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New technologies and traffic data sources provide great potential to extend advanced strategies in freeway safety research. The
High Definition Monitoring System (HDMS) data contribute comprehensive and precise individual vehicle information. This paper
proposes an innovative Variable Speed Limit (VSL) based approach to manage crash risks by intervening in traffic flow dynamics
on freeways using HDMS data. We first conducted an empirical analysis on real-time crash risk estimation using a binary logistic
regression model. Then, intensive microscopic simulations based on AIMSUN were carried out to explore the effects of various
intervention strategies with respect to a 3-lane freeway stretch in China. Different speed limits with distinct compliance rates under
specified traffic conditions have been simulated. By taking into account the trade-off between safety benefits and delay in travel
time, the speed limit strategies were optimized under various traffic conditions and the model with gradient feedback produces
more satisfactory performance in controlling real-time crash risks. Last, the results were integrated into lane management strategies.
This research can provide new ideas and methods to reveal the freeway crash risk evolution and active traffic management.

1. Introduction

There is a growing body of evidence confirming a positive
relationship between the road safety benefits and vehicle
speed enforcement, especially on freeways. In China, for
example, Shanghai and Jiangsu with intensive freeway net-
works are actively employing intelligent technology systems
for coordinating traffic flow and improving road safety.
Previous studies have highlighted the higher vehicle speed
on freeways associated with increased crash risk and injury
severity [1, 2]. Meanwhile, speed variation among vehicles
can disturb traffic flow and create more conflict situations
[3]. Active traffic management (ATM) has been emerging
in recent years aiming to provide traffic control to improve
traffic flow and reduce congestion on freeways. Proper traffic
control can significantly reduce delays and improve traffic
distribution at a bottleneck, especially under congested [4]
and work zone conditions [5, 6]. As a key application of
ATM, Variable Speed Limit (VSL) systems aim to dynami-
cally regulate freeway speeds based on real-time traffic flow
information.

In the last decades, VSL has been intensively investigated
on two main directions: traffic enhancement and safety
improvement [7]. For instance, Hegyi et al. [8] proposed the
macroscopic traffic flow model METANET with coordinated
control of ramp metering and VSL to minimize the total
time vehicles spent on the road; the method significantly
reduced congestion. Naive and Empirical Bayes are used to
evaluate the effects of the VSL system and results indicate
that VSL reduces crashes by 4.5% to 8% [9]. However, instead
of mandatory, the advisory VSL does not show significant
impact on traffic flow [10]. Especially under low speed limits,
some drivers tend to violate the limits in pursuit of their
personal benefits. Hence low speed limits may widen the
range of flows under homogeneous traffic and contribute
to a raise in lane changes [11]. Recent studies have shown
that lane-changing maneuvers are a major source of traffic
disturbance on a multilane freeway. Therefore, a proper
setting is essential in VSL strategies. Instead of just using
VSL before or during periods of high congestion, it can be
applicable during off-peak periods as well [12]. So far, limited
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studies have been focusing on enhancing freeway safety by
intervening in traffic flow dynamics based on VSL.

This study aims to apply real-time crash prediction in
traffic control management. Previous studies on crash pre-
cursors have employed different kinds of traffic data such as
loop detectors [1, 2, 13-15], automatic vehicle identification
[16,17], traffic counter data [18], and weather [19, 20] as well as
road geometry data [21]. Different data mining and detection
methods have been utilized to fully investigate the interrela-
tionship between crash risk and traffic operation data. Abdel-
Aty et al. [1] developed a neural network-based classifier to
evaluate rear-end crash risk with traffic parameters from five
stations: it can identify 75% of the crashes, with false positives
of 34%. Ahmed et al. [16] exploited automatic vehicle iden-
tification (AVI) data and the model achieves an accuracy of
75.93% and 72.92% for rear-end and all crashes, respectively.
As large numbers of false positives might affect drivers’
compliance with the system and reduce its effectiveness,
various refining approaches have been employed to optimize
the evaluation algorithm. Traffic data with high resolution
and multiple sources are needed for a better evaluation model
with higher predictive accuracy and robustness. Ahmed et
al. [17] enhance the AVI data with remote traffic microwave
sensor data and their model can successfully identify 88.9% of
the crashes with a false positive rate of only 6.5%. Kwak et al.
[22] found that traffic flow characteristics leading to crashes
differ by segment type and traffic flow state.

However, with respect to data type and resolution, the
detectors are often limited and traffic data from continuous
detectors cannot be collected or the collected data do not
meet the requirements of the models. For instance, in China,
detectors are installed far apart on freeways and most seg-
ments have not been equipped with detectors or surveillance
devices. Regarding to method, generalized linear models
could provide direct evidence of the traffic parameters’
impacts on crash risk. When dealing with highly nonlinear
relationships between traffic flow and crash, it requires more
computational, flexible, and nonlinear models [23]. Recent
studies found that nonlinear models are capable of achieving
higher crash prediction accuracy with less false positives.
However, the limitations of the available nonlinear models
include heavy computations to reveal deeper connections
between the traffic parameters as well as for model calibra-
tion. Meanwhile, few studies have thoroughly investigated
the application of real-time crash risk prediction. Based on
an accurately quantified crash risk evaluation, proper traffic
management strategies can be applied and therefore improve
road safety. For example, Yu et al. [7] proposed a VSL
control algorithm in mountainous freeways and the result
indicated a positive outcome in crash risk control. However,
most VSL control studies are not safety-oriented and so the
only parameter utilized in the crash risk model is speed.
Meanwhile, generally it is hard to obtain accurate speed
variation data, and the effect of speed dispersion on traffic
safety has not been intensively investigated [3].

New technologies and traffic data sources provide great
potential to extend advanced strategies in freeway safety
research. For example, the High Definition Monitoring Sys-
tem (HDMS) data contribute comprehensive and precise

Journal of Advanced Transportation

Matched

case-control study

A 4

Crash risk evaluation logistic
regression model
Flow
condition
A4
— Aimsun simulation API
¢—‘—¢ Speed limits
Optimal speed Acceptable
limit crash risk

—

Simulation application

A 4

FIGURE 1: Architecture of this study.

individual vehicle information, including vehicle type, speed,
lane number, and plate number, as well as high quality photos
captured by advanced vehicle license plate recognition sys-
tems. In China, HDMS have been installed on major freeways
for public security management. The major contributions of
this paper consist of the following aspects (Figure 1): (1) to
employ HDMS data with individual vehicle information to
study the crash mechanism on freeways; (2) to develop a
Logistic Regression model for real-time crash risk estimation;
(3) to evaluate safety benefits of the optimized VSL based
on enhanced AIMSUN simulations on a 100 km freeway
stretch; (4) to investigate sensitivities of VSL impacts on
driver compliance.

2. Crash Risk Model

2.1. Data Preparation. The study area is G15 Freeway in
Nantong, Jiangsu Province, China, with a total length of
approximately 100 km, from Sutong Bridge to Fuan Toll (as
shown in Figure 2).

Data are obtained from the Public Security Traffic Man-
aging System of the Traffic Management Research Institute,
Ministry of Public Security. The freeway is a 6-lane one (3
lanes in each direction). The primary dataset includes all
crash data and HDMS data from January to October 2016.
The extracted HDMS data cover the lane number, direction,
vehicle type and speed, recorded time of vehicle passing, etc.
The study area includes five pairs of HD cameras.

The raw crash dataset includes 5924 crashes. However, the
majority of crashes are not recorded with detailed location or
direction information. 88% of the crashes are involved with
multivehicles. Among them, 96% of the crashes are recorded
with causes of hitting the fixed objects such as the guardrails



Journal of Advanced Transportation

Fuan Toll

A196‘ ;@ Toll A
Q)

S28

‘\Y B198

X Toll B

AN
C200
(94()3@ o
\_’3 Toll C
®
G40
D122¢4)®

E202 &

Sutong Bridge
@, HDMsS

FIGURE 2: The study area and subsegment division.

450 T
=
g
w 300 | 1
<
(5]
z
£
E 150 1
<
0
0 120 140
Speed (km/h)
raw o single—vehicle crash
--- 85th « multi—vehicles crash
— max

FIGURE 3: The traffic status 5-10 minutes prior to crashes.

and the medians, or hitting the unfixed objects such as the
crash barriers. In order to investigate the impact of traffic
dynamics on crashes, the traffic status prior to crashes has
been examined as Figure 3. In Figure 3, the raw HDMS data
are aggregated with the interval of 5 minutes. The datasets
from April Ist to May 3lst in 2016 have been utilized to show
the relationship between traffic volume and speed. The solid
curve “max” shows the margin of the data during this period
and the dash curve shows the 85th margin of the data during
this period. The dash curve demonstrates that, under most
conditions, the speed/volume distribution is within the curve.
The speed/volume data 5-10 minutes prior to each crash have

3
TABLE 1: Summary statistics of variables.
Variable Mean S.D. First Quartile ~ Third Quartile
Q (veh) 103.59 84.80 43.00 138.00
V (km/h) 80.37 12.83 75.04 87.93
DV (km/h) 22.28 5.40 18.73 26.08

been plotted in Figure 3 as well. The symbol “0” refers to the
crashes involved with single vehicle and the symbol “x” refers
to the crashes involved with multivehicles.

First, the “max” curve shows the similar trend with that
of the traditional capacity/speed curve. However, as under
most conditions, the traffic state is normal and it is difficult to
obtain the saturated flow state with different speeds. Hence,
the “max” curve mainly reflects the nonfree flow state, in
which the volume is approaching the maximum capacity. The
area beyond the “max” curve reflects the chaos flow state
or congestion state. Second, comparing the state of single-
vehicle crashes and the state of multivehicles we could find
that the single-vehicle crashes are more likely to occur within
the 85th curve; i.e., the crashes are likely to occur under free
flow conditions. This is consistent with several existing stud-
ies [24]. Another finding is that the number of multivehicle
crashes is in majority in the area beyond the “max” curve.
It indicates that when the traffic state approaches congestion
state, the crashes are likely to involve multivehicles; especially
when the speed is below 60 km/h, only multivehicle crashes
are detected. Meanwhile, under all conditions, when the
speed is below 40km/h, no single crashes have been recorded.

Additionally, as single-vehicle crashes are usually caused
by random effects, such as driving distraction and breaking
down, only multivehicles crashes with detailed temporal and
spatial information are utilized in this study to investigate the
relationship within traffic dynamics and crash risk. The data
5-10 minutes prior to the crashes are utilized to represent the
traffic status prior to crashes. The method is commonly used
in existing studies [15] as well.

A matched case-control method is utilized to extract the
related samples for each sampled crash. A 4:1 control-case
ratio is used, as recommended in several previous studies
[2]. Each crash case and noncrash case is matched with
corresponding traffic data on the same road segment. The
four control samples are selected from 14 days before the
recorded crash time, 7 days before, 7 days after, and 14 days
after. Considering the transferability of the model, the HDMS
data 5-10 minutes prior to the samples are aggregated as traffic
flow, mean speed, and speed dispersion, which are labeled as
Q, V, and DV, respectively.

Some filtering rules are also applied to select the available
samples. Due to occasional HDMS system failure, some
samples would be matched with invalid HDMS data or miss-
ing HDMS data. Noise and outliers are removed from the final
dataset. Finally the crash dataset contains 171 samples and
the control dataset has 618 non-crash samples. The summary
statistics of variables are listed in Table 1.

2.2. Binary Logistic Regression Model. Logistic regression
analysis is commonly used to quantify the crash risk in
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TABLE 2: Crash risk evaluation model for the whole segment.
Variables B. S.E. Wals. Df. Sig.
Q 0.012 0.001 101.806 1 0.000
DV 0.120 0.020 37.882 1 0.000
Constant -5.487 0.527 108.473 1 0.000
AUC 0.755 Nagelkerke R’ 0.288

TABLE 3: Comparison of the performance of the three models.

D Detector Modeling Prediction
ata type . .
density technique accuracy
3 detectors per .
AVI
235 km Bayesian 0.759
6 detectors Genetic
Loop detect
oop detector per 5.46 km Programming 0.608
HDMS Single detector LOngt.IC 0.755
per 20 km Regression

real-time crash analysis. The traffic condition can be divided
into two parts, crash cases (y; =1) and noncrash cases (y; =0)
with respective probability p; and 1-p;. The probability of a
crash occurrence is estimated by

Pt B W
P(/Vi=1|xi)=Pi=m
The odds of crash occurrence g(x) can be calculated as
g (x) — 1 f)i — eﬁ0+zﬁkxki (2)

i

where x;; denotes input variables series; 3, denotes the
constant in the logistic model; ;. denotes coeflicients for the
independent input variables. Here 3, can be estimated by
solving the log-likelihood function in

InL(B)
(3)
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The crash risk model is estimated with the binary logistic
regression procedure in SPSS 19. Backward LR (likelihood
ratio) variables selection is applied to select the significant
parameters in the proposed model. As shown in Table 2,
results indicate that flow and speed dispersion are significant
variables for crash risk estimation. The larger values of Q and
DV indicate a higher crash risk. The AUC (area under the
receiver operating characteristic curve, which illustrates the
performance of the classifier) value indicates that the logistic
regression model could successfully classify most of the crash
and noncrash cases.

In order to compare the predicting ability of the HDMS
data with the ability of the other kinds of traffic data, such
as loop detector data [22] or Automatic Vehicle Identification
(AVI) data [16], several existing studies are listed in Table 3.
Table 3 reveals that the HDMS data provide better evidence
for crash risk estimation and the corresponding model has
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TABLE 4: Crash risk evaluation models for downstream and
upstream of the HDMS.

Variables B S.E. Wals daf Sig.
Q 0.012 0.001 64.270 1 0.000
DV 0.139 0.026 27.961 1 0.000
Constant -5.912 0.714 68.650 1 0.000
Downstream AUC 0.759

Variables B S.E. Wals df Sig.
Q 0.013 0.002 38.924 1 0.000
DV 0.093 0.029 10.320 1 0.001
Constant -4.948 0.776 40.608 1 0.000

Upstream AUC 0.755

a relatively better prediction accuracy despite of the simple
form of model and the discrete distribution of the HDMS
devices.

The spatial issue should be addressed for the imple-
mentation of VSL. Hence, another two models have been
formulated to investigate the spatial effect, a downstream
model and an upstream model. As shown in Figure 4, samples
with crashes located downstream of the HDMS are the
downstream samples and vice versa. Finally the downstream
dataset contains 105 crashes and 360 noncrashes, and the
upstream dataset contains 68 crashes and 266 noncrashes
(the samples located just at the HDMS station are classified
into both downstream and upstream samples).

As before, binary logistic regression has been used to
estimate the crash risk models. The results are shown in
Table 4.

Results indicate that the performance of the crash risk
models considering the spatial effects is similar to the per-
formance of the crash risk model for the whole segment. The
reason for this is that the crash risk is stable on each segment
and the traffic parameters of adjacent locations on the same
segment are highly correlated, which has been shown by Fang
et al. [25]. Hence, the model for the whole segment is used
subsequently to estimate the real-time crash risk.

3. VSL Based on Microsimulation

3.1. Aimsun APIL In order to verify the method based on
dynamic VSL control of crash risk, a sub-segment of the
G15 Freeway segment utilized in Section 2 is employed in
the simulation (Segment 1 in Figure 2). The segment extends
from “Nantong Toll Interchange” to “Sutong Bridge” and the
total length is approximately 6 km.

Aimsun API (Application Programming Interface) can
be a helpful platform to evaluate certain traffic management
strategies. We can obtain the necessary real-time traffic data
(flow, speed, occupancy;, etc.) with required aggregation levels
or detailed vehicle information. The project is built with
Visual C++ 6.0 based on Visual Studio 2005. Using Aimsun
API functions, the detectors, VMS, and traffic control plans
are modeled and the attributes are defined in our in-depth
simulations.

To simulate the real HDMS data, AIMSUN API function
is used to gather the real-time vehicle information. The
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scenarios are tested on the G15 Freeway with a design speed
of 120km/h. In order to code the freeway segment in the
simulation, Baidu Map GIS data source is utilized to build
the freeway network. The drivers are assumed to comply with
the speed limit, with a certain compliance rate, when the VSL
starts to function on the segment.

The step size is 1 second. The Aimsun software develop-
ment kit has been utilized to develop a module to extract the
parameters for the crash risk evaluation model during the
simulation process. The values for Q;, DV;, with a 5 minutes
aggregation are recorded every minute. Thus the crash risk
could be estimated every minute and exported as a report for
final analysis as well as the average delay of all vehicles in the
whole simulation process.

The real-time crash risk probability (p;) for time period
(i) is estimated with (4) using the parameters in Table 2:

o~5:487+0.012+Q+0.12+ DV,

pi = 1 + e-5487+0.012%Q+0.12+ DV,

(4)

The average delay (AD) for each simulation application can
be calculated with

Z?:l (Ti B Tei) (5)

n

AD =

where T; denotes the real time vehicle i spent on the freeway,
T,; denotes the expected time vehicle i spent on the freeway,
and n denotes the number of vehicles passing by.

3.2. Simulation Calibration

3.2.1. Speed Distribution and Compliance Calibration. The
speed distribution and compliance level are calibrated before
the simulations. The original speed limit for the G15 Freeway
is 120 km/h and the proportion of vehicles with speed above
120 km/h is set as the non-compliance level. Drivers tend
to speeding on the freeway as the freeway is designed with
better alignments especially long stretch of straight line. The
traffic on the freeway mainly comprises private cars and
trucks. All the speed data for May 2016 is used to calibrate
the parameters. Figure 5 present the speed distributions for
different vehicle types. The calibration includes the speed

TABLE 5: Simulation scenario settings in Aimsun.

Scenario Parameters Settings
Road type Freeway
Lane width 3.75 meter
Maximum speed limit 120 km/h
Detection cycle 1 second

Minimum Headway+

Car following model . A
deceleration estimation

Global arrivals Exponential

distribution and the compliance rate. The compliance rate
for cars and trucks is 88.37% and 79.05% respectively. Other
parameters such as lane width, lane number and road type are
also calibrated. Part of the final scenario settings are listed in
Table 5.

3.2.2. Calibration of Traffic Temporal Distribution. Traffic
spatial distribution should also be addressed to validate the
simulations.

In existing studies, aggregate statistics have been vali-
dated such as the GEH statistics by FHWA [7]. In this study,
HDMS data have been utilized to calibrate the simulations.
I-hour HDMS data starting at 2016-05-05, 13:50:00, are used
to validate the simulation. The distribution diagram of time
headway in Figure 6 indicates that the temporal distribution
of the real data is similar to the temporal distribution of the
simulation data, especially when the value of time headway
exceeds 10 seconds. The significant difference appears on the
distribution when the time headway is less than 4 seconds.
The reason is that in real world some drivers may drive
aggressively with a relatively low following distance especially
under congestions, or try to change the lane with a relatively
low transverse distance, leading to the relatively high propor-
tion of low time headway. While in the simulation scenarios,
the vehicles follow the car-following and lane-changing rules
and they would never exceed the limit values. The result of
an additional Pearson test shows that the coefficient value of
the two curves is 0.75, which suggests moderate fidelity of the
simulation.
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TABLE 6: Speed limit impacts under different flow conditions.

Flow condition Speed Limit . Average Delay .
(VSL) Acceptable crash risk Crash risk benefit (%) Average Delay Loss (%)
(veh/h) (s)
(km/h)
5000 60 0.23 153.24 29.81 258.98
4000 70 0.27 158.92 39.73 167.51
3000 80 0.16 44.64 25.47 35.89
2000 120 0.09 17.94 0 0
35% - - - - - implemented to minimize the risk. As inappropriate speed
£ 30% limits would decrease the capacity and increase traffic delay, a
g comprehensive analysis should be made to achieve an optimal
£ 2% cost benefit ratio. Figure7 shows plots of crash risk (the
£ 20% | possibility of crash occurrence) and average delay in relation
E 15% | to speed limit under different flow conditions.
S Figure 7 indicates that a lower speed limit would achieve
g 10% lower crash risk; however the benefits vary at different flow
S sl ] levels. The average delay increases more and more as the
T speed limit is set lower. Hence, the crash risk benefit and aver-
0 0 0 0 20 20 P 60 age delay loss under different speed limits can be related to
Time headway (s) the original crash risk and the average delay of the replication
without VSL, so that trade-offs can be made as suggested in
— Si“i’jata Table 6. The results above are based on the hypothesis that
real—data

FIGURE 6: Comparison of the distributions of time headway.

3.3. VSL Performance Assessment under Different Flow Con-
ditions. A set of six speed limits has been tested to evaluate
the VSL performance under different flow conditions, namely
90, 80, 70, 60, 50, and 40 km/h. The traffic demand ranges
from 2,000 to 5,000 veh/h. The Aimsun simulation results
depend on the random seeds, reflecting the impact of random
factors, and simulations were replicated five times to account
for the variability. Each replication has 20 minutes to warm
up with the traffic demand 2,000 veh/h and 60 minutes more
to simulate the whole process with a different flow.

As the traffic is dynamic, the real traffic flow varies over
time, as does the crash risk. Thus the objective is to keep
the crash risk within an acceptable limit. In this study, the
commonly used 85th percentile index in traffic safety is
selected as the crash risk threshold for each replication; i.e.,
the traffic is evaluated as safe below that threshold. Once
the crash risk exceeds the limit, proper strategies should be

all drivers would comply with the VSL; i.e., compliance rate
equals 100%. However, when the VSL is advisory and also
inappropriate, most of the drivers would not comply with it;
thus the VSL strategy does not have any significant impact
on traffic conditions [10]. Hence, simulations with a lower
compliance rate are also examined, the rate being set to 50%.
The results are shown in Figure 8. Figure 8 indicates that at
flows 0f 2,000 to 3,000 veh/h and speed limits below 70 km/h,
with a compliance rate of 50% the crash risk increases as the
speed limit decreases. The compliance rate of 50% is low, with
half of the drivers driving at the VSL and the other half driving
as they prefer. At low flow levels, drivers would pursue higher
driving speeds, so that speed dispersion would increase and
make accidents more likely.

4. Application of VSL Strategies in Simulation

4.1. VSL Control Strategy. The objective of the VSL control
strategy is to manage the traffic within an acceptable crash
risk level and feedback is needed to adapt the strategy to the
real-time traffic condition. Two kinds of strategies have been
implemented in the simulations. The first is implementing
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and withdrawing the optimal VSL gradually (Strategy A)
and the other is implementing and withdrawing the optimal
VSL rapidly (Strategy B). Strategy A can be described as
in Figure9. When the real-time crash risk exceeds the

acceptable risk threshold 7), the corresponding target VSL V,
is set and the VSL value is decreased at the gradient of 5 km/h
every minute towards the target VSL V_. In Strategy B, when
the crash risk exceeds 7, the VSL is set to V, immediately. The
HDMS data are extracted from the HDMS database starting
at 2016-05-02, 13:50:00. The corresponding traffic demand
and speed distribution in the simulation are calibrated again
to fit the real HDMS data. The compliance rates of the
simulations is set at 88.37% for cars and 79.05% for trucks,
being the statistical results in Section 3.2. It took 15 minutes
to warm up and the whole simulation time is 75 minutes. The
simulations, and the comparison with raw data, are labeled
as “raw,” “Strategy A,” and “Strategy B.” The simulations are
started by the same random seed.

4.2. Application Results. The simulations results with differ-
ent strategies are shown in Figure 10. The crash risk curve
of the raw HDMS data displays two crash risk peaks after
40 minutes, exceeding the crash risk threshold significantly.
Compared with the raw curve, Strategy B could decrease the
average crash risk by 10.15%, but the risk is still high after the
simulation time of 50 minutes. The crash risk curve indicates
that there are no significant crash risk peaks under the control
of Strategy A. The average crash risk has been decreased by
22.63% by Strategy A compared with the Raw strategy curve.
The crash risk remains at a low level. Strategy A outperforms
Strategy B in which the speed limit is set to the target speed
immediately. When drivers pass by the speed limit sign, they
have to decelerate rapidly to comply with the speed limit. As
a result, the speed dispersion increases rapidly and the crash
risk increases as well.

Average delays are 56.31s, 24.87s, and 91.84s for Raw,
Strategy A, and Strategy B, respectively. Thus Strategy A
generates the shortest travel time and this strategy could
control the traffic condition efficiently and steadily, whereas
improper speed limit implementation may lead to unex-
pected traffic congestions.
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5. Discussion

Results of this study demonstrate that the proposed VSL
method could improve traffic safety, but more developments
are required to produce integrated control strategies that
are efficient and also applicable in real-time to large-scale
networks [26]. Integrated control with ramp metering and
VSL has been used to improve traffic flow efficiency based on
an optimal VSL rate [27]. Lane management (LM) method
has been employed in most countries, such as US, Europe,
and China. Lord et al. [28] indicated that truck-free free-
ways would have a better safety record than mixed traffic
and separating truck traffic from passenger cars improves

safety. Toll lanes have been suggested to separate Lights and
Heavies and the method could reduce total travel costs [29].
In this study, lane management has also been simulated.
To separate the cars and the trucks, a solid line rule has
been applied to restrict the lane-changing behavior on the
mainline. The truck can only access the outer lane while
the cars can access the other two lanes. Each condition with
lane management has been simulated with different VSL
under different traffic conditions. The results are shown in
Figure 11.

Figure 11 indicates that, under the traffic conditions of
2,000 veh/h and 3,000 veh/h, lane management has little
impact on the crash risk. However, under traffic conditions of
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FIGURE 11: Impact of lane management on crash risk and average delay under different traffic conditions.

4,000 veh/h or 5,000 veh/h, lane management has significant
impacts on ameliorating the crash risk. By implementing lane
management, the crash risk could be substantially controlled
despite high speed limits.

As shown in Figure 11(b), lane management at lower
traffic levels would have no impact on the average delay. Thus,
by implementing lane management properly with VSL, traffic
management administration would get significant improve-
ment in crash risk without affecting the level of service of the
freeway.

6. Conclusions

The study proposes an innovative dynamic variable speed
approach through intervening in traffic flow dynamics. A
binary logistic regression model based on HDMS data is built
to estimate crash risk. HDMS data provide detailed vehicle
information instead of aggregated data from loop detectors
or other detectors. They provide better evidence on the crash
mechanism. Microsimulations have been conducted with the
AIMSUN simulation software. AIMSUN API is utilized to
extract the detailed real-time vehicle information to calculate
the crash risk. Different speed limits with several compliance
rates under certain traffic conditions have been simulated.
Considering the trade-off between safety benefits and travel
time delay, we aim to optimize speed limit strategies under
various traffic conditions.

Two kinds of VSL strategies have been applied to control
the real-time crash risk in the simulated conditions of real

traffic accidents; the strategy of implementing and with-
drawing the optimal VSL gradually (gradient control) could
provide better control effects and keep the crash risk at a lower
level. Furthermore, lane management control has also been
assessed. Results indicate that such integrated control could
significantly reduce the crash risk without increasing average
traffic delay. The trends in optimal integrated traffic control
to reduce real-time crash risk prove to be promising.

Several potential directions are open for future explo-
ration. For example, further work is being conducted to
study the performance of applying the strategies into various
road types or road network. In future studies, as more and
more surveillance devices and vehicle on-board devices are
installed, real-time data such as weather condition as well
as driving behavior could be obtained. Meanwhile, with the
continuous spatial distribution of surveillance devices and
detectors, the aggregated traffic control of multiple segments
could be investigated to achieve balanced traffic conditions in
the road network as more driver-friendly integrated control
strategies are developed to fit the new era of ITS.
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