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Abstract

Working with the wave equation in mixed rather than irreducible form allows one to directly account for both,
the acoustic pressure field and the acoustic particle velocity field. Indeed, this becomes the natural option
in many problems, such as those involving waves propagating in moving domains, because the equations can
easily be set in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Yet, when attempting a standard
Galerkin finite element solution (FEM) for them, it turns out that an inf-sup compatibility constraint has
to be satisfied, which prevents from using equal interpolations for the approximated acoustic pressure and
velocity fields. In this work it is proposed to resort to a subgrid scale stabilization strategy to circumvent
this condition and thus facilitate code implementation. As a possible application, we address the generation
of diphthongs in voice production.

Keywords: Voice production, Diphthongs, ALE mixed wave equation, Stabilized finite elements methods,
Subgrid scale stabilization

1. Introduction

The wave equation in mixed form refers, in classical acoustics, to the continuity and momentum equations
obtained after linearization of the compressible Navier-Stokes equations for an inviscid homentropic fluid.
In contrast to the wave equation in irreducible form, it allows one to describe both, the propagation of
acoustic pressure waves and of the acoustic particle velocity as well. This becomes of importance in many
diferent topics which range from intensimetry techniques [1], acoustic wave propagation in ducts [2] or the
computation of radiation impedances [3]. Moreover, the wave equation in mixed form also allows one to
describe related phenomena in other areas of physics such as elastodynamics or the behavior of waves in
shallow waters without convection (see e.g., [4]).

In this work we are interested in numerically solving the problem of wave propagation in moving domains.
In particular, our final goal is to be able to produce diphthongs. Though many computational efforts have
been placed to solve the fluid-structure problem of human phonation (see e.g., [5, 6, 7, 8, 9]), to the best
of our knowledge little has been done with regard to vocal tract acoustics in moving domains, as it is the
case for diphthong or syllable generation. Generating diphthongs requires solving the wave equation in a
human vocal tract that evolves from the shape, say for instance of vowel /a/, to the shape of vowel /i/,
thus producing the sound /ai/. It is to be noted that for the numerical generation of vowels and diphthongs
the acoustic pressure is the variable of interest, so most works to date concerning the generation of vowels
directly deal with the FEM solution of the irreducible wave equation [10, 11, 12, 13, 14], or with its time
Fourier counterpart, the Helmholtz equation [15, 16, 17, 18]. Occasionally, the wave equation in mixed form
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has also been solved [19]. In fact, it will be shown that the latter becomes the most natural option when
dealing with acoustic wave propagation in moving domains. In such cases the flow continuity and momentum
equations have to be expressed in an Arbitrary Lagrangian Eulerian (ALE) [20, 21] frame of reference, rather
than in a pure Eulerian one, and this is not straightforward for the irreducible wave equation.

From a numerical and analytical point of view, there are some important differences between the mixed
wave equation and its ALE counterpart. Their FEM solutions rely on discretizing the corresponding weak
forms. In the case of the variational mixed wave equation, a compatibility inf-sup condition has to be satisfied
for the problem to be well-posed. This condition is not directly inherited by the standard Galerkin FEM
approach and it becomes necessary to make use of different interpolation spaces for the acoustic pressure and
particle velocity to attain a solution free of spurious oscillations [22, 23, 24]. Alternatively, one can resort
to stabilized FEM methods, such as the residual based multiscale methods [25, 26, 27], which allows one
to use the same interpolation for the acoustic pressure and particle velocity approximations [4]. A detailed
numerical analysis reveals that in this case the solution becomes bounded by the problem data in a new
energy norm that contains all designed stabilization terms [28]. The situation becomes more intricate for
the ALE wave equation in mixed form. This equation has the same mathematical structure as the linearized
modified Boussinesq equation for shallow waters with convection. Numerical experiments show that the
Galerkin FEM solution for the latter exhibits strong high-frequency oscillations if equal interpolations are
used for the gravity waves depth and velocity [29, 30]. Again these oscillations can be overcome if one draws
on stabilization strategies [31, 32]. In this work we will present a subgrid scale stabilization FEM approach
tailored to the ALE wave equation in mixed form, following the main lines in [32]. It will be shown that
the proposed strategy will allow us to use equal interpolations for the acoustic pressure and velocity, and
prevent the FEM solution to blow up. It is to be noted however, that contrary to the variational mixed wave
equation, little is know with regard to the well-posedness of the variational continuous and discrete ALE
mixed wave equation. Actually, and as far as the authors know, to date only very partial results have been
proved showing that the continuous linearized two-dimensional shallow water equations (and by extension
the ALE mixed wave equation) are well posed, and only for some specific boundary conditions in a very
simple rectangular geometry [33].

This paper is organized as follows. In section 2 the wave equation in mixed form is set in an ALE
framework and its variational formulation is derived. In section 3, the proposed stabilized FEM approach to
solve the latter is presented. Special emphasis is placed on the design of the so called matrix of stabilization
parameters. Once presented the fully discrete problem in time and space, some numerical examples are
provided in section 4. First, a test is made to check the performance of the stabilized formulation. It consists
of plane waves propagating in a straight duct with time varying length due to the periodic movement of the
exit boundary. Second, an example consisting in the production of diphthong /ai/ is presented. Not only
waves can be visualized propagating inside the vocal tract and exhibiting the right spectrogram, but also an
audio file corresponding to /ai/ can be generated by collecting the pressure time evolution at a target node.

2. Problem statement

2.1. The mixed wave equation in an ALE framework

The linearized continuity and momentum equations that describe sound propagation in a stationary
inviscid fluid read, in a spatial (Eulerian) frame of reference,

1

ρ0c20
∂tp+∇ · u = Q, (1a)

ρ0∂tu+∇p = f , (1b)

where p(x, t) stands for the acoustic pressure and u(x, t) for the acoustic particle velocity. Q(x, t) represents
a volume source distribution and f(x, t) an external body force per unit volume. The parameters c0 and
ρ0 respectively denote the speed of sound and the mean air density, and ∂t is used to denote the first order
time derivative. Equation (1) is sometimes referred to as the wave equation in mixed form. Its standard
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irreducible counterpart for the acoustic pressure can be derived subtracting the divergence of (1b) from ρ0
times the time derivative of (1a). This results in

1

c20
∂2
ttp−∇

2p = ρ0∂tQ−∇ · f . (2)

In this work we are interested in solving the mixed wave equation (1) in a domain with moving boundaries.
This poses some problems to the Eulerian description of the equations given that one has to take into account
the relative movement between the fluid particles and the moving domain. Moreover, dealing with the
dynamic boundaries is not straightforward in the Eulerian framework and requires some special approaches
such as space-time finite element methods. Yet, setting the mixed wave equation in a pure Lagrangian
frame of reference is not exempt of difficulties because computationally expensive mesh rezoning becomes
often necessary. An approach that provides a good balance overcoming some of the complications of both
descriptions is the so called quasi-Eulerian ALE formulation (see e.g., [34] and references therein). In this
case, the time derivative of any fluid property, say g, is expressed in a referential frame moving with the
domain, while the spatial derivatives of g are kept in an Eulerian frame [20, 21]. To obtain the ALE
expressions for the continuity and momentum equations in (1), we proceed by replacing

∂tg ← ∂tg − ud · ∇g (3)

in them, with ud(x, t) denoting the domain velocity. This provides the ALE wave equation in mixed form

1

ρ0c20
∂tp−

1

ρ0c20
ud · ∇p+∇ · u = Q, (4a)

ρ0∂tu− ρ0 ud · ∇u +∇p = f . (4b)

In practice, when the equations get discretized ud(x, t) corresponds to the interpolation from the node
mesh velocities, and ud(x, t) will be hereinafter referred to as the mesh velocity.

It should be noted that if one attempts at combining (4a) with (4b) to get an ALE irreducible equation
for the acoustic pressure, following the procedure employed to obtain (2) but using the relation (3) instead,
it is not possible to get rid of the acoustic particle velocity as one obtains

1

c20
∂2
ttp−∇

2p−
1

c20
∂tud · ∇p−

2

c20
ud · ∂t∇p+

1

c20
ud · ∇ (ud · ∇p) + ρ0(∇ud)

⊤ : ∇u

= ρ0∂tQ− ρ0ud · ∇Q−∇ · f . (5)

Therefore, the most natural option to deal with wave propagation in moving domains seems to be that
of directly dealing with the wave equation in mixed form. Though it is possible to factorize the wave
equation (2) as (− 1

c2
0

∂2
ttp+∇

2p) = ( 1

c0
∂t +∇)(−

1

c0
∂t +∇)p, one should be prevented from substituting (3)

in it. As explained at the beginning of this section, equation (2) is obtained from the mass and momentum
conservation equations (1a) and (1b) expressed in an Eulerian frame of reference, not an ALE one. It would
then be erroneous to directly use (3) in it.

2.2. Variational formulation

Let us next suppose that (4) is to be solved in a computational domain Ω with boundary ∂Ω. ∂Ω is made
of the union of two disjoint sets Γp and Γu, the pressure being prescribed on the former and the velocity
on the latter. For the ease of exposition we will consider homogeneous Dirichlet conditions on them, i.e.,
p = 0 on Γp, t > 0 and u · n = 0 on Γu, t > 0. We also consider initial conditions p(x, 0) = p0(x) and
u(x, 0) = u0(x) in Ω.

The weak formulation of (4) is found as usual by multiplying (4a) with a scalar test function q, (4b) with
a vector test function v, and integrating over the computational domain Ω. If we denote the integral between
two arbitrary functions f and g as (f, g) :=

∫

Ω
fgdΩ, assuming ud to be smooth enough, the variational
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problem can be formulated as that of finding p ∈ C1([0, T ], L2) ∩ C0([0, T ], Vp) and u ∈ C1([0, T ],L2) ∩
C0([0, T ],Vu) such that

1

ρ0c20
(∂tp, q)−

1

ρ0c20
(ud · ∇p, q) + (∇ · u, q) = (Q, q) ∀ q ∈ Vp, (6a)

ρ0(∂tu,v)− ρ0(ud · ∇u,v) + (∇p,v) = (f ,v) ∀ v ∈ Vu, (6b)

with Vp = {p ∈ H1(Ω)| p = 0 on Γp} and Vu = {v ∈ L2(Ω)|∇·v ∈ L2(Ω),ud ·∇v ∈ L2(Ω),v ·n = 0 on Γu}.
Note that (·, ·) may either represent a scalar product in L2(Ω) (also in L2(Ω)), or a duality pairing depending
e.g., on the functional setting of the forcing terms.

With regard to the variational formulation in (6), it should be noted that:

• The Dirichlet boundary conditions (homogeneous in this case) for the acoustic pressure and velocity
in (6) are to be strongly imposed on ∂Ω. One could alternatively weakly impose the pressure and
strongly impose the velocity integrating by parts the term (∇p,v), or viceversa, integrating the term
(∇ · u, q). If the ALE terms are missing (ud = 0), the standard wave equation in mixed form is
recovered. Integration of the terms (∇p,v) or (∇ ·u, q) noticeably changes in that case the functional
framework where the solution for the acoustic pressure and particle velocity are to be found. When
attempting a numerical approximation to the corresponding variational forms by means of FEM, this
allows one either to obtain the same degree of accuracy for the pressure and the velocity, or to favor
one of them at the expense of the other [28].

• As quoted in the Introduction, the ALE wave equation in mixed form, (6), closely ressembles the
linearized modified Boussinesq equation for shallow waters. The Galerkin FEM solution for the latter
is known to suffer from strong high-frequency oscillations [29, 30] when using equal interpolations
for the gravity waves depth and velocity, but these can be overcome if one relies on stabilization
strategies [31, 32]. These stabilization methods also serve to deal with the convective nature of the
terms arising from the ALE formulation. Our next purpose will thus consist in designing an equivalent
stabilization for the ALE mixed wave equation.

3. Subgrid scale stabilized finite element method

3.1. Spatial discrete variational form

In this section we will present a subgrid scale stabilization FEM approach for the ALE wave equation
in mixed form, based on the variational multiscale method [25, 26]. This will avoid locking effects when
using the same interpolations for the acoustic pressure and velocity, as well as accounting for the treatment
of the convective terms arising from the ALE formulation. To do so we will closely follow the main lines
in previous works on stabilization of the wave equation in mixed form [4] and on the modified Boussinesq
equations [32].

First of all, let us rewrite problem (4) in compact matrix form as

µ∂tU +Ai∂iU = F , (7)

where the summation convention over repeated indexes is assumed when they run from 1 to the number of
spatial dimensions, which we assume to be 3 in what follows. The following identifications have been made,

U =









p
u1

u2

u3









, F =









Q
f1
f2
f3









, µ =









µp 0 0 0
0 µu 0 0
0 0 µu 0
0 0 0 µu









, A1 =









−µpud1 1 0 0
1 −µuud1 0 0
0 0 −µuud1 0
0 0 0 −µuud1









,

A2 =









−µpud2 0 1 0
0 −µuud2 0 0
1 0 −µuud2 0
0 0 0 −µuud2









, A3 =









−µpud3 0 0 1
0 −µuud3 0 0
0 0 −µuud3 0
1 0 0 −µuud3









.

(8)
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To ease the notation and to facilitate comparisons with the preceding work in [4] as well, we have introduced
the parameters µp ≡ (ρ0c

2
0)

−1 and µu ≡ ρ0 which fulfill c0 = (µpµu)
−1/2. udi, i = 1, 2, 3, denote the

components of the mesh velocity vector at each point, ud = (ud1, ud2, ud3)
⊤.

The variational formulation of (7) is found as usual, multiplying by a test function V and integrating
over the computational domain. If we define the spaces L ≡ L2×L2 and V ≡ Vp×Vu, the problem becomes
that of finding U ∈ C1([0, T ],L) ∩ C0([0, T ],V) such that

(µ∂tU ,V ) + (Ai∂iU , V ) = (F ,V ) ∀ V ∈ L ∩ V . (9)

The discretized conforming Galerkin FEM approach to the problem then consists in finding a finite element
solution Uh ∈ C1([0, T ],Lh ⊂ L) ∩C0([0, T ],Vh ⊂ V) that satisfies

(µ∂tUh,Vh) + (Ai∂iUh,Vh) = (F ,Vh) ∀ Vh ∈ Lh ∩ Vh. (10)

Here, Lh ∩ Vh is a finite space constructed from a finite element partition {Ωe} of Ω, with index e ranging
from 1 to the number of elements nel. Given the aforementioned problems with the Galerkin FEM formu-
lation (10), a variational multiscale stabilization approach is next introduced. This consists in splitting the
exact solution U into a finite element component Uh that can be resolved by the computational mesh, plus
a subscale U ′ which cannot be computed, and has to be somehow modeled. Substitution of U = Uh +U ′

into (10) yields two equations; the first one accounting for the large solvable scales is given by

(µ∂tUh,Vh) + (µ∂tU
′,Vh) + (Ai∂iUh,Vh) + (Ai∂iU

′,Vh) = (F ,Vh). (11)

Assuming quasi-static subscales (i.e., ∂tU
′ ≈ 0) and integrating by parts the last term in the l.h.s of (11)

results in

(µ∂tUh,Vh) + (Ai∂iUh,Vh)− (U ′,A⊤
i ∂iVh) = (F ,Vh). (12)

The second equation, governing the behavior of the static subscales, is given by

(µ∂tUh,V
′) + (Ai∂iUh,V

′) + (Ai∂iU
′,V ′) = (F ,V ′), (13)

which is nothing but the L2-projection of µ∂tUh+Ai∂iUh+Ai∂iU
′ = F onto the space of subscales. Using

P to denote this projection, (13) can be rewritten as

P(Ai∂iU
′) = P [F − (∂tUh +Ai∂iUh)] =: Rh, (14)

where we have defined the residual Rh of the finite element approximation onto the subscale space in the
last equality. As said, (14) is an equation for the subscales U ′ whose solution is unknown and has to be
modeled. A reasonable approximation is that of taking [4, 32] P(Ai∂iU

′) ≈ τ−1U ′, so that from (14)
U ′ = τRh, with τ standing for a symmetric, positive-definite matrix of stabilization parameters to be
determined. Substituting U ′ = τRh into the large scale equation (12) yields

(µ∂tUh,Vh) + (Ai∂iUh,Vh) +

nel
∑

e=1

(A⊤
i ∂iVh, τP [(∂tUh +Ai∂iUh)− F ])Ωe

= (F ,Vh). (15)

The first two terms in (15) correspond to the standard Galerkin FEM approach in (10), whereas the third
one is the additional stabilization term that facilitates using equal interpolations for the acoustic pressure
and acoustic particle velocity. Concerning the stabilized variational formulation we note that

• There exist different options for the projection operator P in the above expression. In the so called OSS
(Orthogonal Subgrid Scale) method [27, 35], the subscales are assumed to lay in a space orthogonal
to the finite element space so that P can be computed as P = I − Πh, Πh being the L2-projection
onto the finite element space, and I the identity matrix. Alternatively, in the more classical ASGS
(Algebraic Subgrid Scale) approach we simply take P = I over the space of finite element residuals.
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• The approximation for the subscales is local and these are assumed to vanish at the interelemental
boundaries. The integrals over the computational domain Ω that contain subscales are evaluated as a
summation of integrals over finite element domains Ωe.

• The integrals in the above variational formulations contain products of vector functions having the
dimensions [U⊤F ] ([·] is used to denote a dimensional group). Given that U⊤F = pQ+u1f1+u2f2+
u3f3 we require that [pQ] = [uifi]. This is the case for the ALE mixed wave equation as it can be
readily be checked that [pQ] = [uifi] = MLT−3, M , L and T respectively standing for dimensions
of mass, length and time. However, in most equations vector products of the type U⊤F are not well
defined and a rescaling of the differential equation becomes necessary for the variational form in the
compact matrix form to make sense [4, 32].

• To complete the weak formulation (15) it only remains finding an expression for the stabilization
matrix τ . This will be the subject of the next subsection.

3.2. The matrix τ of stabilization parameters

The procedure to find the stabilization matrix τ , to be described below, involves dealing with the norms
of the residual vector, which has dimensions of force, and of the subscale velocity vector. However, we
note that contrary to U⊤F , products like F⊤F or U⊤U are not dimensionally well defined. For instance,
F⊤F = Q2 + f2

1 + f2
2 + f2

3 but [Q2] 6= [f2
i ]. Analogously U⊤U = p2 + u2

1 + u2
2 + u2

3 and again, obviously,
[p2] 6= [u2

i ]. To correctly define these products we can introduce the weighting matrix [4] M ,

M =









mp 0 0 0
0 mu 0 0
0 0 mu 0
0 0 0 mu









, mp :=
√

µu/µp = ρ0c0, mu :=
√

µp/µu =
1

ρ0c0
, (16)

and readily check that F⊤MF ≡ |F |2
M

is now dimensionally correct because [mpQ
2] = [muf

2
i ] = ML−2T−3.

With regard to unknowns U , we have to use the inverse of the M matrix to get the right dimensions. In-
deed, it follows that U⊤M−1U ≡ |U |2

M−1 is well defined because [m−1
p p2] = [m−1

u
u2
i ] = MT−3. Thus

we can use M and M−1 to respectively define products between any two force vectors F⊤
1 MF2 and

unknowns U⊤
1 M−1U2. We can proceed similarly and define a M -weighted product between two arbi-

trary matrices B1 and B2 as B⊤
1 MB2. The squared M -pointwise norm of a matrix B will be given by

|B|2
M

= sup{X⊤B⊤MBX}, ∀ X; |X|M−1 = 1. Equipped with the weighting matrix M and for regular
enough force vector functions, we can also define the following vector function scalar products,

(U ,F ) =

∫

Ω

U⊤FdΩ, (F1,F2)M :=

∫

Ω

F⊤
1 MF2dΩ, (U1,U2)M−1 :=

∫

Ω

U⊤
1 M−1U2dΩ, (17)

whose induced norms will be denoted by ‖ · ‖, ‖ · ‖M and ‖ · ‖M−1 .
A suitable option to find the matrix of stabilization parameters τ is based on a Fourier analysis of the

equation for the subscales (14). Let use a hat symbol to denote Fourier transformed functions. Transform-

ing (14) to the wave number domain allows us to bound the norm of the Fourier transformed residual R̂h

as [4, 32]

‖R̂h‖
2
M
≤ | − i

1

h
k0jAj |

2
M
‖Û ′‖2

M−1 , (18)

with k0j standing for particular dimensionless wave number components that arise from the application of
the mean value theorem and that, in practice, will be treated as algorithmic constants (see below). On the
other hand, from the Fourier transform of the approximation for the subscales U ′ = τRh, we can get the
bound

‖R̂h‖
2
M ≤ |τ

−1|2M‖Û
′‖2

M−1 . (19)
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Therefore, (18) and (19) provide a means to get the stabilization matrix τ by equating |τ−1|2
M

with | −
i 1hk

0
jAj |

2
M

, i.e.,

sup
|X|

M−1=1

X⊤(τ−1Mτ−1)X = sup
|X|

M−1=1

X⊤(
1

h2
k0i k

0
jA

⊤
i MAj)X. (20)

In practice we can implement the above condition by computing the spectra of matrices τ−1Mτ−1 and
1

h2 k
0
i k

0
jA

⊤
i MAj with respect to matrix M−1, and then imposing their spectral radii to be the same.

Taking into account the definitions for Ai in (8) and for the scaling matrix M in (16), we get for the
problem at hand,

1

h2
k0i k

0
jA

⊤
i MAj =

1

h2
×









mu|k
0|2 + βp|k

0 · ud|
2 −αk01(k

0 · ud) −αk02(k
0 · ud) −αk03(k

0 · ud)
−αk01(k

0 · ud) mp(k
0
1)

2 + βu|k
0 · ud|

2 k01k
0
2mp k01k

0
3mp

−αk02(k
0 · ud) k01k

0
2mp mp(k

0
2)

2 + βu|k
0 · ud|

2 k02k
0
3mp

−αk03(k
0 · ud) k01k

0
3mp k02k

0
3mp mp(k

0
3)

2 + βu|k
0 · ud|

2









(21)

with

α ≡ (mpµp +muµu), βp ≡ mpµ
2
p, βu ≡ muµ

2
u
. (22)

Let us denote the spectrum of the generalized eigenvalue problem BU = λM−1U , λ being an eigenvalue,
by SpecM−1(B), and its spectral radius by ρ(B). The spectrum of k0i k

0
jA

⊤
i MAj can be analytically worked

out and is given by

SpecM−1(k0i k
0
jA

⊤
i MAj) =

{(

k0 · ud

c0
+ |k0|

)2

,

(

k0 · ud

c0

)2

,

(

k0 · ud

c0

)2

,

(

k0 · ud

c0
− |k0|

)2}

, (23)

where, as seen, the eigenvalue c−2
0 (k0·ud)

2 has multiplicity 2. As observed, the spectral radius of k0i k
0
jA

⊤
i MAj

is given by

ρ(k0i k
0
jA

⊤
i MAj) =

(

k0 · ud

c0
+ |k0|

)2

≡

(

C1|ud|

c0
+ C2

)2

. (24)

Since k0 is an unknown wave number, in the r.h.s equivalence we have taken k0 ·ud = |k0||ud| cos θ ≡ C1|ud|
and |k0| ≡ C2, C1, C2 being constants that should be determined from numerical experiments.

In order to get a simple expression for the stabilization matrix we may take it to be diagonal, τ =
diag(τp, τu, τu, τu). Given that the scaling matrix M in (16) is also diagonal, it follows that

SpecM−1(τ−1Mτ−1) =

{

(

mp

τp

)2

,

(

mu

τu

)2

,

(

mu

τu

)2

,

(

mu

τu

)2
}

. (25)

As we want to fulfill the condition

ρ(τ−1Mτ−1) = ρ(h−2k0i k
0
jA

⊤
i MAj), (26)

we may achieve that by forcing every eigenvalue of τ−1Mτ−1 in (25) to be equal to (24). This results in
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the following matrix of stabilization parameters

τ =









τp 0 0 0
0 τu 0 0
0 0 τu 0
0 0 0 τu









with,

τp =
c0h
√

µu/µp

C1|ud|+ c0C2

=
ρ0c

2
0h

C1|ud|+ c0C2

,

τu =
c0h
√

µp/µu

C1|ud|+ c0C2

=
h

C1ρ0|ud|+ ρ0c0C2

, (27)

and where use has been made of the expressions for mp and mu in (16). It is observed that:

• The matrix τ of stabilization parameters (27) is to be inserted into (15) to get the space stabilized
variational formulation proposed in this work.

• In the case of a static domain ud = 0 and we recover from (27) the stabilization parameters for the
standard wave equation in mixed form [4],

τp = Ch
√

µu/µp τu = Ch
√

µp/µu, (28)

with C standing for a constant. Depending on the values of µp and µu the mixed wave equation can
be used to describe phenomena in classical acoustics, elastodynamics or wave propagation in shallow
waters [4, 32].

3.3. Fully discrete problem

Up to now we have left the time continuous in the previous developments. As for the time discretization,
we equally split the time interval [0 T ] into N steps 0 < t1 < t2 < . . . < tn < . . . < tN ≡ T such that
∆t := tn+1 − tn is the time step size. For any time dependent function g(t), gn will stand for its evaluation
at tn = n∆t, or an approximation to it. The time evolution of (15) is then approximated using a second
order backward differentiation formula (BDF2). Let us identify δtg

n+1 := (1/2∆t)(3gn+1 − 4gn + gn−1) so
that the time discrete version of (15) becomes

(µδtU
n+1

h ,Vh) + (Ai∂iU
n+1

h ,Vh)

+

nel
∑

e=1

(A⊤
i ∂iVh, τP [(δtU

n+1

h +Ai∂iU
n+1

h )− F n+1])Ωe
= (F n+1,Vh). (29)

If we next focus on the OSS approach, corresponding to the choice P = I −Πh, we note that P(δtUh) = 0.
Then, the expanded fully discrete problem that results from taking into account (8) in (29) and using the
BDF2 scheme becomes

1

ρ0c20
(δtp

n+1

h , qh)−
1

ρ0c20
(ud · ∇p

n+1

h , qh) + (∇ · un+1

h , qh)

+

nel
∑

e=1

(τpP
[

−
1

ρ0c20
ud · ∇p

n+1

h +∇ · un+1

h −Qn+1
]

,−
1

ρ0c20
ud · ∇qh +∇ · vh)Ωe

= (Qn+1, qh), (30a)

ρ0(δtu
n+1

h ,vh)− ρ0(ud · ∇u
n+1

h ,vh) + (∇pn+1

h ,vh)

+

nel
∑

e=1

(τuP
[

− ρ0ud · ∇u
n+1

h +∇pn+1

h − fn+1
]

,−ρ0ud · ∇vh +∇qh)Ωe
= (fn+1,vh). (30b)

The projection P is understood to be applied to vectors or scalars, depending on the argument. Equa-
tion (29), with the stabilization parameters in (27), is the final fully discrete scheme in space and time
proposed in this work, which has been implemented for the numerical examples to be presented in the next
section.
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Figure 1: Sketch of the two dimensional duct example used to test the stabilized FEM approach for the ALE mixed wave
equation. ΓG stands for the boundary where the input signal ug(t) is introduced, ΓW the duct walls and ΓM the duct exit,
which moves sinusoidally backward and forward.

3.4. Motion of the computational mesh

With regard to the motion of the computational mesh, it will be prescribed by the known displacement
at the domain boundaries. The motion of the boundary nodes becomes smoothly transmitted to the inner
mesh nodes through diffusion, i.e. using the standard strategy of solving the Laplacian equation for the
node displacements w(x, t). Therefore, at each time step of (29) we will solve the additional equation

∇2wn+1 = 0 in Ω, t = tn+1, (31a)

with boundary conditions

wn+1 = xn+1
mw − xn

mw on ΓMB, t = tn+1, (31b)

wn+1 · n = 0 on ΓFB, t = tn+1, (31c)

the mesh node positions being updated according to

xn+1 = xn +wn+1. (31d)

ΓMB in (31b) represents that boundary of Ω evolving with prescribed displacement xmw(t), whereas ΓFB

in (31c) denotes a fixed boundary of Ω. From the displacements w(x, t) one can compute the mesh velocity
using an appropriate time integration scheme.

4. Numerical examples

4.1. Two dimensional duct with periodically varying length

In order to check the performance of the proposed stabilization strategy, we have adopted a numerical
example consisting of a two dimensional duct of constant cross section but varying length, see Fig. 1.
A periodic velocity ug(t) has been imposed at the duct entrance (ΓG in the figure) which results in the
generation of plane waves propagating to the opposite side of the duct. Yet, a periodic displacement of
different frequency has been imposed at the exit boundary ΓM . This guarantees that the mesh velocity ud

will be parallel to the acoustic pressure gradient. When ud is parallel to∇p, the importance of the ALE terms
in (4) becomes maximum so the test can be seen as demanding for the validation of the stabilized method.
Besides, note that all duct dimensions, boundary displacements and involved frequencies (see below) have
been chosen to be of the same order of that found in real human vocal tracts, lip protrusion movements
and formant frequencies. This will guarantee that stabilization will perform correctly when addressing the
production of diphthongs.

The details of the simulation are as follows. We have split the duct boundary into three non-intersecting
regions ΓG, ΓW and ΓM (see Fig. 1) and thus supplement the ALE mixed wave equation (4) with boundary
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(a) (b)

Figure 2: Snapshots of the acoustic pressure inside the 2D duct at different time steps considering (a) all stabilization terms
and (b) removing the ALE stabilization terms.

conditions

u · n = ug(t) = sin(2πf3t) on ΓG, t > 0, (32a)

u · n = 0 on ΓW, t > 0, (32b)

p = 0 on ΓM, t > 0. (32c)

It is observed that we have assumed rigid boundaries and impose a zero pressure release condition at
the duct exit. n denotes the normal pointing outwards the computational boundary. With regard to the
velocity on ΓG, it has a sinusoidal time dependence whose frequency corresponds to the third resonance
mode of the mean length duct (L = 17 cm). The n-th resonance frequency of such a duct is given by
fn = (2n − 1)c0/(4L) so by taking n = 3, c0 = 350 m/s and L = 17 cm we get f3 ≃ 2573 Hz. A periodic
displacement of frequency fM = 500 Hz has been imposed for ΓM . Finally, zero pressure and zero particle
velocity have been considered for t = 0 inside the duct.

The simulations have been carried out using the fully discrete scheme in (29), activating and deactivating
the ALE stabilizations terms, and using a sampling frequency rate of fs = 1/∆t = 80 kHz. From numerical
experiments, the values deemed appropriate for the constants C1 and C2 in the expression for the stabilization
parameters (27) are C1 = C2 = 0.01. The obtained results are presented in Fig. 2. In the first column we
show different snapshots of the acoustic pressure inside the duct when using all stabilization terms. As
observed, the inner pressure pattern basically corresponds to the third acoustic mode distribution which
does not become much altered by the movement of the exit boundary. The solution is stable and does not
change significantly as time evolves. This is not the case if the ALE stabilization terms are removed from
the formulation, as can be readily appreciated in the right column of Fig. 2. Though the solution matches
the correct one for the initial time steps of the simulation, as long as time evolves the solution becomes
unstable and finally blows up, totally exceeding the plotted range [−500, 500] Pa.
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Figure 3: Sketch for the numerical production of vowels. From magnetic resonance imaging (MRI), data is obtained for the
computation of vocal tract transfer functions (VTTF). The left column corresponds to vowel /a/ and the right column to vowel
/i/. The diphthong /ai/ involves transiting from /a/ to /i/.

4.2. Production of diphthongs in 3D

A more applied example related to voice production will be next addressed. In particular, we will focus
on the numerical generation of diphthongs. The diphthong /ai/ will be used for illustrative purposes though
the presented procedure has general validity.

Let us start by reviewing how a single vowel could be generated using numerical methods. In a nutshell,
to produce say, vowel /a/, we could proceed as follows (see left column in Fig. 3). First a magnetic resonance
imaging (MRI) is taken from the vocal tract of a given individual when pronouncing the sound /a/. Though
nowadays very detailed 3D geometries can be obtained [36], it is not always necessary to use such intricate
shapes for voice generation. Actually we can neglect the influence of some of the vocal tract cavities, such
as the valleculae or the piriform fossae, and work with simplified straight vocal tracts with radial symmetry
based on real vocal tract cross sections, as those in [37] (see second row in the first column of Fig. 3). Despite
of its simplicity, fairly good results can still be obtained with these smoothed vocal tract geometries. Since
it is not the goal of this work to reproduce diphthongs from a given individual with high fidelity, but rather
to propose a general approach for diphthong generation, we will make use of these simplified geometries
in the simulations to be presented below. Next, we just need to solve the wave equation for the acoustic
pressure inside such vocal tracts supplemented with appropriate boundary conditions; a model for the glottal
pulses generated by the vocal chords has to be input at the glottis area (ΓG in Fig. 3), and impedance and
radiation conditions have to be respectively specified at the vocal tract walls ΓW and mouth exit ΓM , which
are indicated later. Finally, collecting the time evolution of the acoustic pressure at a node close to the exit
of the mouth and converting its values into an audio file, we will produce the sound of an /a/. It is to be
noted that vowels are actually generated by acoustic resonance excitation of the air volume inside the vocal
tract. The eigenfrequencies of the air resonating inside the vocal tract, which are known as formants in the
voice and speech communities, will change from one vowel to another. Formants can be clearly appreciated
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Figure 4: Snapshots at five different time instants showing the transition from vowel /a/ to /i/. The acoustic pressure at the
boundaries of the vocal tract and its shape evolution can be appreciated.

as peaks in the so called vocal tract transfer functions (VTTF). These are computed from the quotient
between the Fourier transform of the acoustic pressure at a node located close to the mouth exit, and the
Fourier transform of the volume velocity corresponding to the glottal pulses being input at ΓG. A VTTF
for vowel /a/ is shown in the last row of the left column of Fig. 3. The first two formants F1 and F2 have
been highlighted as those are the ones which allow listening individuals to distinguish between vowel sounds
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Figure 5: Time evolution of the acoustic pressure at a point close to the mouth exit. When converted to audio, it produces the
sound /ai/.
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Figure 6: Spectrogram of the acoustic pressure at the node located close to mouth exit from Fig. 5. Formant trajectories from
/a/ to /i/ have been highlighted.

(compare with the VTTF corresponding to an /i/ in the last row of the right column in Fig. 3). Higher
formants are responsible for other vowel sound finer features like timber.

If we next focus on the generation of the diphthong /ai/, it is clear that we will have to transition from the
situation in the left column in Fig. 3 to the one in the right column. Some simplifications have been assumed.
First, a linear interpolation from the geometry of the vocal tract of vowel /a/ to the vocal tract of vowel
/i/ has been performed, though more accurate options exist, based on controlling the formant transition
trajectories between vowels [38]. Second, we have simply imposed a zero pressure release condition p = 0 at
the mouth exit ΓM . This is a rough approximation to emulate radiation losses, which is known to shift the
formants towards upper frequencies depending on the formant-cavity affiliation phenomenon [39, 40], as well
as to decrease the formant bandwidths for mid-high frequencies (see e.g., [14] for a detailed discussion). A
more precise option would consist in allowing acoustic waves to emanate from the mouth and radiate towards
infinity. This would involve, for example, implementing a perfectly matched layer (PML) [41, 42, 13] for the
finite element approximation of the ALE wave equation presented in this work, or imposing a good enough
performing absorbing boundary condition (see e.g., [? 43]). This has been left for future developments.

To produce the diphthong /ai/ we have solved the ALE mixed wave equation (4) using the stabilized
FEM approach described in the preceding Section 3, in the moving computational domain consisting of the
transition from the vocal tract of /a/ in the left column of Fig. 3, to the geometry of /i/ in the right column.
The following conditions have been imposed on the vocal tract boundaries

u · n = ug(t) on ΓG, t > 0, (33a)

u · n = p/Zw on ΓW, t > 0, (33b)

p = 0 on ΓM, t > 0. (33c)

The boundary velocity ug(t) in (33a) stands for a train of glottal pulses generated using a model of the
Rosenberg type [44]. In order to increase the naturalness of the produced diphthong these pulses have been
enhanced introducing a pitch curve for the fundamental frequency, adding some shimmer to the glottal pulse
amplitudes and also applying a fade in/out to the global signal. In (33b), Zw stands for the wall impedance,
which is related to the wall admittance coefficient, µ, by µ = Z0/Zw, Z0 = ρ0c0 being the characteristic
acoustic impedance. We have taken the standard value µ = 0.005 which fairly approximates losses of vocal
tract tissues [10]. Zero initial values have been taken for the acoustic pressure and acoustic particle velocity.

The moving vocal tract domain has been initially meshed using a structured tetrahedral mesh with
initial element size h ≃ 0.002 m and evolved according to the procedure described in Subsection 3.4. The
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simulation has last for 200 ms and a sampling rate of fs = 1/∆t = 80 kHz has been used. The standard
value in vocal tract acoustics of c0 = 350 m/s has been used for the sound speed. Again, we have used the
values C1 = C2 = 0.01 for the constants in the stabilization parameters (27).

In Fig. 4, a sequence of five snapshots corresponding to the transition from vowel /a/ to /i/ is presented.
The changes in vocal tract shape can be clearly appreciated. The first snapshot at t = 12.5 ms corresponds
to the articulation of an /a/, whereas the last one at t = 190 ms corresponds to that of an /i/. The acoustic
pressure values at the vocal tract boundaries for the selected time instants can be also appreciated. Different
limiting values have been chosen for the color scales to better perceive the acoustic pressure distribution at
the vocal tract for a particular time instant. In Fig. 5 we show the time evolution for the acoustic pressure
at a point close to the mouth exit. When transforming this plot into an audio file we get, as expected, the
sound /ai/. Finally, in Fig. 6 we show the spectrogram corresponding to the acoustic pressure in Fig. 5.
This has been computed using a hamming window with a frame width of 20ms and an overlap of 1ms. As
usually done in speech processing, a pre-emphasis FIR filter with coefficients [1 -0.97] has been applied to
enhance the visualization of the high frequency range. In the first curve of the spectrogram, corresponding
to vowel /a/, we can clearly identify the two formants previously highlighted in the VTTF of /a/, in the
last row of the left column of Fig. 3. Similarly, the last curve of the spectrogram corresponds to vowel /i/,
and the two formants identified in the VTTF of /i/ (last row of the right column of Fig. 3) can also be
clearly recognized. The trajectories of the two formants F1 and F2, which separate apart from /a/ to /i/,
have been indicated in Fig. 6 to better show their evolution.

5. Conclusions

A stabilized finite element method (FEM) has been proposed to solve the wave equation in mixed form
in an ALE frame of reference. The method is based on the subgrid scale approach, and its good performance
strongly relies on the proposed design for the matrix of stabilization parameters. The stabilized FEM
allows us to use equal interpolations for the acoustic pressure and acoustic particle velocity, avoiding any
locking effect. This has been tested by means of a two dimensional benchmark problem consisting of wave
propagation inside a duct with a moving exit boundary.

On the other hand, the proposed approach has been applied to voice production, in particular to the
generation of diphthongs. A general procedure has been presented for that purpose and diphthong /ai/ has
been used as an example. Fairly good and promising results have been obtained. Future work will involve
dealing with more realistic vocal tract geometries and permitting acoustic waves to emanate from the mouth
and propagate outwards, to get more accurate solutions.
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