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Abstract

We present a numerical method for solving advective–diffusive–absorptive problems with

high values of the advection. A Langrangian approach based on the updated version of the

Particle Finite Element Method is used to calculate advection, while an Eulerian strategy

based on the Finite Element Method (FEM) is adopted to compute its diffusion and

absorption. The Eulerian FEM procedure is based on a Finite Increment Calculus (FIC)

stabilized formulation recently developed by the authors. The most relevant features of

each computational approach are outlined and the coupling scheme is explained. Several

problems are solved to validate the method: the evolution of a localized concentration

field in two dimensions (2D), the evolution of a spherical field in 3D and three benchmark

problems from the literature with high absorption.

Keywords: convective transport, convection–diffusion–reaction, transient, finite element

method, FIC, PFEM, Eulerian, Lagrangian.

1. Introduction

The convective transport of a physical quantity such as heat or a chemical concentration

accounting for diffusion and absorption effects is a phenomenon that plays a central role

in many applications of interest. Such phenomenon is well described by a differential

equation of an advection-diffusion-absorption type. A large volume of scientific work has

been devoted to the study of this equation and, in particular, to its solution by numerical

means. The problem is well-studied for a variety of methods like finite differences [13],

finite volumes [32] and the finite element method (FEM) [10, 11, 18, 21, 35, 36], among

others. Nonetheless, this numerical problem remains a challenging one, especially for high

Péclet numbers, due to the difficulty of accurately representing three processes (advection,
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diffusion and absorption) when their corresponding time and space scales are very different

for some particular classes of problems.

Transport problems involving high-Péclet numbers (Pe) are common in many practical

situations. Among these, we note the study of environmental pollution, either related to

the quality of air or water,[6] or the simulation of the advection-diffusion in a microfluidics

channel [34], just to name a few.

Standard FEM techniques for solving convective transport problems based on the

Eulerian description of the continuum suffer from instabilities if not endowed with the

appropriate stabilization techniques [5, 23, 31]. These techniques, which are based on the

addition of artificial diffusion terms, tend to spoil the accuracy of the numerical solution

in cases where there is a (relatively small) physical diffusion. Thus, one is faced with

a trade-off between stability and accuracy that is particularly restrictive for high-Péclet

flows.

The numerical solution to the advection, diffusion and absorption problem is prone to

exhibit global, Gibbs and dispersive oscillations, which require the application of specific

stabilization techniques to control instabilities. The local Gibbs oscillations appear along

the characteristic layers in advection-dominated problems. For absorption-dominated

cases, Gibbs oscillations can be found near the Dirichlet boundaries and in regions where

the distributed source term is nonregular. Also, the solution of the transient problem may

exhibit dispersive oscillations when the initial solution and/or the distributed source term

are nonregular [64]. Various techniques for solving these problems can be found in litera-

ture, such as the Petrov-Galerkin method [5, 23, 24, 31, 33], the Galerkin Least Squares

(GLS) method [17, 25], the Variational Multiscale (VMS) method [26] or the characteristic

split procedure [75, 77]. In this paper we will use the Finite Increment Calculus (FIC)

stabilization technique which has been widely used to solve problems involving quasi and

fully incompressible fluids and solids with the FEM [40, 41, 9, 48, 54, 49, 50]. The FIC

technique is based on expressing the equations of balance of mass and momentum in a

space/time domain of finite size and retaining higher-order terms in the Taylor series ex-

pansion used for expressing the change in the transported variables within the balance

domain. In addition to the standard terms of infinitesimal theory, the FIC form of the

balance equations contains derivatives of the classical differential equations multiplied by

characteristic distances in space and/or time [40, 41, 50, 49, 54, 48].

In the last decades, various authors have investigated ways of solving transient prob-
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lems for high-Péclet numbers. For instance, Sevilla et al. [68] studied the influence of

the number of integration points in the accuracy of the computations, using high-order

curved finite elements and proved that they were one order of magnitude more precise

than classical isoparametric FEM. In [69], the simulation of dispersing plumes and puffs

was studied using a second-order closure model and a parameterized Eulerian approach.

From a different perspective, fully Lagrangian methods have been used for high-Péclet

flows. For instance, in [66] good results for the convection-diffusion equations coupled to

the incompressible flow equations were obtained using two Langrangian methods.

A third option that exploits the benefits of a combined Eulerian-Lagrangian method

has been studied by other authors to solve problems such as advection-diffusion [7, 8, 38],

the solute transport in heterogeneous porous media [67] or the nanoparticle distribution

in nanofluids [2]. Many of these studies have proved that an splitting of an Eulerian and

a Lagrangian solution can solve the excessive numerical diffusion observed in Eulerian

methods. These splittings aim to accurately solve the advective part of the transport

equation using a Lagrangian method and then calculate the diffusion problem via an

Eulerian technique.

A combination of the Backwards Method of Characteristics with various Eulerian

methods such as finite differences or finite elements was studied in [3]. Good results were

obtained for high Courant numbers but no clear conclusion was reached on the stability and

convergence of the methods. Cady [8] used a Modified Method of Characteristics together

with finite differences and the Galerkin method but found accuracy problems. In the

following years, the problem of global mass conservation due to the integration of the mass

balance equation was addressed. In 1998, Healy and Russell [22] proposed the finite volume

Eulerian-Lagrangian localized method with a forward tracking of the characteristics that

lead to better results in comparison with previous methods. The performance of four

Eulerian-Lagrangian solvers that relied on different interpolators was studied in [67]. It

was found that the taut spline interpolator was able to yield accurate solutions for high-

Péclet numbers. This method, based on a forward tracking algorithm, proved to be more

efficient than other methods, such as the Petrov–Galerkin technique, for this kind of

problems. The accuracy of the Petrov-Galerkin method can however be improved with

the FIC stabilization [63, 65, 64]. In 2000 and 2006, respectively, Young et al. studied

several Eulerian-Lagrangian methods such as the Eulerian-Lagrangian Boundary Element

Method [73], which provided the solution for low numerical diffusion, and the Eulerian-
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Lagrangian method of fundamental solutions [74], which is a mesh-free method that has

the simplicity of a fixed grid from the Eulerian method and the computational power of

the Lagrangian method. More recently, Wang et al. have studied a Eulerian-Lagrangian

Discontinuous Galerkin Method [70, 71] and a Modified Method of Characteristics with an

adjusted advection procedure [72] for the transient advection-diffusion equations. In 2012,

Al-Lawatia [1] developed a mass conservative Eulerian-Lagrangian control volume scheme

for the solution of the same equations in two dimensions (2D), based on the Eulerian-

Lagrangian localized adjoint method [22].

Most of the works cited above employ an Eulerian-Lagrangian splitting for the advection-

diffusion equation. In this work we present an alternative Eulerian-Lagrangian split formu-

lation, termed semi-Lagrangian formulation, for the advection-diffusion-absorption equa-

tion that leads to accurate and stable results, and has neither convergence nor grid ori-

entation problems. The Lagrangian part of the method is based on the Particle Finite

Element Method - second generation (termed from here onwards PFEM2) [30, 27], which

has been successfully used to simulate problems of sediment transport [4], diffusion dom-

inant problems [20] and free surface flows [19], while the Eulerian formulation follows the

FIC-FEM procedure presented in [65].

The semi-Lagrangian approach benefits from the FIC-FEM stabilized Eulerian method

and the Lagrangian PFEM2 one. In the paper we will compare the benefits of the semi-

Lagrangian method versus the standard Eulerian procedure for solving advection–diffusion–

absorption problems.

The paper is organized as follows. First, the Eulerian solution scheme using a FIC-

FEM procedure is introduced. Next, the PFEM2 technique is described and the Eulerian-

Lagrangian splitting strategy is detailed. Several examples are presented in order to

highlight the advantages of using the new semi-Lagrangian formulation versus the standard

Eulerian approach: the evolution of a concentration field in a high-Péclet flow in 2D, the

evolution of a spherical field in 3D and three advective-diffusive-absorptive problems.

2. Eulerian approach

In this section, we present the FIC-FEM Eulerian formulation for solving the multi-

dimensional advection-diffusion-absorption equations. The procedure follows the recent

work of the authors [65].

4



2.1. Governing equations

Transport balance

The transport balance equation in a domain of area/volume Ω is expressed as

rt = 0 in Ω (1a)

with

rt := ρc

(
∂φ

∂t
+ vT∇∇∇∇∇∇∇∇∇∇∇∇∇∇φ

)
−∇∇∇∇∇∇∇∇∇∇∇∇∇∇TD∇∇∇∇∇∇∇∇∇∇∇∇∇∇φ+ sφ−Q (1b)

For 3D problems,

v =


v1

v2

v3

 , D =


k1 0 0

0 k2 0

0 0 k3

 , ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =


∂/∂x1

∂/∂x2

∂/∂x3

 (2)

In Equations (1a)–(1b)–(2) φ is the transported variable (i.e., the temperature in a heat

transfer problem or the concentration in a mass transfer problem), vi is the ith cartesian

component of the velocity vector v; ρ, c and ki are the density, the specific flux parameter

and the conductivity of the material along the ith global direction, respectively and s is

the reaction parameter. In the following, and unless otherwise specified, we will assume

that the problem parameters (ρ, c, k, s) are constant over the analysis domain Ω. In our

work we define D = k/ρc as the normalized diffusivity, and R = s/ρc as the normalized

absorption.

Boundary and initial conditions

The boundary conditions of the aforementioned equations are

φ− φp = 0 on Γφ (3)

rΓ = 0 on Γq (4)

with

(5)

rΓ := −qn + qpn (6)

where

5



qn = qTn , q = −D∇∇∇∇∇∇∇∇∇∇∇∇∇∇φ (7)

In Equations (3)–(7) φp and qp are the prescribed boundary fields of the transported

variable and the outgoing diffusive flux at the Dirichlet and Neumann boundaries Γφ and

Γq, respectively, with Γφ ∪ Γq = Γ, Γφ ∩ Γq = ∅, with Γ being the boundary of Ω and n

its exterior unit normal.

The definition of the problem is completed with the initial conditions

φ(x, t0) = φ0(x) (8)

where φ0 is a known field.

2.2. Finite increment calculus (FIC) expressions

The governing equations (1a) and (1b) and the boundary conditions (3)-(7) are ex-

pressed using the FIC theory as [57].

Transport balance

rt −
1

2
hT∇∇∇∇∇∇∇∇∇∇∇∇∇∇rt = 0 in Ω (9)

with h = [h1, h2, h3]T in 3D.

Boundary conditions

φ− φp = 0 on Γφ (10a)

rΓ +
1

2
hnrt = 0 on Γq , with hn = hTn (10b)

Equations (9) and (10b) are obtained by expressing the balance of fluxes in an arbitrary

prismatic space domain of size h1 × h2 × h3 within the global problem domain and at the

Neumann boundary, respectively. The distances hi are termed characteristic lengths of

the FIC method. The variations of the transported variable within the balance domain

are approximated by Taylor series expansions retaining one order higher terms than in

the infinitesimal theory [40]. This higher-order expansions produce the underlined terms

in Equations (9) and (10), which provide the necessary stability for the corresponding

discretized equations.
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Note that, as the characteristic length vector h tends to zero, the FIC governing

equations tend to the standard infinitesimal form; that is, rt → 0 in Ω and rΓ → 0 on Γq

as h→ 0.

The characteristic lengths are small quantities which are defined in the context of the

discrete problem and whose value influences the stability and accuracy of the method. In

practice, they are expressed as a proportion of a typical grid dimension [40]. The charac-

teristic length vector is defined in [65] as the sum of the streamline characteristic vector

hv, the absorption characteristic length vector hr and the shock capturing characteristic

length vector hsc , i.e.

h = hv + hr + hsc (11)

The FIC equations are the starting point for deriving different stabilized numerical

methods. In combination with the Galerkin FEM, they yield the so-called FIC-FEM

procedure [63, 64] which has been successfully applied to problems of convective transport,

fluid and solid mechanics such as advection-diffusion [40, 43, 44, 52], diffusion-absorption

and Helmholtz [16], advection-diffusion-absorption [53, 57], advection-diffusion-reaction

[63], incompressible fluid flow [55, 56, 58, 60, 62], fluid-structure-interaction [46, 51, 59],

particle-laden flows and standard and incompressible solid mechanics [48, 54, 61]. The FIC

approach has also been applied to a variety of problems in mechanics using the meshless

finite point method [39, 42, 45, 47].

2.3. Space and time integration

The system of equations 9-10 has been discretized in space with the FEM and in time

using an implicit Generalized Trapezoidal rule[12, 76]. Detail of the finite element matrices

and vectors of the discretized problem can be found in [65]. The solution for the nodal

values at a time instant is found using an incremental iterative strategy as

iHn∆φφφφφφφφφφφφφφ = −irnt (12)

where ∆φφφφφφφφφφφφφφ is the increment of the nodal variables, (·)n denotes values at time t = tn,

i(·) denotes values at the ith iteration and

iHn =
1

θ∆t
M + iKn + C + S (13)
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irnt := Mφ̇φφφφφφφφφφφφφ+ [iKn + C + S]iφφφφφφφφφφφφφφn+θ − ifn (14)

In Equations (13) and (14), θ is a non dimensional time parameter (0.5 < θ ≤ 1 is

required for the integration scheme to be unconditionally stable [12, 76, 77]).

The non-linearity of K is due to its dependance with φ when the equations are stabilized

with the FIC procedure [65].

In Equation (14) we define φ̇φφφφφφφφφφφφφ =
φφφφφφφφφφφφφφn+θ−φφφφφφφφφφφφφφn

θ∆t .

From the value of ∆φφφφφφφφφφφφφφ obtained from Equation (12) we compute the value of φφφφφφφφφφφφφφn+θ at

the i+ 1 iteration as

i+1φφφφφφφφφφφφφφn+θ = iφφφφφφφφφφφφφφn+θ + ∆φφφφφφφφφφφφφφ (15)

The iterative solution at tn+1 is obtained as

i+1φφφφφφφφφφφφφφn+1 =
1

θ
i+1φφφφφφφφφφφφφφn+θ +

(
1− 1

θ

)
φφφφφφφφφφφφφφn (16)

The iterations proceed until convergence is achieved for both the unknown field φ and

the residual rt measured in a L2 norm. A detailed explanation of each component of

Equations (13) and (14) can be found in [65].

3. Semi-Lagrangian approach

Although good results were obtained in [65] when solving the advection-diffusion-

absorption equations, it was observed that excessive diffusion was obtained for problems

involving high-Péclet numbers. This was the motivation for using the Lagrangian PFEM2

[27] to solve this type of problems, in view of its particular feature of non adding numeri-

cal diffusion for the advective problem. PFEM2 can be understood as a splitting method,

which uses a set of particles to solve the pure convective transport problem and a finite

element mesh to solve the rest of the transport equations. In our work the PFEM2 is

used to solve the advection equation. Following that, the diffusion-absorption equations

are solved with the FIC-FEM Eulerian strategy.

Let us start by rewriting the transport balance Equation (1b) using the total time

derivative as

rt := ρc
Dφ

Dt
−∇TD∇φ+ sφ−Q = 0 (17a)

Dx

Dt
= v (17b)
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Equation (17a) can be integrated using the trapezoidal rule explained in Section (2.3).

Due to the dependence with Equation (17b), a coupling between the time integration of

both equations shall be defined.

3.1. Advection step

Let us define a set of particles in the same domain as the finite element space, where

each particle stores the point concentration of the property φp = φ(xp). Since the variables

are not known for any arbitrary time t, but only for the discrete time steps 1, 2 . . . n, n+

1 . . . defined in Section (2.3), the advection of a particle can be approximated using a

θ-family discretization as:

xn+1
p = xpn + (1− θ)

∫ tn+1

tn

vn(xtp)dt+ θ

∫ tn+1

tn

vn+1(xtp)dt (18)

If the velocity field is known, the system becomes explicit and the problem is reduced

to moving the particles along the streamlines. The problem is solved using an explicit

forward integration (θ = 0) with substepping [30]. This method, also known as XIVAS

[29][28], was initially applied to a variable velocity field.

3.2. Projection

When solving the advective step in Equation (17a), the particles concentration at xn+1
p

is the same as at the onset of the time step (xnp ). This is equivalent to say that the advective

step assumes Dφ
Dt = 0. This modification in the field described by the particles needs to

be transferred into the finite element space. As usual in particle-based techniques, such

as PFEM, a projection procedure is used to transfer the information from the particles to

the finite elements in the underlying mesh. In our work we use

φ∗ = L(φp) (19)

where L is the projection operator from the particles to the finite element space and

φ∗ is the result of the advection at the time step n+ 1. In this case, a first order explicit

projection has been used and all the particles in the elements surrounding a node contribute

to that node, i.e.

φ∗i =
ΣeΣpewpφp
ΣeΣpewp

with wp = Nei(xp) (20)

where i denotes the node and e the elements sharing the node.
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3.3. Diffusion-absorption stage

Once the advection problem is solved explicitly in the particles and the results are

transferred to the mesh nodes, the lagrangian residual (Equation (17a)) is solved in a

fixed grid with a FIC-FEM Eulerian technique. The spatial discretization and the time

integration scheme follows the procedure explained in Section (2.3). Details are given in

[65].

Note that the advective term C from Equation (14) vanishes as advection is modelled

with the Lagrangian approach and the time derivative φ̇ denotes now the total derivative

(Equation (17a)).

The total time derivative is computed as

φ̇ =
φn+θ − φ∗

θ∆t
(21)

Equation (21) includes the contribution of the advection computed with the particles.

As explained in Section 3.1, the advection is calculated separately from the diffusion

and the absorption with the PFEM2 procedure. As the equations solved with an Eulerian

approach are free from advective instabilities, this splitting simplifies the equations in the

following way. The parameter hv, which helps solving global advective instabilities is set

to zero as the advection is calculated through a particles method. hsc, which is used to

attenuate Gibbs oscillations that appear along characteristic layers is also set to zero as

these oscillations do not appear in the PFEM2 method. Finally, the advective components

of hr, are set to zero as the velocity is computed in previous steps and does not intervene

in the diffusion-absorption stage. The characteristic length parameter from Equation (11)

needed for the FIC–FEM Eulerian solution is then computed as

h = hr =
2

rt
Ds∇φ (22)

where matrix Ds takes care of the instabilities induced by the irregularity of the tri-

angular mesh near boundaries that develop parabolic layes [64].

The new characteristic length (Equation (22)) leads to the disappearance of the non-

linearity seen in Equations (13) and (14), which simplifies the resolution of the advection-

diffusion-absorption equation.
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3.4. Particles update

The last step of the PFEM2 algorithm is to add the contribution of the solution

of Equation (17a) to the particles. To avoid the accumulation of projection errors and

additional diffusion, the information from the particles is updated using an incremental

scheme. This step only involves the evaluation of the unknown at each particle position

in the finite element mesh as:

φn+1
p = φnp + φ(xn+1

p )− φ(x∗
p) (23)

The basic steps of the PFEM2 procedure can be seen in Figure 1.

(a) Explicit advection stage using particles

(in red). Next, the particles’ information is

transferred to the mesh nodes (in blue).

(b) Diffusion-absorption stage. Contribu-

tion of the finite element nodes to the parti-

cles.

Figure 1: Illustration of the two main steps of the PFEM2 framework.

Properties of the PFEM2 procedure

Apart from removing the numerical diffusion added from the FEM Eulerian approach,

PFEM2 has proven to be very accurate when large time-steps and/or coarse meshes are

used [27]. However, due to the projection of the information, as well as the updating of the

particles, the method does not guarantee mass conservation. In Section 4.1 we integrated

the concentration value to assess the algorithm’s mass conservation in the domain after

15 s of simulation and we observed negligible mass changes. This is distinct feature of

PFEM [50] and will be studied in further publications. Also, the semi-Lagrangian method

removes non-linearities, as explained in Section 3.3.

4. Examples

We present five examples of application of the semi-Lagrangian formulation: the trans-

port of a concentration of a solute in a fluid domain (both in 2D and 3D) and three
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advective–diffusive–absorptive problems.

4.1. 2D transport of a concentration

4.1.1. Introduction

We study the evolution of an initially point-like concentration of solute as it is trans-

ported and diffused from a point source in a fluid with a known velocity field. The

main interest is to compare the accuracy of a purely Eulerian approach versus the semi-

Lagrangian method previously described from low to very high Péclet numbers.

We will consider a uniform velocity field parallel to the x-axis of 1 m/s. Two different

values will be considered for the diffusivity: D = 0.1 m2/s for the low-Péclet (Pe = 2.5)

example and D = 0 m2/s for the high-Péclet one (Pe→∞). The Péclet number is defined

as follows: Pe = ul
2D , where u is the horizontal velocity, l is the characteristic length and

D is the normalized diffusivity. The examples have been run with ρc = 1 J/m3K. The

analysis domain (x, y) = [0, 35] × [0, 10] m is discretised in a regular mesh of 3-noded

triangles with a characteristic length l = 0.5 m, which gives us a domain of 2× (70× 20)

elements.

The Dirichlet boundary condition φ = 0 kg/m2 at x = 0 m and the initial concentration

φ(x0, y0, 0) = 1000 kg/m2 at x0 = (2, 5) m are considered. Figure 2 shows a diagram of

the whole set-up (note that the point (2, 5) is made to coincide with a mesh node).

Figure 2: 2D transport of a concentration. Finite element mesh. The initial concentration is

depicted in red at point (2, 5)

For the numerical solution, the initial condition is defined by the value of the concen-

tration at a single node (φ0 = 1000 kg/m2 at node (2, 5), 0 everywhere else) as a single

shape function whose maximum concentration coincides with φ0. This corresponds to a

total mass of 250 kg for the numerical simulation.

The numerical solution is compared to an analytical solution that consists in the trans-

port and diffusion of a Gaussian density distribution [37]. The initial conditions in this
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case are defined as

φ(x, y, t) =
φ0

L34πDt̂
e−A (24a)

with

A =
1

4Dt̂

{
[x1 − (x0

1 + u1(t̂− t0))]2 + [x2 − (x0
2 + u2(t̂− t0))]2

}
(24b)

where t0 is calculated such that at t̂ = t0, φ corresponds to a Gaussian whose height

is equal to 1000 kg/m2 and is centered at the node (2, 5) and such that the initial total

mass coincides with the one imposed as the initial condition in the numerical solution.

φ0 is the initial value of the mass that is dropped at x0 and t = t̂− t0 = 0 s, which can

lead to small discrepancies in the results as there is a slight inaccuracy in the definition of

the initial conditions, although this difference will dissipate exponentially in time.

L3 is the vertical dimension of the analysis domain (we have taken L3 = 1), u1 and u2

are the horizontal and vertical components of the velocity vector and D is the normalized

diffusivity. In all cases, the density ρ and the specific flux c are chosen such that ρc = 1

J/m3K. We have also assumed an isotropic diffusion. Several cases have been studied to

see the effect of the advective and diffusive terms on the result.

The time-integration parameters are chosen as θ = 0.5 and ∆t = 0.5 s. Taking into

account these parameters the Courant number is C = 1.

4.1.2. Results

The results obtained with the Eulerian and the semi-Lagrangian methods are presented

next.

• Eulerian and semi-Lagrangian solutions for Pe = 2.5

We have compared the Eulerian and semi-Lagrangian solutions with the analytical

one. Numerical results show a slight difference of concentration versus the analyti-

cal values. While in the Eulerian method a maximum concentration value of 13.234

kg/m2 is obtained, using the semi-Lagrangian approach this value is 13.085 kg/m2.

The maximum analytical value for the same case at t = 15 s is φ = 13.089 kg/m2

(Figure 3e), which represents a percentual gain of 1.11% in the Eulerian case (Fig-

ure 3a) and 0.03% loss in the semi-Lagrangian one (Figure 3c). In both cases, the
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concentration difference is small and thus we can conclude that both methods work

well for this Péclet number.

Looking at the concentration contour at Figure 3a, we can observe a small deforma-

tion of the resulting shape for the Eulerian case due to the slightly higher numerical

diffusion.

(a) Eulerian solution for Pe = 2.5. (b) Eulerian solution for Pe→∞.

(c) Semi-Lagrangian solution for Pe = 2.5. (d) Semi-Lagrangian solution for Pe→∞.

(e) Analytical solution for Pe = 2.5. (f) Analytical solution Pe→∞.

Figure 3: 2D transport of a concentration. Eulerian, semi-Lagrangian and analytical results

compared at t = 15s.

• Eulerian and semi-Lagrangian solutions for Pe→∞

In this case, the effect of the diffusive component vanishes. The Eulerian result in

Figure 3b shows a solution which is not representative of the analytical one and keeps

on diffusing as the simulation advances. On the other hand, the semi-Lagrangian

result in Figure 3d, shows a concentration transport without any loss in time, as

in the analytical solution for the same Pe (Figure 3f). The maximum value of the

semi-Lagrangian method is 626.55 kg/m2, which corresponds to the projection of the
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maximum concentration on the mesh from the particles, that is, there is a diffusion

towards the adjacent elements from the point where the concentration is assigned.

The sum of the concentrations on these adjacent elements coincides with the initial

maximum value of 1000 kg/m2.

4.1.3. Sensitivity analysis

In this subsection we run several cases varying the value of the diffusivity between the

lowest and highest Péclet number of the examples (from Pe = 2.5 to Pe→∞).

Table 1 presents the maximum concentration values for each of the methods with

different diffusivities. The reference values obtained with the analytical solutions are

included for comparison.

Maximum concentration value [kg/m2]

Analytical Semi-Lagrangian Eulerian

Pe

→ ∞ 1000.00 626.55 129.92

2.5e06 999.92 626.53 129.92

2.5e05 999.25 626.36 129.90

2.5e04 992.52 624.61 129.73

2.5e03 929.89 607.60 128.03

2.5e02 570.131 470.390 113.910

2.5e01 117.098 118.130 65.081

4.55 23.570 25.835 24.687

3.33 17.360 17.372 17.410

2.50 13.089 13.085 13.234

Table 1: 2D transport of a concentration. Maximum concentration values of each method in

different values of Péclet.

Clearly, the semi-Lagrangian approach, which benefits from the particle Lagrangian

motion, works very well for purely advective as well as for the range of Péclet numbers

considered in this study.

On the other hand, we observe that the Eulerian FIC-FEM method solves stability

problems, especially in the most diffusive cases. The solutions coincide with the semi-

Lagrangian results.

Figure 4 shows the maximum concentration in terms of the Péclet number. Note how

the Eulerian approach presents a huge numerical diffusion for high-Péclet numbers. The
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semi-Lagrangian approach provides more accurate results. The difference between the

analytical solution and the semi-Lagrangian results is assessed in Section 4.1.4.

Note that for Pe . 2.5, the Eulerian solution begins to gain relevance and the results

are comparable to those obtained with the semi-Lagrangian approach.

Figure 4: 2D transport of a concentration. Comparison of the analytical, semi-Lagrangian and

Eulerian methods in terms of the Péclet number.

4.1.4. Numerical diffusion analysis

This section studies the examples of Section 4.1.2, which are now plotted along time

to see their relative impact in the numerical diffusion.

Figure 5 shows that, although the first four seconds of the example differ slightly, the

results are quite identical at t = 15 s.

The example with Pe → ∞ is shown in (Figure 6). We can see that the semi-

Lagrangian method presents no diffusion loss whatsoever in the maximum transported

value, except from that introduced by the projection of the nodal concentration to the

adjacent elements.
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Figure 5: 2D transport of a concentration. Comparison of the maximum transported value from

t = 0 s to t = 15 s using the semi-Lagrangian and Eulerian methods (Pe = 2.5).

Figure 6: 2D transport of a concentration. Comparison of the maximum transported value from

t = 0 s to t = 15 s using the semi-Lagrangian and Eulerian methods (Pe → ∞).

4.2. Pure 3D advection of a spherical concentration

A 3D problem equivalent to the point concentration in 2D has been studied in this

section. It consists in the pure advective transport (Pe → ∞) of a uniform spherical
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blob of concentration. The spherical blob has a radius of 0.8 m and is initially centered

at (x, y, z) = (2.5, 2.5, 2.5). The computational domain is the extruded version of the

one considered in the previous 2D example, with a velocity of 1 m/s along the x-axis,

a normalized diffusivity D = 0.0 m2/s and a normalized absorption R = 0.0 s−1. The

analysed domain (x, y, z) = [0, 15] × [0, 5] × [0, 5] m is discretised into a regular mesh of

(150 × 50 × 50) 4-noded linear tetrahedra. The schematics of the problem are shown in

Figure 7. A middle section of the volume at t = 0 s can be seen in Figure 8a.

Figure 7: Sphere transportation problem set-up.

(a) Middle volume section at t = 0 s. (b) Sphere transport at t = 5 s.

Figure 8: Sphere transport. Middle plane cut from t = 0 s to t = 5 s (Pe→∞).

The results at t = 5.0 s show no concentration loss except from the one derived from

the projection of the particles to the elements in the first step (Figure 8b).

In Figure 9 a 3D view of the transported sphere can be seen.
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Figure 9: 3D view of the sphere at t = 5 s.

4.3. Transient advection–diffusion–absorption problem with sharp boundary layers

The analysis domain (x, y) = [0, 8]×[0, 8] is discretised into a regular mesh of 2×(8×8)

3-noded triangles of unit rectangular side (l = 1) (Figure 10). The advection, diffusion

and absorption coefficients are chosen as u = 8 m/s, D = 2 m2/s and R = 2.0 s−1. The

transported variable is the mass, in Kg and ρc = 1 J/m3K. The schematics of the problem

can be seen in Figure 10. The problem data yields a Péclet number of Pe = 2.0 and a

Damköhler number of Da = 150.0. The Damköhler number is defined as Da = sl
u , where

s is the reaction parameter, l is the characteristic length and u the velocity.

The Dirichlet boundary conditions φ(x = 0) = 3 and φ(x = 8) = 8 are employed.

The initial solution is chosen to have a linear profile. The transient solution was obtained

with the implicit iterative scheme explained in Section (2.3) with θ = 1.0 and a time

step of ∆t = 0.0625s. This corresponds to an element Courant number C = 0.5. An

exponential layer gradually develops at the right boundary which is attenuated thanks to

the absorptive stabilization introduced by the FIC procedure (Figure 11).
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Figure 10: Transient advection–diffusion–absorption problem. Square domain with linear velocity

and zero source.

(a) Result without absorption stabilization. (b) Result with absorption stabilization.

Figure 11: Transient advection–diffusion–absorption with sharp boundary layer. Results at t =

2 s.

4.4. Transient advection-diffusion-absorption problem with a manufactured solution

This example consists in solving a low-diffusive advective-absorptive problem using the

manufactured solution stated in Equation (25). This problem was solved by Duan et al.

[14, 15].
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Introducing Equation (25) into Equation (1b) yields the non-homogeneous source-like

term Q that is used, in turn, to solve the advective–diffusive–absorptive equation with the

semi-Lagrangian procedure.

We will consider a uniform velocity field of u = (u1, u2)T := (1/2,
√

3/2)T . A value of

D = 1e-2 m2/s and R = s/ρc = 10i 1/s with i = 2, 3, 4 have been taken.

These cases have been run with ρc = 1 J/m3K. The analysis domain Ω := (x, y) =

[0, 1]× [0, 1] m is discretised in a regular mesh of 2× (1/2i × 1/2i) 3-noded triangles with

a characteristic length l = 1/2i m, being i = 5, 6, 7, 8.

A Dirichlet boundary condition of φ = 0 kg at the whole boundary is considered. The

time-integration parameters are chosen as: θ = 1.0 and ∆t = 1e-4 s.

An image of the numerical result and the exact solution can be seen in Figure 13.

Excellent agreement is obtained.

Table 2 shows the Damköhler numbers corresponding to each of the cases considered

in the study.

Table 3 shows the root-mean-square error for each case analyzed. Taking the last two

values (belonging to the finest mesh examples), the convergence has also been calculated.

Damköhler numbers

R = 100 1/s R = 1000 1/s R = 10000 1/s Péclet numbers

l = 1/32 m 3.13 31.25 312.50 1.56

l = 1/64 m 1.56 15.63 156.25 0.78

l = 1/128 m 0.78 7.81 78.13 0.39

l = 1/256 m 0.39 3.91 39.06 0.20

Table 2: Manufactured advective-diffusive-absorptive problem. Damköhler and Péclet numbers

for each of the cases studied.

Figure 12 displays a graph of the results of Table 3.
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RMSE

R = 100 1/s R = 1000 1/s R = 10000 1/s

l = 1/32 m 0.00906573 0.00842561 0.00836711

l = 1/64 m 0.00420981 0.00370434 0.00362029

l = 1/128 m 0.00153896 0.00127547 0.00122659

l = 1/256 m 0.00056077 0.00038503 0.00036025

Convergence order 1.46 1.73 1.77

Table 3: Manufactured advective-diffusive-absorptive problem. Root-mean-square error (RMSE)

and order of convergence for different values of R = s/ρc.

(a) Numerical solution. (b) Analytical solution.

Figure 13: Advective-diffusive-absorptive problem with manufactured solution. Elevation plot at

t = 0.08 s with a h = 1/256, D = 1e-2 m2/s and a R = 104 1/s giving Pe = 0.20 and Da = 39.06.

4.5. Manufactured transient advection–diffusion–absorption hump problem

This last example, taken from [14], consists in a hump moving in a domain changing

its height periodically leading to the appearance of a strong interior layer adjacent to the

hump walls. The exact solution is given by Equation (26). This solution is introduced into

Equation (1b) to yield the manufactured unhomogeneous source-like function Q used for

solving the advection-diffusion-absorption equation with the semi-Lagrangian procedure.

φ(t, x, y) = 16 sin(πt)x(1− x)y(1− y)×(
1

2
+

arctan[2ε−1/2(0.252 − (x− 0.5)2 − (y − 0.5)2)]

π

)
(26)

We have considered a uniform velocity field of u = (2, 3)T . A value of D = 1e-6

m2/s has been chosen for the normalized diffusivity and R = 1000 1/s for the normalized

absorption.
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Figure 12: Manufactured advective-diffusive-absorptive problem. Root-mean-square error versus

the characteristic length l. Lines with slope = 1 and 2 are plotted for reference.

These cases have been run with ρc = 1 J/m3K. The analysis domain Ω := (x, y) =

[0, 1] × [0, 1] m is discretised in a regular mesh of 2 × (64 × 64) 3-noded triangles with a

characteristic length l = 1/64 m.

A Dirichlet boundary condition φ = 0 kg at ∂Ω has been considered. The initial

condition is φ = 0 kg at t = 0 s. The time-integration parameters are chosen as: θ = 0.8

and ∆t = 1e-3 s.

Results of the simulation can be seen in Figure 14.

23



(a) Numerical solution. (b) Analytical solution.

(c) Top view of the numerical solution. (d) Top view of the analytical solution.

Figure 14: Manufactured hump problem. Hump geometry at t = 0.5 s with h = 1/64, D = 1e-6

m2/s and R = 1000 1/s, which corresponds to Pe = 1.56e4 and Da = 15.63.

The results show that the solution is stable and does not exhibit spurious oscillations

near the interior layer region. Some minor oscillations – ≈ 2% of the maximum value –

can be spotted on the top-right side of the domain.

A qualitative comparison with the examples in [14] shows that the semi-Lagrangian

procedure is highly competitive with the best methods in that paper.

5. Concluding remarks

We have presented numerical method that combines a FIC-FEM stabilized Eule-

rian procedure with a semi-Lagrangian PFEM2-based approach that splits the advec-

tion–diffusion–absorption equation into a combination of a pure advective problem and a

diffusive-absorptive one. The goal is the solution of advection-diffusion-absorption trans-

port problems at high-Péclet and high-Damköhler numbers.

The presented method involves a more complex algorithm than the one in [65] but re-
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moves the non-linearity introduced by the previous stabilization. Low numerical diffusion

is achieved due to the use of a Lagrangian method in the advection step. However, mass

conservation in the domain is not guaranteed.

We first solved a 2D pure transport example to assess the behaviour of the mixed

formulation when compared to an Eulerian one from advection-dominated cases to highly

diffusive ones. The results show that, although the Eulerian base formulation behaves well

for highly diffusive problems, it fails to accurately transport the heat / mass concentration

in problems with high-Péclet numbers (Pe > 5.0) due to the high numerical diffusion in-

troduced by the formulation. In contrast, the semi-Lagrangian approach remains accurate,

without any numerical loss, even for Pe→∞.

We also have solved the transport of a sphere of heat / mass concentration and verified

that the semi-Lagrangian approach is just as accurate for 3D problems.

After that, we studied three problems with higher Damköhler numbers in order to verify

that the semi-Lagrangian method gives accurate and stable results for highly absorptive

problems.

The first of these examples showed the benefits of the absorption stabilization in a

problem where a boundary layer develops at the boundary due to the effect of absorption.

Furthermore, our proposed algorithm was tested using two complex benchmarks from the

literature with known analytical solutions. Its performance was satisfactory in both cases,

indicating that it is a very robust method, suitable for its use for the solution of general

advection-diffusion-absorption problems.
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