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Abstract. The paper builds a stable variational formulation for the non-ordinary state-based
peridynamics (NOSB-PD). Firstly, a new force state vector is reformulated by introducing the
first Piola-Kirchhoff stress in continuum mechanics. The consistency of the new governing equa-
tion of the proposed pridynamic model and classical continuum mechanics is proved. Secondly,
a stable variational formulation of non-ordinary state based peridynamics is developed to unify
the boundary conditions in peridynamcis and continuum mechanics. The zero mode oscillations
of non-ordinary state based peridynamics is also eliminated by penalty method in numerical im-
plementation. Numerical examples are illustrated to validate the proposed method. Numerical
solutions obtained by the proposed method also indicate that the proposed method can well
capture the general nonlinear behavior of solid materials.

1 INTRODUCTION

Discontinuous problems, such as fracture and collapse, are fundamentally important issues in
computational mechanics. One of the critical issues is how to accurately capture the stress field
in discontinuities and predict the pattern of the crack. Recently, many significant contributions
have been made to simulate the fracture process of solid materials, such as Extended Finite
Element Method (XFEM) [1], Element-Free Galerkin (EFG) Method [2] and Material Point
Method (MPM) [3].However, these methods either require additional variables and equations
to capture cracks, or need complex shape functions to represent displacement and stress fields,
which would be difficult for complex fracture problems.
Peridynamics (PD)[4] is a nonlocal reformulation of the classical continuum mechanics (CCM)

1



Yuqi Sun,Fengjun Chen,Xinxin Wang,Wen Shen,Haitao Yu

and represents a new theory for the simulation of fracture mechanics. Generally, there are
two kinds of peridynamic models are developed, i.e. bond-based and state-based peridynamic
models. However, one of the disadvantages of the bond-based PD is that the response of a
bond is independent of other bonds, which makes the Poisson’s ratio restricted to 1/4 for the
plane strain problem and 1/3 for the plane stress problem [4, 5]. Many significant contributions
have been made to solve the limitation of Poisson’s ratio in BB-PD, the readers can refer to
[6, 7, 8, 9, 10]. The ordinary state-based (OSB) PD and the non-ordinary state-based (NOSB)
PD overcomes the defects of BB-PD. One important feature of NOSB-PD is that it incorporates
constitutive model from the CCM such as plasticity [11] and visco-plasticity [12] into the force
state. However, the zero-energy mode oscillation induced by the “PD correspondence material
models”[13] in NOSB-PD is still a challenging issue in peridynamic community.
Generally, the simulation of PD is based on the strong form of balance equation of linear mo-
mentum and has difficulties in imposing boundary conditions, and thus may result in truncated
errors in the horizon of a material point near the boundary surface.
This paper aims to build a stable variational formulation for peridynamics. Firstly, the first
Piola-Kirchhoff stress is introduced to reformulate the force state vector in original non-ordinary
state based peridynamics. This new force state vector ensures that the strong form of PD is the-
oretically consistent with that of CCM when the nonlocal effects of material points are ignored.
Secondly, a stable variational formulation is proposed to unifies the boundary conditions of PD
and CCM, which makes the proposed method easier work with various boundary conditions
than standard peridynamics. Moreover, a penalty method is employed to eliminate zero-mode
oscillation of NSOB-PD and ensure the computational stability. Finally, numerical examples are
presented to demonstrate the validation of the proposed method by comparing its predictions
with those of analytical solutions and experimental results.

2 The strong form and variational framework

This section presents the strong formulation and variational formulation of the proposed method.
The force-state vector in the original NOSB-PD proposed by Silling[14] is reformulated by in-
troducing the first Piola-Kichhoff stress.

2.1 The strong form

The linear momentum equation of the proposed model in the referential configuration Ωo can
be given by

ρo
∂2U(X, t)

∂t2 =
∫

HX

(T[X′, t]⟨X′−X⟩+T[X, t]⟨X−X′⟩)dVX′ +B(X, t) (1)

where ρo is the mass density in the referential configuration Ωo, U(X, t) is the displacement of
material point X at time t, HX is the support domain of matrial point X, T[X, t]⟨X−X′⟩ and
T[X′, t]⟨X′−X⟩ are the force state vectors of material points X and X′, respectively, dVX′ is the
volume of material point X′ in HX and B(X) is the external body force density of material point
X. The angle brackets in the force state T[X, t]⟨X−X′⟩ denotes this force state vector operates
on bond X−X′. By introducing the first Piola-Kirchhoff stress tensor P(X, t) in the CCM, the
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force state defined in Eq.(1) can be reformulated as

T[X′, t]⟨X′−X⟩= ω(∥X′−X∥)((X′−X)⊗P(X′, t) ·K−1(X)) : I(2)

T[X, t]⟨X−X′⟩= ω(∥X−X′∥)((X−X′)⊗P(X, t) ·K−1(X)) : I(2)
(2)

where ω(∥X−X′∥) and ω(∥X′−X∥) are the influence functions that depend on the length of
bond X−X′, I(2) is the second order identity tensor, and K(X) is the shape tensor of material
point X, defined by

K(X) =
∫

HX

ω(∥X−X′∥)(X′−X)⊗ (X′−X)dVX′ (3)

Note that the stress tensor field P(X′, t) of the neighbor material point X′ in HX can be obtained,
using the Taylor series expansion, by

P(X′, t) = P(X, t)+∇XP(X, t) · (X′−X)+ r(∥X−X′∥2) (4)

where ∇XP(X, t) denotes the material graident of P(X, t) at material point X in the referential
configuration Ωo and r(∥X−X′∥2) represents the second- and higher-order terms. Substituting
Eqs.(2)-(4) into Eq.(1), gives

ρo
∂2U(X, t)

∂t2 −B(X, t) =
∫

HX

(T[X′, t]⟨X′−X⟩+T[X, t]⟨X−X′⟩)dVX′

=∇X ·P(X, t)+ r(∥X−X′∥2)

(5)

where ∇X ·P(X, t) is the divergence of P(X, t) at X in the referential configuration Ωo.
In order to describe the deformation of the continuum and evaluate the stress tensor field, the
nonlocal deformation gradient proposed by Silling[14] is introduced as

F(X, t) =
∫

HX

ω(∥X′−X∥)(U(X′, t)−U(X, t))⊗ (X′−X)dVX′ ·K−1(X)+ I(2) (6)

where U(X, t) and U(X′, t) are the displacements of material points X and X′ in the referential
configuration Ωo, respectively.

2.2 The variational formulation

In order to obtain the unified variational framework between NOSB-PD and CCM, we begin
with the weak form. Each side of Eq.(1) is multiplied by a test funtion δU(X, t) and is integrated
over the domain Ωo, gives∫

Ωo

δU(X, t)ρo
∂2U(X, t)

∂t2 dVX =
∫

Ωo

δU(X, t) · (∇N
X ·P(X, t))dVX +

∫
Ωo

δU(X, t)B(X, t)dVX (7)
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Figure 1: Displacement and traction boundary conditions in (a) the CCM; and (b) the PD.

where ∇N
X represents the nonlocal Nabla operator in the VUPD and ∇N

X ·P(X, t) is the nonlocal
divergence of the first Piola-Kirchhoff stress tensor, defined by

∇N
X ·P(X, t) =

∫
HX

ω(∥X−X′∥)((X′−X)⊗∆P(X′−X, t) ·K−1(X)) : I(2)dVX′ (8)

where ∆P(X′−X, t) = P(X′, t)−P(X, t).
Fig.1 shows the displacement and traction boundary conditions in the CCM and in the PD.
Similar to the test function space in the CCM, the test function δU(X, t) satisfies

δU(X, t) ∈ {v(X, t)|v(X, t) ∈Co(Ωo × [0,T ]), v(X, t) = 0 on Γp
u} (9)

where v(X, t) is the admissible displacement field and Γp
u is the displacement boundary layer(see

in Fig.1).
Similarly, a nonlocal integration by parts formulas can be obtained by∫

Ωo

∇N
X · (δU(X, t) ·P(X, t))dVX =

∫
Ωo

δU(X, t) · (∇N
X ·P(X, t))dVX +

∫
Ωo

∇N
XδU(X, t) : P(X, t)dVX (10)

where ∇N
XδU(X, t) is the nonlocal gradient of δU(X, t), which is defined by

∇N
XδU(X, t) =

∫
HX

ω(∥X−X′∥)(δU(X′, t)−δU(X, t))⊗ (X′−X)dVX′ ·K−1(X) (11)

Since displacement and traction boundary conditions are treated as a fictitious material layer
in PD, as seen in Fig.1, the following applies∫

Γc
T

P(X, t) ·NdS =
∫
Γc

T

Tc(X, t)dS =
∫
Γp

T

Tp(X, t)dVX (12)

where Γc
T is the traction boundary of CCM in the referential configuration Ωo, Tc is the traction

exerted on Γc
T, N is the outer normal of the continuum in Ωo, dS is the differential area of Γc

T,
Γp

T represents the fictious traction boundary layer and Tp is the traction exerted on Γp
T in the

referential configuration Ωo.
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Using the classical Gauss’s theorem, one obtains∫
Ωo

∇N
X · (δU(X, t) ·P(X, t))dVX =

∫
Γp

T

Tp(X, t) ·δU(X, t)dVX (13)

Substituting Eq.(13) into Eq.(10), we have∫
Γp

T

Tp(X) ·δU(X, t)dVX =
∫

Ωo

δU(X, t) · (∇N
X ·P(X, t))dVX +

∫
Ωo

∇N
XδU(X, t) : P(X, t)dVX (14)

Combing Eq.(14) and Eq.(7), the weak form can be obtained by∫
Ωo

δU(X, t)ρo
∂2U(X, t)

∂t2 dVX +
∫

Ωo

∇N
XδU(X, t) : P(X, t)dVX

=
∫
Γp

T

δU(X, t) ·Tp(X, t)dVX +
∫

Ωo

δU(X, t) ·B(X, t)dVX

(15)

Note that the weak form of Eq.(15) is a total Lagrangian formulation in the referential configu-
ration Ωo.

3 Crack criteria and zero-energy mode oscillation control

In this paper, two stress-based failure criteria[15], i.e. the maximum tensile stress criterion
and the Mohr-Coulomb failure criterion, are used to simulate the mixed-mode failure of solid
materials. A penalty method is presented here to impose “the linear completeness of deformation
field” in the support domain of each material point, and to obtain the first and second variations
of the penalty energy at the continuous level.

3.1 Crack criteria

If we define the Cauchy stresses at two material points X and X′ as σ(X, t) and σ(X′, t), the
stress state of bond X−X′ is obtained by

σX−X′ =
1
2
(σ(X, t)+σ(X′, t)) (16)

Regarding the first strength criterion for brittle materials, cracking is expected when the maxi-
mum tensile stress of the bond reaches the uniaxial tensile strength, i.e.

σ1
X−X′ > σc (17)

where σ1
X−X′ is the maximum principal stress of bond X−X′ and σc is the uniaxial tensile

strength of brittle materials.
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Figure 2: Zero-energy mode in the NSOB-PD.

Similarly, the Mohr-Coulomb failure criterion is employed to describe the shear failure of brittle
materials. The shear failure criterion can be expressed by

τX−X′ = c · cosϕ+
σ1

X−X′ +σ3
X−X′

2
sinϕ (18)

where τX−X′ = 1
2(σ

1
X−X′−σ3

X−X′) is the shear stress strength of bond X−X′, σ3
X−X′ is the minimum

principal stress of bond X−X′, c is the cohesive strength and ϕ is the angle of internal friction.
A local damage parameter D(X, t) is introduced to describe the damage evolution of materials,
which is defined by the ratio of the number of broken bonds to the total number of initial bonds,
i.e.

D(X, t) = 1− ∑nI
i=1 di j

nI
(19)

where nI is the total number of material points in the support domain of X, and di j is the crack
state parameter, which is defined by

di j =

{
0 , bond failure
1 , otherwise (20)

3.2 Control method for the zero-energy mode oscillation

Fig.2 demonstrates the zero-energy mode in the NOSB-PD. The deformation gradient of the
central material point gets F(X, t) = I(2) when the family members of this material point have
the same displacement ∆U. This results in the zero-energy mode oscillation in numerical im-
plementation. In this paper, the penalty method is used to eliminate the zero-energy mode
oscillation. The non-uniform part of deformation can be defined by as[13]

z(X′,X, t) = ∇N
XU(X, t) ·∆X−∆U(X′,X, t) (21)

where ∆X = X′−X and ∆U(X′,X, t) = U(X′, t)−U(X, t). The penalty potential energy is given
by

Wp(t) =
∫

Ωo

β(X)

2

∫
HX

ω(∥X′−X∥)z(X′,X, t)T z(X′,X, t)dVX′dVX (22)
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Table 1: Geometrical dimensions and material parameters of the double-edge-notched specimen

Parameters Values
Length(L) 200cm
Width(W) 200cm
Thickness(t) 2cm
Young’s modulus(E) 32Gpa
Poisson’s ratio(ν) 0.2
Axial tensile strength( ft) 3Mpa
Axial compressive strength( ft) 38.4Mpa

where β(X) is the regularized penalty potential energy coefficient, expressed by

β(X) =
α√

∑nd
i=1 λ2

i (X)
(23)

where α is the penalty potential coefficient related to material point X, λi(X) is the eigenvalue
of the shape tensor K(X) and nd is the dimension of the space.

4 Numerical examples

Two numerical examples are performed to validate the proposed model by comparing its pre-
dictions with those of analytical solutions and experimental observations in literature. For
simplicity, the acceleration in Eq.(1) is assumed to be zero. The kernel function is selected as
the Gauss’s kernel function.

4.1 Mixed-mode failure of Double-edge-notched specimen test

A double-edge-notched specimen under combined shear and tension loads is investigated to
further demonstrate the validation of the proposed model for mix-mode fracture simulation.
The experimental results from the literature [16] is taken as a benchmark for comparison. The
bottom and right sides of the specimen is fixed, and the tractions are applied on the top and left
sides of the specimen, as shown in Fig.3. According to the experimental data from the literature
[16], the geometrical dimensions and material parameters are listed in Table 1.
The specimen is discretized by material points with a uniform spacing ∆X = ∆Y = 1cm. The total
number of material points are Np = 38000, and the penalty potential coefficient α is selected as
5E in the simulation. The horizontal and vertical displacements with the same increment of
∆U = ∆Us = 5×10−6 for each load step are applied on the left and top sides of the specimen, as
shown in Fig.3(a), which is consistent with the “Load Path 2” in [16]. The Mohr-Column failure
criterion described in Section 3.1 is adopted in this simulation to predict failure behaviors of the
specimen.
Fig.4 shows the predicted crack propagation in the specimen at different load steps, from the
proposed model and the experimental observation in literature[16]. The local damage variable
D(X, t) in Eq.(19) is used to describe the failure process of the specimen. Fig.4 also indicates that
the crack trajectories predicted by the proposed model agree well with experimental observations
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Figure 3: Double-edge-notched specimen under tension-shear combined loads.
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Figure 4: Comparisons of the crack paths obtained from the proposed method at (a) load step=30; (b)
load step=50; (c) load step=70; and from (d) experimental observations[16].

as plotted in Fig.4(d).
The vertical normal stress σyy contours of the specimen at different load steps, obtained from
the proposed model, are plotted in Fig.5, respectively. Results from the stress responses show
that the zero-energy mode oscillation is effectively eliminated with the proposed model for the
case of mixed-mode fracture simulation.

4.2 Uniaxial tension of a hyper-elastic beam

To further validate the propos model for large-deformation problems, a beam made of Sant Vent-
Kirchhoff hyper-elastic material under uniaxial tension is simulated by the proposed model and
then compared with the FEM results. The left end of the hyper-elastic beam is fixed and the
traction is applied on the right end of the beam, as shown in Fig.6. The geometrical dimensions
and material parameters are listed in Table 2. The total elongation of the hyper-elastic beam
is set as ∆U = 1m, and the increment of displacement is specified as 0.01m for each load step.
The penalty potential energy factor α is selected as 5E in the simulation.
Four types of discretization with uniform and non-uniform distribution of material points are
considered in the simulation, i.e. Cases 1-4. In the uniform case (Case 1), the horizontal and
vertical spacings between each two adjacent material points are selected as ∆X = 0.033 and
∆Y = 0.0055, respectively, and the total number of material points in the model is Np = 5400.
The area of each material point is specified as AI =

LW
N p . For Cases 2-4, the total number of
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(a) (b) (c)

Figure 5: The stress contour of σyy obtained by the proposed model at (a) load step=30; (b) load step=50;
and (c) load step=70 (unit: Pa).

Table 2: Geometrical dimensions and material parameters of the hyper-elastic beam

Parameters Values
Length(L) 1m
Cross-sectional area(A) 0.04m2

Width(W) 0.2m
Young’s modulus(E) 70GPa
Poisson’s ratio(ν) 0.33

material points and the area of each material point are the same with Case 1. Note that the
coordinates of each material point in Case 2-4 are obtained by[

x
y

]
=

[
X
Y

]
+η fD

[
∆X
∆Y

]
(24)

where [X ,Y ]T is the coordinate of a material point in Case 1, [x,y]T is the coordinate of a material
point in Cases 2-4, fD is the uniform distribution probability function with an interval of [0,1],
and η is the scaling factor used to determine the randomness of the distribution of material
points. The scaling factor η is selected as 0.001, 0.01 and 0.1 for Case 2, 3, 4, respectively. Note
that when η = 0, Cases 2-4 are degraded into the Case 1. Fig.7 shows the horizontal and vertical
displacement contours of material points for the four cases obtained by the proposed model. It
can be seen from the figure that, similar displacement responses are observed for the four cases
with different discretization, and zero-mode oscillation has been removed for each of the four
cases.

5 CONCLUSIONS

- A stable Variational NOSB-PD model is proposed to unify the variational framework and
boundary conditions of the NOSB-PD and the CCM.

- A force state vector formula in governing equations of the NOSB-PD is reformulated by
introducing the first Piola-Kirchhoff stress.

- The proposed variational framework makes it easier to incorporate boundary conditions
than standard peridynamics.

- A penalty method is introduced to eliminate the zero-energy mode oscillation inherently
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Figure 6: A hyper-elastic beam under uniaxial tension.

(a)

(b)
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(d)

Figure 7: The displacement contour of the hyper-elastic beam obtained from the proposed UV-PD model
in x and y directions: (a) Case 1: η = 0; (b) Case 2: η = 0.001; (c) Case 3: η = 0.01; and (d) Case 4:
η = 0.1. (unit: m).

observed in the NOSB-PD model.
- Numerical examples demonstrate that the proposed method is accurate and can well cap-

ture the nonlinear and the discontinuous behaviors of solid materials.
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