2=3 ˛



s

C s1
s1 � s2

(6.38)

where s1 and s2 denote the in-plane principal values of the deviatoric stress tensor s.

6.7.1. Plane stress

In the case of plane stress (�3 D 0), it follows from Eq. (6.38) that

sin2 � cr
D �

�
2�2 � �1

�
C 2˛

q
�21 C �

2
2 � �1�2

3
�
�1 � �2

� (6.39a)

cos2 � cr
D

�
2�1 � �2

�
C 2˛

q
�21 C �

2
2 � �1�2

3
�
�1 � �2

� (6.39b)

if the conditions �1 � z̨1�2 and �1 � �2=z̨2 are satisfied, with z̨1 and z̨2 expressed as z̨1;2 WD 1
2

h
1˙˛

q
3=
�
1 � ˛2

�i
.

The above discontinuity angle � cr, dependent on the stress ratio �1=�2 and model parameter ˛, is summarized in Table

2. Similarly, the exceptional cases can be obtained from the arguments in Section 6.3; the details are omitted.

Table 2: Discontinuity angles � cr for the Drucker-Prager criterion in the condition of plane stress

fc=ft

Stress ratio �1=�2

-1: -1.24 -1: -2 -1: -5 0: -1 1: -5 1: -1 1: -0.5 1: -0.25 1: -0.15 1: 0 1 : 0.19

2.00 90:00ı 51:65ı 44:74ı 41:81ı 39:52ı 33:68ı 29:90ı 26:30ı 24:15ı 19:47ı 0:00ı

3.00 43:48ı 40:55ı 37:35ı 35:26ı 33:32ı 27:37ı 22:82ı 17:90ı 14:51ı 0:00ı 0:00ı

4.00 — 33:66ı 32:69ı 31:09ı 29:33ı 23:07ı 17:62ı 10:53ı 0:00ı 0:00ı 0:00ı

With the above discontinuity angle, the following traction-based failure criterion can be determined (see Appendix

B for the derivation)

t2m �
4˛2 � 1

4
�
1 � ˛2

� t2n C ˛

1 � ˛
qtn �

1C ˛

3
�
1 � ˛

�q2 � 0 (6.40)

As depicted in Fig. 12, depending on the model parameter ˛ 2 Œ0; 1/ (or, equivalently, � � 1), the following three

cases can be identified for the stress-based failure criterion (6.36) and its projected traction-based counterpart (6.40):
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σ2

σ1

1/0.194 θcr = 0.00◦

-1/-1.24

θcr = 90.00◦

1/0 θcr = 19.47◦

1/-1 θcr = 33.68◦

0/-1

θcr = 41.81◦

-1/-2

θcr = 51.65◦

(a) Elliptic type (� D 2:0)

σ2

σ1

1/0 θcr = 0.00◦

1/-1 θcr = 27.37◦

0/-1

θcr = 35.26◦

-1/-5

θcr = 37.35◦

(b) Parabolic type (� D 3:0)
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σ2

σ1
1/-0.15

θcr = 0.00◦

1/-1 θcr = 23.07◦

0/-1

θcr = 31.09◦

-1/-5

θcr = 32.69◦

(c) Hyperbolic type (� D 4:0)

Figure 12: The Drucker-Prager criteria of different types in the condition of plane stress

� 0 � ˛ < 1=2 or 1 � � < 3: The stress-based failure criterion (6.36) is an ellipse on the �1 � �2 plane and the

traction-based counterpart (6.40) also defines an ellipse on the tn � tm plane

t2m C
1 � 4˛2

4
�
1 � ˛2

� "tn C 2˛
�
1C ˛

�
1 � 4˛2

q

#2
�

�
1C ˛

�2
3
�
1 � 4˛2

�q2 � 0 (6.41)

The classical von Mises criterion belongs to this type (i.e., ˛ D 0).

� ˛ D 1=2 or � D 3: The stress-based failure criterion (6.36) defines a parabola on the �1 � �2 plane, while the

traction-based counterpart (6.40) becomes

t2m C qtn � q
2
� 0 (6.42)

which is a parabola on the tn � tm plane.

� 1=2 < ˛ < 1 or � > 3: The stress-based failure criterion (6.36) defines a hyperbola on the �1 � �2 plane.

Similarly, the failure criterion (6.40) is a hyperbola on the tn � tm plane, with the left branch of interest for the

current purpose given by

tan' � tn C
q
t2m C !

2q2 � c � 0 (6.43)

where the parameters tan'; ! and c are expressed as

tan' D

s
4˛2 � 1

4
�
1 � ˛2

� ; ! D
1C ˛q
3
�
4˛2 � 1

� ; c D
˛
�
1C ˛

�q�
4˛2 � 1

��
1 � ˛2

�q (6.44)
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This hyperbolic failure criterion asymptotically approaching to a Mohr-Coulomb one has been widely adopted

in the modeling of mixed-mode failure in solids [7, 14, 34, 66].

Remark 6.5 For the parameter ˛ 2 Œ1=2; 1/, the Drucker-Prager failure criterion (6.36) defines an open surface in

the principle �1 � �2 space. Accordingly, there exists a limit value for the discontinuity angle � cr. Regarding the

parabolic failure criterion (i.e., ˛ D 1=2), it follows that

lim
�2!�1<0

sin2 � cr
D lim
�2!�1<0

�

�
2�2 � �1

�
C

q
�21 C �

2
2 � �1�2

3
�
�1 � �2

� D
1

2
(6.45)

Namely, the limit discontinuity angle is lim�2!�1<0 �
cr D 45ı. For the hyperbolic one with ˛ 2 .1=2; 1/, the

admissible stress ratio �1=�2 in the compression-compression quadrant (i.e., �1 < 0 and �2 < 0) is constrained by

the value of parameter ˛, and so is the discontinuity angle � cr, i.e.,

sin � cr
�

s�
1C 2˛2

�
�1=�2 � 2

�
1 � ˛2

�
3
�
�1=�2 � 1

� with
�1

�2
�

1C 2˛2 �
q
3
�
4˛2 � 1

�
2
�
1 � ˛2

� (6.46)

For instance, it follows that 0ı � � cr � 33:74ı for the parameter � D 4:0 or equivalently, ˛ D 0:6. �

6.7.2. Plane strain

In the case of plane strain, the extra condition (6.4) gives the following out-of-plane stress �3 ¤ 0, i.e.,

˛ C

r
3

2

1

s

s3 D 0 H) �3 D
2˛2 C 1

2
�
1 � ˛2

���1 C �2� � ˛

1 � ˛
q (6.47)

where the relation (6.37) has been considered. As the trace of the deviatoric stress tensor s vanishes, it follows that

s1 C s2 D �s3 D

r
2

3
˛


s

 � 0 or s21 C

6 � 4˛2

3 � 4˛2
s1s2 C s

2
2 D 0 (6.48)

Accordingly, the discontinuity angle (6.39) becomes

sin2 � cr
D �

s1 C 2s2

s1 � s2
D �

˛s C 2

˛s � 1
; cos2 � cr

D
2s1 C s2

s1 � s2
D
2˛s C 1

˛s � 1
(6.49)

where ˛s WD s1=s2 is determined from the relation (6.48)

˛s WD
s1

s2
D

2˛2 � 3 � 2˛
q
3
�
1 � ˛2

�
3 � 4˛2

2
�
� 1;�2

�
(6.50)

Note that the above result holds if the following condition

2s1 C s2 � 0; s1 C 2s2 � 0 ” 0 � ˛ �
1

2
(6.51)

is satisfied. Compared to the result (6.39) for the case of plane stress, the discontinuity angle � cr determined from

Eqs. (6.49) and (6.50) depends only on the model parameter ˛ 2 Œ0; 1=2�, whatever the stress state is; see Table 3.

Note that the result for the von Mises criterion corresponds to the parameter ˛ D 0.
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Table 3: Discontinuity angles � cr for the Drucker-Prager criterion in the condition of plane strain

fc=ft 1.0 1.50 2.00 2.50 3.00

� cr 45:00ı 34:65ı 26:12ı 17:38ı 0:00ı

σ2

σ1

Elastic limit surface
Initial failure surface

(a) Elastic limit surface of elliptic type

σ2

σ1

Elastic limit surface
Initial failure surface

(b) Elastic limit surface of parabolic type

σ2

σ1

Elastic limit surface
Initial failure surface

(c) Elastic limit surface of hyperbolic type

Figure 13: Elastic limit surface and initial failure surface of the Drucker-Prager criterion in the condition of plane strain
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With the above discontinuity angle, the traction-based failure criterion (6.7) can be derived as (see Appendix B)

t2m �
3˛2

1 � 4˛2

�
tn �

1C ˛

3
q
�2
� 0 (6.52)

with the left branch of interest expressed as

tn � tan' C
ˇ̌
tmj � c � 0 (6.53)

where the friction angle ' and the cohesion c are given by

tan' D ˛

r
3

1 � 4˛2
; c D

1C ˛q
3
�
1 � 4˛2

�q (6.54)

That is, in the case of plane strain, the material characterized by the Drucker-Prager model localizes into a Mohr-

Coulomb discontinuity; see Remark 6.6 for more discussion.

Remark 6.6 The relations (6.54) can be rewritten as

˛ D
tan'p

3C 4 tan2 '
;

�
1C ˛

�
q D

3cp
3C 4 tan2 '

(6.55)

The above relations are exactly the matching conditions under which the Drucker-Prager and Mohr-Coulomb models

give identical limit load for perfectly-plastic materials in the case of plane strain. Upon satisfaction of these plane

strain matching conditions, both models produce identical energy dissipation [15]. �

Remark 6.7 In the case of plane strain, on one hand, calling for the out-of-plane stress (6.3) the elastic limit surface

yF .� ; q0/ D 0 of the Drucker-Prager criterion (6.36) is given by

1

1C ˛

�
˛
�
1C �

��
�1 C �2

�
C

q�
1 � � C �2

��
�21 C �

2
2

�
�
�
1C 2� � 2�2

�
�1�2

�
D q0 (6.56)

The above elastic limit surface can be either an ellipse for ˛ < .1=2��/=.1C�/, a parabola for ˛ D .1=2��/=.1C�/,

or a hyperbola for ˛ > .1=2 � �/=.1C �/ on the �1 � �2 plane, respectively. On the other hand, for the plane strain

localization condition (6.47), the Drucker-Prager criterion (6.36) becomes

ˇ̌
�1 � �2

ˇ̌
D

r
3

1 � ˛2

�
2

3

�
1C ˛

�
q � ˛

�
�1 C �2

��
� 0 (6.57)

It follows from Eqs. (6.3) and (6.50) that only for the particular stress state

�2

�1
D
1C � C ˛s

�
2 � �

�
2 � � C ˛s

�
1C �

� (6.58)

can strain localization occur at the onset of softening; see Fig. 13. For all other cases, continuous inelastic defor-

mations and re-orientation of the principal strain directions have to take place until the condition (6.47) or (6.50) is

reached, after which strain localization with stress continuity occurs. �
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7. Application to a generic failure criterion

In this section a generic stress-based failure criterion is considered in the conditions of plane stress and plane

strain. Depending on the involved material parameters, the failure surface defines either an ellipse, a parabola, a

hyperbola or the product of two straight lines. The classical von Mises, Drucker-Prager and Mohr-Coulomb criteria

are recovered as particular examples. In all cases, the discontinuity angles and the associated traction-based failure

criteria are derived explicitly.

7.1. Stress-based failure criterion

Without loss of generality, let us consider the following failure criterion yF .� ; q/ � 0

yF .� ; q/ D J2 �
1

6
A0I

2
1 C

1

3
B0qI1 � C0q

2
� 0 (7.1)

where the non-negative parameters B0 and C0 are related to the parameter A0 < 2 through

B0 D
2 � A0

2

�
� � 1

�
� 0; C0 D

2 � A0

6
� � 0 (7.2)

with � WD fc=ft � 1 being the ratio between the uniaxial compressive and tensile strengths fc and ft . The residual

strength q.�/ is normalized so that its initial value is q0 D ft .

√
J2

I1

(a) Elliptic and parabolic failure surfaces

√
J2

I1

(b) Hyperbolic surface and the product of two straight lines

Figure 14: Different functional types of the generic failure criterion in the I1 �
p
J2 meridian plane

For the case A0 > B20=.6C0/, Eq. (7.1) is a hyperbola on the meridian I1 �
p
J2 plane with the foci on the

axis
p
J2. This is inappropriate for current purposes. Accordingly, only the case A0 � B20=.6C0/ < 2 is discussed.

Depending on the values of parameter A0, the following four cases can be identified as shown in Fig. 14:

� A0 < 0: Eq. (7.1) is an ellipse on the meridian I1 �
p
J2 plane. This type of failure criterion was adopted in

Comi and Perego [16] to model the behavior of concrete in compression-compression.
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� A0 D 0: Eq. (7.1) becomes the so-called parabolic Druker-Prager criterion [26, 37, 65]

yF .� ; q/ D J2 C
1

3
B0qI1 � C0q

2 (7.3)

with the material parameters B0 D � � 1 and C0 D �=3.

� 0 < A0 < B
2
0=.6C0/: Eq. (7.1) defines a hyperbola on the meridian I1�

p
J2 plane with the foci at the axis I1.

In this case, only the left branch (i.e., I1 � B0q=A0) is considered. Similar hyperbolic functions were adopted

in both plasticity [37, 53] and damage models [16] for concrete.

� A0 D B
2
0=.6C0/: It follows from the relations (7.2) that

A0 D 2˛
2; B0 D 2˛

�
1C ˛

�
; C0 D

1

3

�
1C ˛

�2 (7.4)

for a material constant ˛ WD .� � 1/=.� C 1/ 2 Œ0; 1/. In this case, the failure criterion (7.1) simplifies to the

product of two straight lines, with the left branch of interested given by

1

1C ˛

�
˛I1 C

p
3J2

�
� q � 0 (7.5)

As can be seen, the classical Von Mises (J2) and Drucker-Prager criteria are recovered for the cases ˛ D 0 and

˛ 2 .0; 1/, respectively.

Remark 7.1 It can be easily verified that the failure criterion yF .� ; q/ � 0 introduced in Eq. (7.1) is a homogeneous

function of degree M D 2. The corresponding dissipative flow tensor y� WD @ yF=@� and its principal values y�i WD

@ yF=@�i .i D 1; 2; 3/ are expressed as

y� D sC
1

3

�
B0q � A0I1

�
I ; y�i D si C

1

3

�
B0q � A0I1

�
(7.6)

together with the following softening function yh WD �@ yF=@q

yh D �
1

3
B0I1 C 2C0q (7.7)

where �i and si denote the principal values of the stress tensor � and its deviatoric part s, respectively. Moreover, it

follows from Eq. (7.6) that

y�1 � y�2 D s1 � s2 D �1 � �2 (7.8)

Accordingly, the tangential traction tm and dissipative flow component 
m are evaluated as

tm D sign.tm/
q
� y�1 y�2; 
m D 2sign.tm/

ˇ̌
tm
ˇ̌
D 2tm (7.9)

for the discontinuity angle � cr determined from Eq. (6.2). The above results are rather useful in determination of the

projected traction-based failure criterion f .t; q/ � 0. �
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7.2. Plane stress

In the plane stress condition (�3 D 0), the failure criterion (7.1) becomes

yF .� ; q/ D
2 � A0

6

�
�21 C �

2
2

�
�
1C A0

3
�1�2 C

B0

3

�
�1 C �2

�
q � C0q

2
� 0 (7.10)

in the �1 � �2 principal stress space. For the model parameter A0 < 2 the failure surface yF .� ; q/ D 0 is less

open than a right angle [16], which is the case interested here. Furthermore, only for the parameters satisfying

A0 � 1=2 C B
2
0=.6C0/ can the failure surface yF .� ; q/ D 0 intersect the hydrostatic axis �1 D �2. It then follows

from the relations (7.2) that the admissible parameter A0 is within the range

A0 �
2.�2 � �C 1/

.�C 1/2
< 2 (7.11)

Accordingly, the following function types can be defined for the failure criterion (7.10)8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

A0 <
1
2

Elliptical function; see Figure 15(a)

A0 D
1
2

Parabolic function; see Figure 16(a)

1
2
< A0 < 2.�

2 � �C 1/=.�C 1/2 Hyperbolic function; see Figure 17(a)

A0 D 2.�
2 � �C 1/=.�C 1/2 Product of two straight lines; see Figure 18(a)

(7.12)

Remark 7.2 In the plane stress condition the model parameters satisfying B20 D 3.2A0 � 1/C0 are determined as

A0 D
2.�2 � �C 1/

.�C 1/2
; B0 D

3�.� � 1/

.�C 1/2
; C0 D

�2

.�C 1/2
(7.13)

Accordingly, the failure criterion (7.10) becomes

yF .� ; q/ D
��1 � �2 � �q

�C 1
�
�1 � ��2 C �q

�C 1
� 0 (7.14)

The left branch interested coincides with the classical Mohr-Coulomb criterion (6.16), i.e.,

��1 � �2 � �q

�C 1
D
1

2

h�
�1 C �2

�
sin' C

�
�1 � �2

�
� q

�
1C sin'

�i
� 0 (7.15)

where the internal friction angle ' 2 Œ0; �=2� of the material is given by

sin' D
� � 1

�C 1
” � D

1C sin'
1 � sin'

(7.16)

Note that the Mohr-Coulomb criterion (7.15) applies for �1 � 0 and �2 � 0 in the plane stress state (�3 D 0). �

7.3. Discontinuity angle and traction-based failure criterion

For a discontinuity (band) to form, the failure criterion (7.10) is activated. That is, the residual strength q 2 Œ0; ft �

can be expressed in terms of the principal stress �1

yF .� ; q/ D 0 H) q D ˛r�1 (7.17)
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σ2

σ1

(a) Stress-based failure surface

tm

tn

(b) Traction-based failure surface

Figure 15: Elliptic stress- and traction-based failure surfaces in plane stress (� D 5:0;A0 D 0:0)

σ2

σ1

(a) Stress-based failure surface

tm

tn

(b) Traction-based failure surface

Figure 16: Parabolic stress- and traction-based failure surfaces in plane stress (� D 5:0;A0 D 0:5)
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σ2

σ1

(a) Stress-based failure surface

tm

tn

c

ϕ

χ

ωq

(b) Traction-based failure surface

Figure 17: Hyperbolic stress- and traction-based failure surfaces in plane stress (� D 5:0;A0 D 1:0)

σ2

σ1

(a) Stress-based failure surface

tm

tn

c

ϕ

χ

(b) Traction-based failure surface

Figure 18: Bilinear stress- and traction-based failure surfaces in plane stress (� D 5:0;A0 D 7=6)
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where the coefficient ˛r .r/ 2 Œ0; 1� depends on the stress ratio r WD �2=�1

˛r D
B0
�
1C r

�
˙ sign.�1/

q
B20
�
1C r

�2
C 6ArC0

6C0
(7.18a)

Ar D
�
2 � A0

�
� 2

�
1C A0

�
r C

�
2 � A0

�
r2 (7.18b)

The discontinuity angle � cr is then given from Eq. (6.2) by

cos.2� cr/ D
2B0q C

�
1 � 2A0

��
�1 C �2

�
3
�
�1 � �2

� D
2B0˛r C

�
1 � 2A0

��
1C r

�
3
�
1 � r

� (7.19)

Clearly, it depends on the stress ratio r WD �2=�1 which remains fixed for a proportional load path.

For the discontinuity angle (7.19), it follows from Eqs. (A.9), (6.6) and (7.6)2 that


n D
B0q �

�
2A0 � 1

�
tn

2 � A0
; yh D �

B0

2 � A0
tn C

�
B20

3
�
2 � A0

� C 2C0�q (7.20)

Recalling the results (7.9), the projected traction-based failure criterion f .t; q/ � 0, also homogeneous of degree

M D 2, is determined from Eq. (6.7) as

f .t; q/ D t2m �
1

2 � A0

��
A0 �

1

2

�
t2n � B0qtn C

1

6
B20q

2

�
� C0q

2
� 0 (7.21)

For the admissible parameter A0 � 2.�2 � �C 1/=.�C 1/2, the following cases can be identified:

� A0 <
1
2

: As shown in Figure 15(b), the failure criterion (7.21) defines an ellipse on the tn � tm plane

f .t; q/ D t2m C

1
2
� A0

2 � A0

�
tn C

B0

1 � 2A0
q

�2
�

�
B20

3
�
1 � 2A0

� C C0�q2 � 0 (7.22)

with its foci on the axis tn and centered at tn D �B0q=
�
1 � 2A0

�
. An interesting particular case corresponds

to � D 1:0, i.e., B0 D 0 and C0 D .2 � A0/=6. In this case, the failure criterion (7.22) becomes

f .t; q/ D t2m C

1
2
� A0

2 � A0
t2n �

2 � A0

6
q2 � 0 (7.23a)

or, equivalently,q
t2n C ˇ

�2 t2m �
2 � A0q
3
�
1 � 2A0

�q � 0 (7.23b)

for the parameter ˇ WD
q
.1
2
� A0/=.2 � A0/ 2 Œ0; 1�. The failure criterion (7.23b) is exactly the one suggested

by Camacho and Ortiz [6], Pandolfi et al. [49], Jirásek and Zimmermann [24] for modeling mixed-mode failure.

� A0 D
1
2

: As shown in Figure 16(b), the failure criterion (7.21) is a parabola on the tn � tm plane

f .t; q/ D t2m C ˇ1qtn � ˇ2q
2
� 0 (7.24)

where the parameters ˇ1 and ˇ2 are expressed as

ˇ1 D
2

3
B0 D

1

2

�
� � 1

�
; ˇ2 D

1

9
B20 C C0 D

1

16

�
�C 1

�2 (7.25)

The parabolic traction-based failure criterion has been adopted in the embedded discontinuity models [33, 36].
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�
1
2
< A0 < 2.�

2 � �C 1/=.�C 1/2, or equivalently, B20 > 3.2A0 � 1/C0: As shown in Figure 17(b), the failure

criterion (7.21) defines a hyperbola on the tn � tm plane, with the left branch of interest expressed as

tan' � tn C
q
t2m C !

2q2 � c � 0 (7.26)

where tan' and c denote the friction coefficient and cohesion of the asymptotic Mohr-Coulomb criterion

tan' D

s
A0 � 1=2

2 � A0
; c D

B0qq
2
�
2 � A0

��
2A0 � 1

� (7.27a)

together with the following parameter !

! D

s
B20

3
�
2A0 � 1

� � C0 (7.27b)

Similar hyperbolic failure function has been adopted in the literature to describe the normal and shear coupling

of cohesive cracks [7, 14, 34, 62, 66]; see Section 7.5 for further discussion.

� A0 D 2.�2 � � C 1/=.� C 1/2, or equivalently, B20 D 3.2A0 � 1/C0: As shown in Figure 18(b), the failure

function (7.21) becomes the product of two straight lines on the tn � tm plane, with the left branch of interest

corresponding to ! D 0 in the hyperbolic criterion (7.26)

tan' � tn C jtmj � c � 0 (7.28)

where the internal friction coefficient tan' and the cohesion c are given by

tan' D
1

2

� � 1
p
�
; c D

1

2

p
� q (7.29)

This is exactly the classical Mohr-Coulomb criterion.

As can be seen, the function types of the projected traction-based failure criterion f .t; q/ � 0 coincide with those

of the stress-based failure criterion yF .� ; q/ � 0 classified in Eq. (7.12).

Remark 7.3 The traction-based failure criterion (6.40) projected from the classical Drucker-Prager model can be

obtained by substituting the model parameters (7.4) into Eq. (7.21). Note that the condition A0 D 2.�2��C1/=.�C

1/2, corresponding to B20 D 3.2A0 � 1/C0, cannot be reached for Drucker-Prager criterion in the case of plane stress.

The above results coincide with those obtained in Section 6.7.1. �

7.4. Plane strain

In the case of plane strain, the constraint y�3 D 0 gives the out-of-plane stress (6.4) upon strain localization, with

the coefficients �1 and �2 given by

�1 D
A0 C 1

2 � A0
; �2 D �

B0

2 � A0
(7.30)
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The stress-based failure criterion (7.1) can then be rewritten as

yF .� ; q/ D

1
2
� A0

2 � A0

�
�21 C �

2
2

�
�
A0 C 1

2 � A0
�1�2 C

B0

2 � A0
q
�
�1 C �2

�
�

�
B20=6

2 � A0
C C0

�
q2 � 0 (7.31)

Similarly, the following three cases can be identified:8̂̂̂̂
<̂
ˆ̂̂:
A0 < 0 Elliptical function

A0 D 0 Parabolic function

0 < A0 < 1=2 Hyperbolic function

(7.32)

Note that the range of admissible parameter A0 < 1=2 is much more restrictive than that for general 3D and plane

stress.

Upon strain localization, the residual strength q is also determined as the same form as Eq. (7.17), with the

following coefficient function ˛r .r/ 2 Œ0; 1�

˛r D

B0
�
1C r

�
˙ sign.�1/

r
2
�
2 � A0

�h�
r2 C r C 1

�
B20=3C ArC0

i
2B20=3C 2

�
2 � A0

�
C0

(7.33a)

Ar D
�
1 � 2A0

�
� 2

�
A0 C 1

�
r C

�
1 � 2A0

�
r2 (7.33b)

It then follows from Eq. (6.2) that

cos.2� cr/ D
2B0q � 3A0

�
�1 C �2

��
2 � A0

��
�1 � �2

� D
2B0q � 3A0

�
1C r

��
2 � A0

��
1 � r

� (7.34)

In general the above discontinuity angle � cr also depends on the stress ratio r WD �2=�1 except for the von Miese and

Drucker-Prager criteria; see Remark 7.5.

For the out-of-plane stress (7.30) and the discontinuity angle (7.34), it follows from Eqs. (A.9), (6.6) and (7.6)2

that


n D
B0q � 3A0tn

1 � 2A0
; yh D �

B0

3
�
1 � 2A0

��3tn � 2B0q�C 2C0q (7.35)

Recalling the results (7.9), the traction-based failure criterion f .t; q/ � 0 is given from Eq. (6.7) as

f .t; q/ D t2m �
1

1 � 2A0

�
3

2
A0t

2
n � B0qtn C

1

3
B20q

2

�
� C0q

2
� 0 (7.36)

With respect to the specific value of the parameter A0 < 1
2

, the following cases can be identified:

� A < 0: The failure criterion (7.36) can be rewritten as

f .t; q/ D t2m C
3A0

2
�
2A0 � 1

��tn C B0

�3A0
q

�2
�

�
B20
�6A0

C C0

�
q2 � 0 (7.37)

which defines an ellipse on the tn � tm plane, centered at tn D B0q=.3A0/.
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� A D 0: In this case Eq. (7.36) becomes a parabola on the tn � tm plane

f .t; q/ D t2m C ˇ1qtn � ˇ2q
2
� 0 (7.38)

where the material parameters ˇ1 and ˇ2 are expressed in terms of the strength ratio � � 1, i.e.

ˇ1 D B0 D � � 1; ˇ2 D
1

3
B20 C C0 D

1

3

�
�2 � �C 1

�
(7.39)

Note that the case � D 1 corresponds exactly to the classical Von Mises criterion.

� 0 < A < 1=2: The failure criterion (7.36) defines a hyperbola on the tn � tm plane, with the left branch

expressed as

tan' � tn C
q
t2m C !

2q2 � c � 0 (7.40)

where the internal friction angle ' and cohesion c as well as an additional parameter ! are given by

tan' D

s
3A0

2
�
1 � 2A0

� ; c D
B0q

6A0
�
1 � 2A0

�q; ! D

s
B20
6A0
� C0 (7.41)

The above hyperbolic failure criterion is of identical form as Eq. (7.26) in the condition of plane stress, with

different definitions of involved parameters. In this case substitution of the relations (7.4) yields the results for

Drucker-Prager criterion.

Remark 7.4 In the condition of plane strain, Eq. (7.1) together with the elastic out-of-plane principal stress �3 D

�
�
�1 C �2

�
defines the so-called elastic limit surface, with � being Poisson’s ratio. On the �1 � �2 principal plane, it

is: i): an ellipse for A0 < 1
2
.1 � 2�/2=.1C �/2, ii): a parabola for A0 D 1

2
.1 � 2�/2=.1C �/2, or iii): a hyperbola

for A0 > 1
2
.1� 2�/2=.1C �/2, respectively. Therefore, the following cases can be identified for the function types of

the elastic limit and failure surfaces:

� A0 < 0: Both surfaces are ellipses.

� A0 D 0: The elastic limit surface is an ellipse while the failure surface is a parabola.

� 0 < A0 <
1
2
.1 � 2�/2=.1C �/2: The elastic limit surface is an ellipse while the failure surface is a hyperbola.

� A0 D
1
2
.1 � 2�/2=.1C �/2: The elastic limit surface is a parabola while the failure surface is a hyperbola.

�
1
2
.1 � 2�/2=.1C �/2 < A0 < 1=2: Both surfaces are hyperbolas.

For all the cases, the elastic limit surface will be reached earlier than the initial failure surface (7.31). Accordingly,

some continuous inelastic deformations and substantial rotation of the principal strain directions have to occur before

the plane strain localization condition (6.4) is fulfilled. �
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Remark 7.5 In the condition of plane strain, it follows from the constraint y�3 D 0 and the identity s1C s2C s3 D 0

that

s1 C s2 D �s3 D
B0q � A0I1

3
(7.42)

Accordingly, the discontinuity angle (7.34) can be rewritten as

sin2 � cr
D �

s2 C
�
B0q � A0I1

�
=3

s1 � s2
D �

s1 C 2s2

s1 � s2
(7.43)

Satisfaction of the failure criterion (7.1) yields

�
3 � 2A0

�
s21 C 2

�
3 � A0

�
s1s2 C

�
3 � 2A0

�
s22 �

�
B20 � 6A0C0

�
q2 D 0 (7.44)

Thus, the ratio s2=s1 (or, equivalently, the stress ratio r WD �2=�1) and the resulting discontinuity angle � cr, in general

depend on the stress state during the failure process. One exception is the Drucker-Prager criterion considered in

Section 6.7.2, which corresponds to the case B20 D 6A0C0. �

7.5. Further discussion on the hyperbolic failure criterion

In the literature [7, 14, 34, 62, 66], different forms of hyperbolic traction-based failure criteria have been proposed

for the modeling of localized failure in quasi-brittle materials, owing to the excellent data fitting capabilities and other

advantageous features (e.g., no slope discontinuity at the tip, asymptotically approaching to Mohr-Coulomb criterion

for increasing compression, and a constant friction angle, etc.). However, the involved parameters are essentially

mesoscopical entities hard to be determined from standard experimental tests. This shortcoming restrains heavily its

application. In previous sections we have established the theoretical connections and equivalence conditions between

localized models with traction- and stress-based failure criteria. Such a correspondence facilitates identifying those

mesoscopic parameters involved in the traction-based failure criterion from the easily obtained macroscopic ones.

Without loss of generality, the following traction-based failure criterion [7, 66] is considered

yf .t; q/ D t2m �
�
c � tn � tan'

�2
C
�
c � � � tan'

�2
� 0 (7.45)

with the left branch of interest expressed as [34]

tan' � tn C
q
t2m C

�
c � � � tan'

�2
� c � 0 (7.46)

where � denotes the failure strength, not necessarily identical to the macroscopic material tensile strength ft ; tan'

and c represent the friction and cohesion of the asymptotic Mohr-Coulomb criterion. All these parameters cannot be

determine easily and in general are assumed arbitrarily [7, 14, 66].

As shown in Section 7.3, for the model parameter 1
2
< A0 < 2.�

2��C1/=.�C1/2, in the condition of plane stress

an inelastic softening solid characterized by the stress-based failure criterion (7.1) localizes into a discontinuity (band)
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described by the traction-based failure criterion (7.26) of identical form to Eq. (7.46). Obviously, the equivalence

between them implies that

!q D c � � � tan' ” � D
c � !q

tan'
(7.47)

where the friction coefficient tan', the cohesion c and the parameter ! are given in Eq. (7.27).

Reversely, recalling the tractions (A.9) and making some straightforward manipulations, the stationarity condition

(6.9) for the failure criterion (7.45) yields the following discontinuity angle y� cr

cos.2y� cr/ D
tan'

1C tan2 '
�
2c �

�
�1 C �2

�
tan'

�1 � �2
(7.48)

In accordance with Eqs. (A.9), the normal and tangential tractions .tn; tm/ acting on the orientation n.y� cr/ can be

expressed in terms of the principal stresses �1 and �2. Substitution of the obtained results into Eq. (7.45) yields

F.� ; q/ D

�
�1 � �2

�2
4

�
1

1C tan2 '

�
c �

�1 C �2

2
tan'

�2
C
�
c � � � tan'

�2
� 0 (7.49)

With the relations (7.27) and (7.47), the discontinuity angle (7.19) are recovered and the reconstructed stress-based

failure criterion (7.49) coincides with the given counterpart (7.10).

σ
2 f c

σ1
fc

Kupfer et al.(1969)

Li and Guo (1991)

Lee et al.(2003)

Hyperbola (6.15) with A0 = 1.48

(a) Biaxial strength envelope

tm

tn

c

ϕ

χ

(b) Hyperbolic traction-based failure surface

Figure 19: Stress- and traction-based failure surface typical for concrete in plane stress
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Therefore, a localized model with the stress-based failure criterion (7.10) is indeed equivalent to that with the

given traction-based failure criterion (7.45), providing the involved parameters are consistently connected as in Eqs.

(7.27) and (7.47).

As an example, let us consider a strength ratio � WD fc=ft D 10, typical for concrete. In order for a discontinuity

(band) characterized by the hyperbolic traction-based failure criterion (7.26) to form in the plane stress condition, the

model parameter A0 has to be in the range A0 2 .0:5; 1:504/. As shown in Figure 19(a), the biaxial strength envelope

corresponding to the following parameters

A0 D 1:48 H) B0 D 2:34; C0 D 0:93 (7.50)

fits the test data of normal concrete in tension-tension and tension-compression rather well. It immediately follows

from the relations (7.27) and (7.47) that

tan' D 1:37; c D 1:64q; � D q (7.51)

The corresponding traction-based failure criterion is shown in Figure 19(b). Furnished with an appropriate softening

law q.�/, it can be used in the modeling of localized failure in concrete. This topic will be reported elsewhere.

8. Conclusions

This paper addresses strain localization and failure mechanics for elastoplastic damage solids. Different ap-

proaches resulting from two complementary methodologies, i.e., discontinuities localized in an elastic solid and strain

localization of an inelastic solid, are systematically investigated for the modeling of localized failure in softening

medium.

In the first methodology, discontinuities are localized in elastic solids along a known orientation. It is assumed

a priori that the bulk material remains elastic during the whole deformation process and all inelastic behavior is lo-

calized within the discontinuity (band). That is, strain localization always occurs with a continuous stress field. A

traction-based failure criterion can be introduced to characterize the discontinuity (band). However, the discontinuity

orientation cannot be determined uniquely unless some additional assumptions, e.g., Mohr’s maximization postulate

considered in this work, are made. With respect to the strategies dealing with the traction continuity condition between

the bulk stresses and tractions across the discontinuity (band), two approaches can be identified. If the traction con-

tinuity condition is enforced in weak (average) form, the strong/regularized discontinuity approaches follow. In this

approach, the displacement jumps (or equivalently, the inelastic deformations) are retained as independent variables,

and constitutive models for both the bulk and discontinuity (band) should be fed. Alternatively, being enforced in

strong (point-wise) form, the traction continuity condition coincides with the classical static constraint. This property

allows eliminating the kinematic unknowns (i.e., displacement jumps or inelastic deformations) associated with the

discontinuity (band) from the governing equations. In the resulting embedded/smeared discontinuity approaches, an

overall inelastic constitutive model fulfilling the static constraint suffices.
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In order to check whether above strain localization can occur and identify its consequences on the resulting ap-

proaches, the second methodology is considered. The kinematic constraint guaranteeing stress boundedness/continuity

upon strain localization is established for general inelastic softening solids. It is then applied to a unified elastoplas-

tic damage model with the inelastic evolution laws characterized by a dissipative flow tensor. For the discontinuity

kinematics to be reproduced in an appropriate manner, the tensorial components of the dissipative flow tensor in the

directions orthogonal to the discontinuity orientation have to vanish upon strain localization. Satisfaction of this kine-

matic constraint allows introducing a traction-based failure criterion and developing a localized cohesive model for

the discontinuity (band), justifying the first methodology. Dependent on the strategies dealing with the discontinuity

orientation and failure criterion, two dual (formally identical) but not necessarily equivalent approaches are identified.

For a given traction-based failure criterion and a known discontinuity orientation, the resulting elastoplastic dam-

age model is equivalent to the embedded/smeared discontinuity models discussed before. Alternatively, for a given

stress-based failure criterion, the discontinuity orientation and associated traction-based counterpart are consistently

determined from the kinematic constraint, resulting in the projected discontinuity model.

The bi-directional connections between the aforementioned traction- and stress-based approaches are explored in

general 3D cases. Particularly, the equivalence between Mohr’s maximization postulate for a traction-based failure

criterion and the kinematic constraint for a stress-based one is established. This equivalence makes it possible to bridge

the gap between traction- and stress-based approaches. In the plane stress condition, the discontinuity orientation and

the corresponding stress-/traction-based failure criteria are explicitly given in closed form. The classical Rankine,

Mohr-Coulomb, von Mises and Drucker-Prager criteria are analyzed as the illustrative examples. A generic stress-

based failure criterion is then considered in a unified manner. Depending on the involved parameters, the projected

traction-based failure criterion can be either an ellipse, a parabola, a hyperbola or the product of two straight lines,

recovering most of those adopted in the literature as particular cases. In particular, a traction-based failure criterion

of hyperbolic type, widely adopted for the modeling of mixed mode localized failure in quasi-brittler materials, is

obtained naturally. More importantly, owing to the established equivalence, the involved model parameters can be

identified from available standard experimental data, so that the deficiency hindering its application in practice is

largely removed.

Only localized models with associated evolution laws are investigated in this work, though the stress bounded-

ness/continuity condition and the resulting kinematic constraint also apply for non-associated cases. However, they are

no longer equivalent to Mohr’s maximization postulate, but to Roscoe’s zero-extension postulate [47, 52]. Extension

of the current work to localized models with non-associated evolution laws will be addressed in the future.
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Appendix A. Characteristic angles of the discontinuity (band)

To characterize the discontinuity orientation, let us consider the spectral decomposition of the stress tensor � and

the coaxial dissipative flow tensor � WD @F=@� [23], i.e.,

� D

3X
iD1

�ivi � vi ; � D

3X
iD1

�ivi � vi (A.1)

where �i and �i D @F=@�i denote the i -th principal values, with vi being the corresponding principal vector and

satisfying the orthogonal property vi � vj D ıij for i; j D 1; 2; 3.

For general 3D cases, a local orthogonal base .n;m;p/ is introduced, with vectors m and p perpendicular to the

normal vector n and tangent to the discontinuity S. In the coordinate system of the principal stresses, the base vectors

.n;m;p/ can be expressed in terms of a set of characteristic angles � WD
˚
�1; �2; #1; #2

	T

n.�/ D
n

sin#1 cos �1; sin#1 sin �1; cos#1
oT

(A.2a)

m.�/ D
n

sin#2 cos �2; sin#2 sin �2; cos#2
oT

(A.2b)

p.�/ D n.�/ �m.�/ (A.2c)

constrained by

C.�/ WD n.�/ �m.�/ D sin#1 sin#2 cos
�
�1 � �2

�
C cos#1 cos#2 D 0 (A.2d)

where .�1; �2/ and .#1; #2/ denote the spherical azimuth and polar angles, respectively; the operator “�” denotes the

Gibbs’ vector product (the right hand rule is followed). Note that only three of the characteristic angles .�1; �2; #1; #2/

are independent variables, and the constraint (A.2d) can be readily handled by the Lagrangian multiplier method.

The tractions t acting on the surface with normal vector n.�/ are given by

t WD � � n D tnnC tmmC tpp (A.3)

where the traction components .tn; tm; tp/ are expressed as

tn D �nn D
�
n� n

�
W � ; tm D �nm D

�
n�m

�sym
W � ; tp D �np D

�
n� p

�sym
W � (A.4)

Being coaxial to the stress � , the dissipative flow tensor � can also be expanded in the local orthogonal system

.n;m;p/ as

� D �nnn� nC 2�nm
�
n�m

�sym
C 2�np

�
n� p

�sym

C�mmm�mC�ppp � p C 2�mp
�
m� p

�sym (A.5)
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with the following tensorial components

�nn D
�
n� n

�
W �; �nm D

�
n�m

�sym
W �; �np D

�
n� p

�sym
W � (A.6a)

�mm D
�
m�m

�
W �; �pp D

�
p � p

�
W �; �mp D

�
m� p

�sym
W � (A.6b)

With the spectral decomposition (A.1) and the base vectors (A.2), the above traction vectorial and dissipative flow

tensorial components can be expressed in terms of their principal values and the characteristic angles � .

For the simpler 2D case shown in Fig. 8, the characteristic angles � WD
˚
�1; �2; #1; #2

	T of the discontinuity

(band) are given by

�1 D �; �2 D � � �=2; #1 D #2 D �=2 (A.7)

where � 2 Œ��=2; �=2� denotes the inclination angle (anti-clockwise) between the normal vector n and the principal

vector v1 of the stress tensor. It then follows that

n.�/ D
˚

cos �; sin �; 0
	T
; m.�/ D

˚
sin �;� cos �; 0

	T (A.8)

together with the other tangential vector p D
˚
0; 0;�1

	T perpendicular to the plane of interest.

Accordingly, the tractions .tn; tm; tp/ acting on the surface with orientation n.�/ are expressed as

tn D �nn D �1 cos2 � C �2 sin2 � D
�1 C �2

2
C
�1 � �2

2
cos.2�/ (A.9a)

tm D �nm D
�
�1 � �2

�
sin � cos � D

�1 � �2

2
sin.2�/ (A.9b)

and tp D �np D 0. Similarly, Eqs. (A.6) give the following in-plane components �nn; �mm and �nm D �mn

�nn D �1 �
�
�1 ��2

�
sin2 � D

�1 C�2

2
C
�1 ��2

2
cos.2�/ (A.10a)

�mm D
�
�1 ��2

�
sin2 � C�2 D

�1 C�2

2
�
�1 ��2

2
cos.2�/ (A.10b)

�nm D
�
�1 ��2

�
cos � sin � D

�1 ��2

2
sin.2�/ (A.10c)

together with the remaining out-of-plane components

�pp D �3; �np D 0; �mp D 0 (A.10d)

for the in-plane principal values �1 WD @F=@�1 and �2 WD @F=@�2 as well as the out-of-plane one �3 WD @F=@�3.

It is assumed that the relation �1 � �2 is satisfied so that the identity sign.�nm/ D sign.�nm/ holds. Note that in

the plane stress condition all the out-of-plane components of tensors � and� vanish, i.e., �pp D �np D �mp D 0 and

�pp D �np D �mp D 0.
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Appendix B. Derivation of the traction-based failure criterion for the Drucker-Prager criterion

In the case of plane stress, for the discontinuity angle (6.39) it follows from Eqs. (A.9) that

tn D
2

3

h
˛
�
1C ˛

�
q C

�
1 � ˛2

��
�1 C �2

�i
(B.1a)

t2m D �
�p

2=3 ˛


s

C s1��p2=3 ˛

s

C s2� (B.1b)

Accordingly, the normal and tangential components .
n; 
m/ in Eq. (6.6) become


n D
1�

1C ˛
�p

2=3


s



�
1 � 4˛2

�
tn C 2˛

�
1C ˛

�
q

2
�
1 � ˛2

� (B.2a)


m D
1�

1C ˛
�p

2=3


s

 2tm (B.2b)

where the norm


s

 is evaluated from Eq. (6.37) asr

2

3



s

 D 1

1 � ˛2

�
2

3

�
1C ˛

�
q � ˛tn

�
� 0 (B.3)

Therefore, the definition (6.7) gives the following traction-based failure function

2�
1C ˛

�p
2=3



s


�
t2m �

4˛2 � 1

4
�
1 � ˛2

� t2n C ˛

1 � ˛
qtn �

1C ˛

3
�
1 � ˛

�q2� � 0 (B.4)

which can be transformed into the homogeneous failure function (6.40) of degree M D 2.

In the case of plane strain, the discontinuity angle (6.49) leads to the following normal traction tn

tn D �1 C �2 � �3 D

�
1 � 4˛2

��
�1 C �2

�
C 2˛

�
1C ˛

�
q

2
�
1 � ˛2

� (B.5)

which yields the following relations

�1 C �2 D
2
�
1 � ˛2/tn � 2˛

�
1C ˛

�
q

1 � 4˛2
(B.6a)

�3 D

�
1C 2˛2

�
tn � 2˛

�
1C ˛

�
q

1 � 4˛2
(B.6b)

Similarly, the square of the tangential traction t2m is given by

t2m D �
�
2s1 C s2

��
s1 C 2s2

�
(B.7)

Accordingly, the normal and tangential components .
n; 
m/ are evaluated from Eq. (6.6) as


n D
3˛

1C ˛
; 
m D

2˛

1C ˛
�

tm

s1 C s2
(B.8)

where the following relation applies

s1 C s2 D
�1 C �2 � 2�3

3
D

2˛

3
�
1 � 4˛2

�h � 3˛tn C �1C ˛�qi � 0 (B.9)
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Note that, owing to the relation (6.48) the inequality
�
1 C ˛

�
q � 3˛tn > 0 holds. Therefore, Eq. (6.7) gives the

following traction-based failure criterion

f .t; q/ D
1

1C ˛

"
3
�
1 � 4˛2

��
1C ˛

�
q � 3˛tn

t2m � 3˛tn C
�
1C ˛

�
q

#
� 0 (B.10)

which can be transformed into the form (6.52).
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