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Resumen

En este trabajo se presenta una metodologia de calculo éptimo de estructuras articuladas planas que permite
obtener la forma geométrica y las secciones mas convenientes de la estructura. Por lo tanto, se combina
un problema de disefio de formas con otro de pardmetros. La metodologia presenta innovaciones en la
combinacién de ambos procesos de optimizacién y solventa las dificultades de trabajar con variables de muy
distinta naturaleza. Se destaca el acierto del algoritmo para disefiar celosias que se adapten a la forma natural
de trabajo para el problema considerado. Los resultados obtenidos en los ejemplos se comparan con puentes
construidos a principios de siglo, cuando la estructura metalica estuvo en boga y el ahorro del material
repercutia sustancialmente en el coste. En el articulo también se detallan los aspectos de implementacién en
un cédigo orientado a objetos en lenguaje C++ para el andlisis y la optimizacién de estructuras.

OPTIMUM DESIGN OF PLANE TRUSSES WITH LOCAL FAILURE CRITERIA

Summary

This work presents a method for calculating an optimum topology and the optimum cross-sections for a plane
truss structure under predetermined boundary conditions. It is combined the shape desing problem with the
parameter design one. The method includes a new approach in combining these two problems and solves the
difficulties that appear when trying to combine the optimization of variables of such different nature. It is
remarcable that the results of the method produce geometries which naturally adapt to the external loads.
These results are then compared to steel bridge constructions builded at the beginning of the century, when
steel constrution was widely used and saving material was of great importance. The paper also includes an
implementation of object oriented C++ code for the analysis and the optimization of truss structures.

INTRODUCCION

El disefio éptimo de estructuras de barras debe verse desde dos puntos de vista, por un
lado el de obtener la mejor disposicién geométrica de las barras y los nudos; y por otro lado el
conseguir las secciones transversales mas convenientes. Por ello, el problema de optimizacién
combina un problema de formas y uno de paradmetros. En este trabajo se van a seguir los
planteamientos que se encuentran en las referencias®®. Planteamientos alternativos clasicos
se encontraran en la referencia®. En general, la forma de la estructura depende del criterio
del ingeniero y en su disefio pesan aspectos econdmicos, constructivos, de insercién en el
paisaje, etc. En cambio, las dimensiones de las barras dependen basicamente de criterios
resistentes, econémicos y funcionales.
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Desde el punto de vista matemaético, el problema de optimizacién se define de la forma
siguiente. Se trata de obtener los valores de las variables de disefio

z={21,22,...,Tn} (1)

donde z; representa las propiedades de las secciones estructurales, las coordenadas de las
conexiones entre barras, etc.
De manera que se minimice una funcién objetivo que representa un criterio de disefio

flzy, 22, ..., 2y) (2)

donde f puede ser el peso minimo, el coste, etc.
Verificando unas restricciones del disefio

gi(T1,22,..,2,) <0 i=1,....,m (3)

El planteamiento realizado en este trabajo pretende una optimizacién tanto de formas
como de pardmetros. Por consiguiente, un grupo de variables de disefio representa las
coordenadas de los nudos mientras que otro grupo de variables representa las secciones
transversales de las barras. A través de la modificacién de las coordenadas de los nudos, se
consigue una variaciéon en la forma del disefio de la estructura, es decir, una modificacidn de
ambito global sobre la forma de trabajar de la estructura. Por el contrario, la modificacién
de secciones estructurales afecta unicamente de forma local a las barras. El hecho de que
el espacio de las variables de disefio esté formado por entidades de distinta naturaleza
que afectan de forma diferente al problema estructural representa un inconveniente para
cualquier algoritmo de optimizacién?®.

Como funcién objetivo se ha considerado el peso minimo aunque desde el punto de vista
de la ingenieria tal vez hubiera sido mejor considerar el coste. Sin embargo, de todos es
sabido que hoy en dia el coste no estd directamente relacionado con la cantidad de material,
sino que influyen otros factores locales como el precio de la mano de obra o la dificultad
constructiva por citar ejemplos obvios. Por ello, para no particularizar excesivamente la
funcién objetivo se ha considerado util para los propdsitos de este trabajo evaluar el peso.
Por lo tanto, inicialmente se define la funcién objetivo como

barras

w(z) = Z LAY (4)

donde I; es la longitud de la barra, A; el drea de la seccidn y ; el peso especifico del material.
Nétese que se asume que las barras son de seccién constante y directriz recta.

Finalmente, como restricciones al problema se considera la ecuacién de estado que rige
el comportamiento de la estructura, es decir, el cumplimiento de las ecuaciones de equilibrio
y compatibilidad que en el caso de andlisis lineal de estructuras se reduce a la conocida
expresion

Ku=P (5)

donde K es la matriz de rigidez de la estructura, u los desplazamientos incégnita y P el vector
de fuerzas externas. Otro tipo de restricciones que afectan al problema de optimizacién es el
valor de los esfuerzos maximos de trabajo en cada una de las barras solicitadas, de manera
que

P, < P, (6)
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donde P; es el valor de la solicitud axil de trabajo y P, el axil maximo que puede resistir el
material, tanto a compresién como traccién siguiendo el procedimiento que recoge el Euro-
cédigo de Calculo y Proyecto de Estructuras Metdlicas?. En consecuencia, esta restriccién
permite verificar el estado limite Ultimo de la estructura analizando cada barra desde una
posible inestabilidad local.

La forma éptima de la estructura, la que tiene un menor peso, se conseguird desde un
punto de vista resistente. Es decir, serd aquella que permite que el material se aproveche al
méximo cumpliendo las condiciones de equilibrio y compatibilidad.

EL ALGORITMO DE OPTIMIZACION

El planteamiento del problema anterior conduce a intentar resolver un problema de
optimizacién no lineal. La funcién peso (4) es facil de evaluar, pero la dificultad estriba
en verificar las restricciones, por un lado la ecuacién de equilibrio (5) de la estructura y por
otro las restricciones {6) en carga tltima que dependen de forma no lineal con respecto de
las variables de disefio. Una estrategia bastante comun para resolver el problema consiste
en optimizar linealizando las ecuaciones en el entorno del disefio y utilizando un algoritmo,
por ejemplo el simplex, para un problema lineal®>*°. En general, con este planteamiento
de linealizacién, los disefios iniciales tienen que estar cerca del dptimo para asegurar la
convergencia. Existen otros métodos™”® pero tienen un acercamiento que no cubre el
propésito de este trabajo.

Tratamiento de las restricciones

En este trabajo se utiliza la técnica de transformar un problema no lineal de minimizacién
condicionada en otro de minimizacién no lineal pero incondicional a través de la técnica de
la funcién penalty®. Para ello se define una funcién de penalizacién que pondera el grado de
violacién de las restricciones y penaliza, tal y como su nombre indica, el valor de las variables
de disefio para acercarse al 6ptimo. En consecuencia, se define una funcién penalty mediante
las restricciones y se introduce en la funcién objetivo original (funcién peso), de manera que
la nueva funcién objetivo tiene en cuenta tanto el valor de aquello que se quiere minimizar,
como el cumplimiento simultaneo de las restricciones en las variables de disefio.

En particular, para el problema presentado se define una funcién de penalizacién que
pondera aquellas variables o pardmetros restringidos que. estan superando su valor limite.
La expresién general toma la forma siguiente

barras restricciones
Pi(z)

ple)= 3 (@ -1+ Y Bile e sieado Q=HE (1)

¢

Nétese que Q; es el ratio entre el axil que solicita la barra y el méximo que puede ser
resistido, por lo tanto depende implicitamente de las variables de disefio. Ademés dicho valor
s6lo toma efecto cuando Q; > 1 porque es entonces cuando se estd superando la restriccién de
resistencia limite en la barra e interesa penalizar dicha violacién; en caso contrario se toma
Q; = 1. La variabl z; compara con su restriccién maxima z, y en principio, esta variable
puede representar cualquier tipo de restriccién, desde una inercia minima en ciertas barras
hasta el valor maximo de las coordenadas de algunos nodos de la estructura pasando por el
médulo eldstico. Sin embargo, para los propésitos de este trabajo se ha limitado al caso de
coordenadas en ciertos nodos. Como en el caso anterior, si la variable no viola la restriccion,
el sumando de penalizacién se anula tomando z; = z, en la funcién (7). Finalmente, o;
y B; son coeficientes de peso que se escogen previamente y en funcién del problema con
el que uno se enfrenta. Su valor es un tanto arbitrario siendo del orden de 10° para «; y
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1072 para B; en los ejemplos donde se ha probado la estrategia de optimizacién. Nétese
que estos parametros realizan una labor de homogeneizacion eliminando las desigualdades
que provoca el hecho de trabajar con variables de naturaleza distinta que tienen drdenes de
magnitud dispares.

Por consiguiente, la funcidn objetivo que seréd sometida al procesc de minimizacién serd

) J q
la suma del peso de la estructura y de la funcién penalt
y

f(2) = w(z) + p(z) (8)

siendo conocidas las expresiones a partir de (4) y (7). En el estudio se han utilizado otras
funciones objetivo como

f(2) = w(@)[1 +p(e)] 9)

Sin embargo, los resultados obtenidos no difieren entre ellos.

Dado que hay que optimizar en un doble sentido, la geometria y las secciones; se definen
dos estrategias para optimizar en uno y otro sentido. Es importante desacoplar ambas
optimizaciones para facilitar la convergencia. El tratamiento conjunto de informaciomnes
dispares dificulta el hallar una solucién como se seflala en la referencia®.

El algoritmo de optimizaciéon mecdanica

El algoritmo de minimizacién de las secciones es un algoritmo directo. Su funcionamiento
se detalla a continuacién. Inicialmente se dispone de un vector que representa una parte del
espacio de variables de disefio, en particular

A={A, A, A} (10)

representa un vector con las diferentes secciones que tienen las barras de la estructura.
Cuando se cumple el equilibrio y se verifica (5), se dispone de los esfuerzos axiles que
solicitan las barras. Dado que las resistencias tltimas de las barras (compresién o traccién)
son conocidas, se puede verificar que se cumplen las restricciones que impone el Eurocédigo®
en cargas ultimas de todas y cada una de las barras. Se realiza una primera aproximacién
al estado limite Ultimo sustituyendo las secciones por valores més cercanos al caso critico,
segun

Pn
AT = A7 A (11)
Se debe destacar que en el caso de que varias barras compartan el mismo tipo de seccién
y material, se adoptard para todas ellas una seccién comuin que sea cota superior para que
asi ninguna de ellas rompa. Si se verifica el criterio de convergencia basado en la variacién
del peso

n+l
wA2) g 95 (12)
w(An, z)

y ademds se verifica que con las nuevas secciones ninguna barra rompe, se detiene el proceso
de optimizacién mecanica por substitucién directa. A menudo sucede que muchas de las
secciones sobrepasan los limites impuestos por las restricciones, en cuyo caso se debe sustituir
el valor de dichas variables por sus limites.

Este proceso de optimizacién por sustitucién mecdnica directa se realiza cada vez y de
forma previa a la evaluacién de la funcién objetivo (8). Por ello, a continuacién, se evalia la
funcién penalty (7) dado que ya se dispone de los axiles que actiian en la estructura, y por
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lo tanto se estd en condiciones de calcular el peso, teniendo en cuenta tanto las restricciones
que imponen las cargas ultimas como los otros tipos de restriccién, por ejemplo coordenadas
de los nodos.

El algoritmo de optimizacién global

Una vez evaluada la funcién objetivo se procede a optimizar la geometria de la estructura.
En un caso mas general se pueden incluir en esta estrategia de optimizacién otro tipo de
variables como el médulo eldstico o restricciones en desplazamiento, pero siempre teniendo en
cuenta que el tratamiento conjunto de variables de diferente naturaleza suele dar problemas.
En este caso, el algoritmo se basa en la variante de Fletcher-Reeves®® del método de los
gradientes conjugados.

Este método consiste en encontrar una direccién de avance dentro del espacio de disefio
y actualizar el vector de variables de disefio segin

2" =" 4+ s (13)

donde z es el vector de variables de diseno relativas a coordenadas geométricas. El parametro
A se obtiene mediante una minimizacién unidimensional y el vector s marca la direccién de
avance. Las expresiones son de sobras conocidas y se pueden encontrar en la referencia®.

Una vez que estan actualizados los valores de las variables de disefio, se deben verifican
los criterios de convergencia siguientes

[VE@E ) <er y [As"|| <ee (14)

Si no se cumplen, se vuelve a iniciar la secuencia con los nuevos valores.
El esquema del algoritmo se muestra en la Figura 1 como diagrama de flujo del programa
implementado.

Comportamiento del algoritmo implementado

El método de optimizacién de los gradientes conjugados ofrece un comportamiento bas-
tante bueno cuando las variables contempladas son todas de la misma naturaleza, pero se
muestra inestable cuando el vector de variables de disefio contiene magnitudes diversas, en
concreto en este trabajo secciones transversales y coordenadas de nudos.

Por ello, para estabilizar el algoritmo se optd por considerar dos estrategias de opti-
mizacién distintas, una para las coordenadas de los nudos y otra para secciones de barras.
Las coordenadas se contemplan como variables sobre las que opera el método de gradientes
conjugados. En cambio, las secciones se toman como variables implicitas que se optimizan
mediante un método directo donde se compara la resistencia Gltima de las barras y el axil
solicitante.

La estrategia utilizada para mejorar los resultados y estabilizar el proceso de convergencia
consiste en combinar los dos tipos de optimizacién. Esto se consigue introduciendo la
optimizacién mecdnica en el interior de la funcién objetivo tal como se ha explicado en
el apartado anterior, de manera que la optimizacién geométrica actia simultdneamente con
una optimizacién mecdnica. El inconveniente reside en que el proceso de célculo es mas
costoso, ya que para evaluar la funcidn objetivo el nimero de célculos de la estructura
aumenta porque e! proceso de optimizacién mecanica se lleva a cabo en su interior. En
definitiva, esta manera de crear una complicidad entre ambas estrategias de optimizacién
conduce a una resolucién mds lenta pero mucho més flable y que ofrece resultados légicos
desde una perspectiva estructural.
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optimizacién mecénica

imposicion de restricciones
en las secciones

¢las secciones cumplen
las restricciones?

inicializacién de s =0; VF(x"" )= VF(x°) ; vF(x')= VF(xm

si . .
"VF (x” 1| <g, Minimo relativo

—>

no

normalizacién VF (x"") y VF (x" ); se guarda ”VF (x“" 1' y "VF (x“ 1|

.

Fﬁsqueda unidireccional se tomaA si A<A, |

4

bisqueda de avance
s" =-VF (x” )+ Bs" siendo B= % ; normalizacién de s
n

'

| avance x"' = x" + As” |

si
||7\,s ! " <g, detenemos el proceso

variar tolerancias

no

actualizacién VF(x"" )= VF(x” ) y VF(x“*' )

Figura 1. Algoritmo de optimizacién utilizado
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El método utilizado requiere tres tipos de procesos iterativos. El primero consiste en la
iteracién global que renueva las variables, el segundo busca el minimo de la funcién en la
direccién del gradiente y finalmente otro que cambia las secciones. Este 1ltimo es bastante
fiable, pero los dos primeros tienen una cierta dosis de inestabilidad. Esta inestabilidad
depende en gran manera de la semilla utilizada. Si la estructura inicial estd muy lejos
del éptimo, es decir, si muchas variables estdn fuera de la regién de disefio, los pardmetros
resultantes de la busqueda unidireccional A no son en absoluto representativos y esto conduce
a una divergencia segura. En general, los disefios que propone el algoritmo se alejan mucho
unos de otros, las iteraciones producen grandes saltos dentro del espacio de variables de
manera que nunca se llega a un acercamiento progresivo hacia un éptimo atractor. La
manera de aumentar la estabilidad se basa en limitar el valor de dichos avances, de manera
que al principio, al estar avance acotado, se evita que los nuevos disefios se den en lugares
muy alejados. A medida que el proceso de convergencia avanza, los valores del disefio
se tornan mas representativos y ademds, a medida que se acerca al minimo, el pardmetro
disminuye y la acotacién se vuelve innecesaria. Esta limitacién de A se traduce en una mayor
lentitud en la obtencién del éptimo pero en un aumento de la estabilidad del algoritmo. Se
ha comprobado que si se relaja la acotacién y se llega a una convergencia del proceso, ésta
se produce a una velocidad mayor pero en contrapartida diverge en un mayor niimero de
casos. Esto es asi porque el espacio de disefio es complejo y facilmente se puede uno alejar
del éptimo. ‘

Adviértase que usando el método de la funcién penalty en el tratamiento de las restric-
ciones, el minimo relativo de la funcién objetivo no tiene porque coincidir con el minimo
relativo de la funcién peso. Esto es asi porque la funcién objetivo contiene el peso y la pena-
lizacién de las restricciones tal y como muestra la Figura 2. Unicamente coincidird cuando.
el peso minimo esté dentro de la regién de disefio factible en cuyo caso la penalizacién se
anula tal y como aparece en la Figura 3 y en consecuencia la funcién objetivo se iguala
exclusivamente a la funcién peso.

Peso + Penalti
(Funcion objetivo,
@ yettro) Peso + Penalti (Funcisn objetivo)
Penelti
Pesa
\\ Penalti
Valor del Peso
penalti en el
Mini Exceso en las restricciones ¢ .
(Funcion objetive)
(Funcion oljesiv) Exceso en las restricciones
Figura 2. Los minimos relativos de las Figura 3. S6lo coincidiran en este caso

funciones peso y objetivo no
tienen porque coindidir

El hecho de contemplar las restricciones a través de una funcién penalty hace que la
solucién no tenga porque respetar dichas limitaciones. Simplemente, se llega a un punto
donde el médulo del gradiente se anula, lo que no implica en absoluto que el valor del penalty
se anule y, en consecuencia, que se verifiquen las restricciones (Figura 2). Por lo tanto, la
mejor solucién suele ser un compromiso entre el valor del minimo relativo y el cumplimiento
de las restricciones.

El hecho de modificar las secciones a través de un algoritmo directo, donde se comparan
las resistencias mdximas de barras con los axiles que las solicitan, garantiza que las barras
trabajardn en el limite. Esto facilita mucho la disminucién del valor de la penalizacién
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asociada a la rotura de las barras. Sin embargo, el inconveniente de utilizar este método
para optimizar secciones es precisamente que sélo tiene en cuenta el criterio de rotura de las
barras, y por lo tanto las demds restricciones sélo se podran cumplir a través de las variables
que se renuevan con el algoritmo de los gradientes conjugados. Relacionado con este hecho,
también se ha observado un gran nimero de casos donde el proceso de convergencia se
estanca y no avanza, pero sin que el gradiente llegue a anularse. Esto se atribuye a que las
restricciones en secciones no intervienen de forma explicita en la funcién de penalizacion,
y por lo tanto el avance en el algoritmo global puede verse coartado por las restricciones
en las secciones. En este caso, se llega a un minimo en la frontera de las variables de
disefio (secciones), por lo que el gradiente no tiene porque anularse cuando las variables
(coordenadas) no avanzan.

La implementacién del cédigo

El algoritmo de optimizacién asi como el analisis de las estructuras de barras se han
implementado en un cédigo orientado a objeto. Esta nueva manera de programar ha tenido
un fuerte impulso en la década de los 90 con el lenguaje C++ a pesar de que antes ya
existian lenguajes orientados a objetos.

La programacién orientada a objetos estd basada en una nueva forma de organizar la
informacién y de la interaccién entre los diferentes datos que contiene. Se considera que
los cédigos desarrollados son mas comprensibles y coherentes, de manera que facilita la
reprogramacién y la transferencia de cddigo. La escritura de programas de andlisis de
estructuras mediante lenguajes poco o nada estructurados no presta atencién a la naturaleza
intrinseca de las magnitudes con las que trata. Es decir, sea cual sea la naturaleza propia de
la informacién (desplazamientos, matrices de rigidez, matrices de cambio de coordenadas,
etc.), ésta siempre se organiza bajo la misma estructura formal, béasicamente vectores o
matrices. Esta técnica de programacion no es comoda para una transferencia de cédigo, pues
la organizacién de los datos es arbitraria y la representacién formal de la propia informacién
no ayuda a identificar su contenido, el programador no sabe qué es qué ni cdmo interacciona
con otro tipo de datos. Este es un inconveniente leve cuando el programa es desarrollado
integramente por un solo programador, pero se vuelve importante cuando se debe actuar
sobre un cédigo ajeno o cuando se va a trabajar en grupo.

La programacién orientada a objetos tiende a organizar de forma natural la informacién,
por ejemplo en un cédigo orientado al objeto (CO;) se puede diseflar una unidad de
informacién llamada material que contenga un numero real llamado drea, otro llamado young
y otro llamado inercia. A partir de la definicién de este tipo de unidad de informacién se
pueden crear tantas unidades materiales (objetos tipo material) como distintos materiales
tenga el problema. En un lenguaje convencional el soporte para almacenar las propiedades
del material de una barra se hace mediante una matriz con tantas filas como tipos de
materiales y tantas columnas como tipos de propiedades tenga un determinado material.
Aqui se aprecia el problema, en la programacion de objetos se accede al area mediante la
variable drea del objeto material, en la convencional mediante el indice i,j de la matriz
material, la claridad estd fuera de toda duda.

La programacién de objetos une los tipos de datos con las cosas que se pueden hacer con
dichos datos, por ello cada objeto informa de forma natural no sélo de lo que contiene, sino
también de lo que puede hacer. En la programacién convencional la informacién va por un
lado y aquello que se hace con ella por otro.

El lenguaje C++ tiene toda la potencia de la programacion orienta a objetos y ademds
la programacién estructurada secuencial, por ello ha sido escogido como el instrumento
mas util. Estas cualidades han permitido formular un cédigo coherente que ha facilitado el
desarrollo del programa de optimizacién. La informacién y funciones han sido agrupadas
y jerarquizadas de una manera natural que facilita la comprensién y desarrollo del cédigo.
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Diversos autores han hecho aportaciones sobre la estructura de datos para una programacion
de objetos de un programa de calculo de estructuras, cabe citar®!*.

En este trabajo, la estructura de la informacién de los objetos encargados del célculo
matricial es:

Lista de nudos | nudo
| Lista de elementos | barras
| Lista de cargas L carga
E || conjunto de ||
s listas Lista de
- i :
@ H  desplazamientos — ‘.ks? ntos
E . impuestos
impuestos
'l“-" solver
w Lineal
| | Lista de .
restriciones |1 restricciones
Lista de apoyos " apayos
7 ela’sﬁcos | ela’sﬁcos

Figura 4. Organizacién de objetos para el analisis matricial

Ademas, la estructura de objetos del algoritmo de optimizacién es:

Lista de
varicables Lista de oljetos
restricgen
Clase Conjunio de Lista de objetos
Optimus restricciones restricdesp
Lista de elemenios
Estructura

Figura 5. Organizacién de objetos para la optimizacién
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Ejemplos de aplicacién
A continuacién se muestran algunos ejemplos que se han resuelto con el programa.
Ejemplo 1

En este ejemplo se desea optimizar una viga isostética cuyo disefio original se concibe
como una celosia de canto constante con diagonales a 45°. Se toman como variables del
problema las secciones transversales de cada pareja de barras simétricas, teniendo como
limite de variacién 0,5 < A; < 60 cm?®. Asimismo, se toman como variables de disefio
las coordenadas de los nudos, excepto los apoyos que se consideran fijos. Las acciones del
problema son el peso propio y las cargas indicadas en la Figura 6.

Para el disefio original se necesitan unos 4900 kg de material para que ninguna barra
rompa. Tras 45 iteraciones del método propuesto se obtuvo el siguiente disefio de la Figura 7
donde se aprecia claramente que los cordones adoptan un trazado que se adapta a la ley de
flectores. También se observa que los montantes verticales se inclinan algo. En este caso, el

peso final de la estructura optimizada es de 1754 kg.
L\‘L RN
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Figura 6. Estructura inicial Figura 7. Estructura optimizada

Es destacable la similitud de la geometria resultante de la reparacién realizada en el
puente sobre el Trissana, en el trazado del ferrocarril del Arlberg (Austria). Hans Wittfoht’
comentaba sobre este puente: “puede notarse con que atrevimiento, en parte excesivo, se
aprovechd el material’.

Figura 8. Puente de ferrocarril sobre el Trissana. Afio de construccién 1884
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Ejemplo 2

En este ejemplo se optimizard la misma viga del caso anterior pero variando las condi-
ciones de contorno en el apoyo izquierdo (Figura 9). En concreto, se impide el desplaza-
miento horizontal y en consecuencia puede resistir esfuerzos horizontales.

" ARRARARRRES w% X

P=20t

5.80m

Figura 9. Estructura inicial Figura 10. Estructura final

El peso del material necesario para que la estructura inicial no rompa es de unos 3300 kg.
Después de 42 iteraciones se obtuvo el disefio dptimo con un peso de 8062 kg. En este caso
se muestra que adoptar la forma de arco antifunicular (directriz parabdlica) es la manera
méas eficiente de soportar las cargas externas gracias a que las condiciones de contorno
tienen la capacidad de absorber reacciones horizontales (Figura 10). La magnitud de los
esfuerzos axiles se muestra en la Figura 11. Obsérvese que las barras mds solicitadas definen
la directriz curva del arco, mientras que el resto de barras tiene una funcién secundaria de
arriostramiento y rigidizacién.

Figura 11. Ley de esfuerzos axiles de la estructura de la Figura 10

FEjemplo 3

El ejemplo que se propone a continuacién optimiza una viga continua en celosia de
infinitos vanos de longitud de 16 m y 1 m de canto. Se toman como variables del problema las
secciones transversales de cada pareja de barras simétricas, teniendo como limite de variacién
0,5 < A; < 100 cm?. Asimismo, se toman como variables de disefio las coordenadas de los
nudos, excepto en los apoyos donde sélo podran variar las coordenadas verticales. Las
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acciones son el peso propio y una carga aplicada en los nudos inferiores. Si se asume que
la viga es infinitamente larga, se puede modelizar a través de un vano, considerando que
trabaja como biempotrado. El esquema estructural de este caso se encuentra en la Figura 12.

N AVAVAY [ i
AR A

| | P=200tn
16m

Figura 12. Esquema de cdlculo del problema

La cantidad de material necesario para que no rompa la estructura bajo el disefio original
es de unos 16700 kg. Tras 38 iteraciones se obtuvo un disefio optimizado como el de la
Figura 13. La forma éptima para este esquema estructural consiste en adoptar dos tramos
que funcionan como un voladizo y un tramo intermedio que trabaja como viga biapoyada
cuyo canto se adapta la ley de flectores. Es destacable el estrangulamiento que de forma
natural adopta el canto, formando una rétula justo donde el flector se anula para una ley de
viga biempotrada. El canto en apoyos es de 5,4 metros, siendo superior al del centro de vano,
de s6lo 4,15 metros. Efectivamente, en una viga biempotrada el flector en el empotramiento
es mayor que en el centro de vano. La estructura optimizada pesa 7102 kg.

i /

Figura 13. Forma éptima del problema

Si se adapta esta configuracién para realizar una viga continua, se obtendria el aspecto
de la Figura 14 que se puede comparar con el del First of Forth!’. Puente de voladizos
de inercia variable en apoyos y tramo isostdtico central también de inercia variable. El
esquema estructural que se adoptd en el disefio de este famoso puente posiblemente estuvo
condicionado por el proceso constructivo y no por el ahorro del material, pero es de admirar
la enorme intuicién estructural del ingeniero.

Figura 14. Esquema estructural optimizado formado por la continuidad de los vanos
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Figura 15. Vista del puente First of Forth Figura 16. Detalle de la forma geométrica
construido durante ¢l periodo
1883-1890

CONCLUSIONES

La programacién orientada a objetos PO, constituye un paso mas en la evolucién de los
lenguajes y estrategias de programacién. Su capacidad de organizar, tanto la informacién
de datos como las funciones que operan sobre ellos, la convierte en una herramienta muy
vélida y operativa en el desarrollo de programas complejos.

La experiencia practica demuestra que la optimizacién es una cuestién compleja y muy
sensible a las caracteristicas particulares del problema con que uno se enfrenta. En concreto
se evidencia que el hecho de utilizar variables de diferente naturaleza (secciones y geometria)
en un mismo algoritmo de optimizacién (método de los gradientes conjugados) produce
muchos problemas de convergencia. Debido a la diferente naturaleza de las wvariables,
asi como el orden de magnitud muy diferente que existe entre ellas ocasiona una gran
inestabilidad numérica. Para resolver esta cuestién es necesario combinar adecuadamente
diferentes algoritmos de optimizacién en funcién de los diferentes tipos de variables que
parametrizan el problema.

Se destaca que el método de la funcién penalty, para de considerar las restricciones,
tiene una gran sencillez y generalidad. Esta ventaja conlleva dificultades en la convergencia
e inseguridad a la hora de cumplir dichas restricciones. De hecho, el método se muestra
muy ‘sensible a los factores que escalan el valor de excedencia del parametro limitado y el
propio limite. Sin embargo, en el caso de que no se cumplan las restricciones impuestas,
o bien que el algoritmo no converja, siempre se puede modificar el valor del pardmetro de
escala resolviendo el problema. En particular, las restricciones en coordenadas nodales se
respetan colocando los coeficientes de peso adecuados, en caso contrario el proceso se vuelve
numéricamente inestable. Hay que destacar que la metodologia propuesta no crea ningin
conflicto para las restricciones en variables seccionales porque se imponen automaticamente.

Sin ninguna duda, aquello que influye decisivamente a la hora de mejorar la solucién y
la- convergencia del proceso es la eleccidn de las variables mas significativas del problema.
Su variacidén influird claramente en el disefio de la estructura.

El algoritmo propuesto en este trabajo se muestra altamente estable partiendo incluso de
estructuras iniciales muy alejadas de la solucién. De hecho las soluciones que se cobtienen se
adaptan perfectamente a los criterios intuitivos de la ingenieria. Se observa que la estructura
optimizada tiene una forma geométrica homotética o relacionada con la ley de esfuerzos
flectores de la estructura original. Por lo tanto, a medida que adaptamos la geometria de la
estructura al camino natural que permite transmitir las cargas hacia los apoyos, se obtiene
una estructura que trabaja mejor y que disminuye la cantidad de material para resistir el
mismo esfuerzo.
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No obstante, creemos que bajo la tendencia actual con costes de material decrecientes y
costes de mano de obra en auge, la funcién peso dejara de ser representativa del coste de una
estructura por lo que dejard de ser objeto de algoritmos de minimizacién. Esta tendencia
serd tanto mas acusada en paises avanzados y en sectores productivos como el nuestro, donde
el disefio de una estructura suele ser un prototipo tnico. En cambio si que seguird teniendo
sentido usar como funcién objetivo el peso en piezas fabricadas automaticamente y en serie
(prefabricacién) donde la cantidad de material repercute significativamente en el coste del
producto.
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