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Abstract

To date, the assessment of the energy flexibility to be delivered by existing
buildings and by their legacy HVAC systems is hindered by a lack of com-
monly agreed-upon methodologies. There are many research works in the
field; however, many of them are focused on the design stage or, in case of
addressing building operation, they are based on controlled experimental set-
ups. The novelty of this paper lies in the fact that it develops and validates an
original methodology for the Flexibility Function estimation to evaluate the
delivered energy flexibility of several Automated Demand Response services
applied on different heat pump systems working under real operations. The
active interaction with several electricity markets, ranging from the Spanish
day-ahead market to the German and Swiss ancillary services markets, have
also been evaluated during the winter and spring seasons. The method re-
sults showed that heat pumps could offer a significant potential of flexibility
in the analysed countries. Nevertheless, it has also been envisaged that some
restrictions concerning reaction times and reliability may affect its readiness
for certain ancillary services markets.
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Nomenclature

Acronyms

aFRR automatic Frequency Restoration Reserve Market

AR AutoRegressive

ARX AutoRegressive with eXogenous

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning
Engineers

BaU Business as Usual

BES Building Energy Simulation

CM Cluster Manager

CVRMSE Coefficient of Variation of the Root Mean Squared Error

DA Day-Ahead Electricity Price

DER Distributed Energy Resource

DHW Domestic Hot Water

DR Demand Response

DSO Distribution System Operator

ECM Energy Conservation Measures

EU European Union

FCR Frequency Containment Reserve

FF Flexibility Function

HP Heat Pump

IoT Internet of Things

MAPE Mean Absolute Percentage Error

mFRR Manual Frequency Restoration Reserve

MPC Model Predictive Control

NEMO Nominated Electricity Market Operator

NLME Non Linear Mixed Effect
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RMSE Root Mean Squared Error

RR Reserve Replacement

SAR Seasonal Auto Regressive

SH Space Heating

SVM Support Vector Machines

TS Time Series

TSO Transmission System Operator

Subscripts and superscripts

b baseline

bd building number

e active

f trace to be tracked

o outdoor

opt optimized

t time t

Variables

A Percentage of activation time within a time step

B Backward shift operator

i flexibility evaluation period

n number of time steps

P Power

RC Resistor and Capacitator

T Temperature
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1. INTRODUCTION1

Renewable energy sources like solar panels and wind turbines are invalu-2

able for transitioning to a fossil-free energy system to mitigate climate change3

impacts. However, their natural fluctuations introduce significant uncertainty4

in the power grid. In addition, they transform the present unidirectional cen-5

tralized system into a bi-directional decentralized system with smaller units6

and multiple prosumers, increasing the difficulty to achieve power balance7

[1]. This leads to an increased need for flexibility on the demand side [2, 3]8

and for new storage capacity [4, 5]. One attractive solution identified to sup-9

port the transition of power systems is to manage not only the energy supply10

but also the demand via Demand Response (DR) programs [6, 7]. The princi-11

ple behind it is to use various economic incentives to shift the electrical loads12

of end-use customers from times with a high wholesale market price or when13

the system’s security is threatened to other time periods. As has been pointed14

out in [8], there are predominantly two types of DR programs: i) explicit DR15

(also called incentive-based); ii) and implicit DR (also called price-based). In16

Implicit DR, a price signal is sent to the prosumers to motivate their user be-17

haviour change. Explicit DR involves the participation of a third party, who18

takes action on behalf of a customer by sending an activation signal such that19

the system behaviours are directly modified. In both DR programs, and con-20

sidering that nearly 50 % of the total energy consumption of buildings comes21

from Space Heating (SH)/Cooling (SC) and domestic hot water (DHW), as22

stated by [9], there is definitely a role that electrically driven Heating, Ventila-23

tion and Air Conditioning (HVAC) systems can play.24

Although the installation of control devices, communication, control pro-25

tocols and standardization have improved, DR is currently still rarely imple-26

mented in the commercial and even less in the residential sector in Europe27

[10]. Serale et.al [11] reviewed 161 papers on Model Predictive Control (MPC)28

in buildings, and revealed that only a fourth considered residential buildings29

and only a bit more than a fifth compared experimental cases to simulated30

cases. Kohlhepp et.al. [12] performed a thorough review of 16 projects of31

field tests and demonstrations of applied DR from around the world. Only32

four projects had more than 100 households, a size large enough to represent33

load diversity and test resource competition. A singular case of commercially34

applied DR to large scale residential buildings is run by the French company35

Voltalis, which manages one of the biggest portfolios of explicit DR services36

in the world. They follow a strategy of DR based on service curves [13, 14].To37

our knowledge, they have not published peer-reviewed papers analysing the38

impacts of this DR strategy or provided a general methodology to evaluate the39

delivered energy flexibility. In general, there is a lack of test case benchmarks.40

Comparing the results among case studies with different goals, addressed41

electricity markets and technology environments is still very challenging.42

The few real case applications of DR have brought forth a wide diversity43

of methodologies to evaluate the energy flexibility that individual or clustered44

buildings can provide. In many cases, assessment methodologies are focused45

on the potential energy flexibility at the building design stage. Arteconit et. al46

[15] is a clear example of defining an indicator of flexibility labelling at the de-47
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sign stage. Finck et. al [16] performed a very detailed analysis of the demand48

flexibility that power-to-heat systems can deliver. Several flexibility indicators49

such as available storage capacity and efficiency are enhanced with a flexibil-50

ity factor, which relates electricity costs in the lower price and higher price51

periods in a day-ahead electricity market DR scenario. A thermal instanta-52

neous power flexibility indicator is also described. These indicators have a53

great potential to evaluate the energy flexibility in DR services addressing the54

ancillary markets. The only weakness is that they were demonstrated in a the-55

oretical simulated environment. Moreover, that research was more focused on56

developing control strategies and not on the flexibility evaluation itself.57

In their hands-on review, Reynders et.al [17] made a valuable contribution58

in reviewing prior research dealing with definitions and quantification of en-59

ergy flexibility. One of their main conclusions was that a large share of the60

performed research practices did not explicitly define or were not focused on61

quantifying energy flexibility. Yet, they dealt with the development of con-62

trol strategies and algorithms for specific case studies. They also stated that63

most of the studies had in common the identification of three general proper-64

ties of energy flexibility: i) the potential flexibility in several time horizons; ii)65

the load which can be shifted; and iii) the cost of this flexibility. The authors66

also deducted that methodologies aimed at quantifying the energy flexibility67

by analyzing triggered events at specific times have greater strengths when68

dealing with the flexibility to be delivered by the thermal mass of buildings69

or energy storage systems. In contrast, methodologies which relied on dif-70

ferences in the accumulated energy profiles are difficult to interpret because71

they treat systems driven by multiple time constants as a single state system.72

El Geneidy and Howard [18] performed a detailed analysis of the categories73

of characteristics that constrain the contracted flexibility potential in homes.74

Although their results are valuable for defining further DR strategies, they are75

limited by simplified assumptions and exclusively based on simulated scenar-76

ios. Bampoulas et.al [19] conducted a more detailed recent review on studies77

aiming at defining suitable flexibility indicators. They highlighted that most78

of these studies were limited to evaluating control strategies and assessing the79

activating and deactivating of the building’s thermal mass. Still, they did not80

clearly quantify the flexibility potential of HVAC systems.81

Following these remarks, Junkers et.al [20] developed a novel methodol-82

ogy to characterize the energy flexibility as a dynamic function named the83

Flexibility Function (FF). This FF enables a Flexibility Index, which describes84

how a building can respond to certain activation signals. The FF is a step-85

response function that assumes that the relation between the penalty signal86

and the power load is linear and time-invariant. Several theoretical cases were87

presented to validate this proposed FF, demonstrating how the FF enables the88

quantification of the energy flexibility in different types of buildings. This pa-89

per represents a valuable contribution to the field since it establishes a robust90

methodology to represent, in a normalized manner, the correlation between91

the penalty signal and the load response. The concept of the FF applies to92

several building typologies and DR scenarios but specifically addresses im-93

plicit DR services. However, the assumption that the dependence of the active94
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power and the activation variable is linear limits its applicability to DR ser-95

vices which can fulfil this requirement. Recently, Junkers et.al [21] published96

a paper presenting a new generic method capable of overcoming the linearity97

and time dependency of the correlation between the flexibility and the penalty98

signal. This new method follows the principles of the FF, but it changes the99

perspective. They developed a non-linear dynamic model based on stochas-100

tic differential equations. It is applied to price-based controlled buildings and101

water towers, showing high robustness, accuracy and scalability to similar102

business cases. One limitation is that these methods are developed to specifi-103

cally address implicit DR services driven by penalty signals triggered by one104

of the stakeholders of the electricity sector. This is very common in many105

electricity markets, such as the spot electricity market, the intra-day market,106

or certain ancillary services markets. However, in some explicit DR services,107

where the activation variable is a power trace to be followed, such as when108

a commercial aggregator makes bilateral agreements with their Balance Re-109

sponsive Parties (BRP), both the FF and the flexibility characterization model110

defined in [20, 21] need to be modified or extended to adapt them to these111

different kinds of activation variables.112

In our research, an extension of the previously developed flexibility charac-113

terization procedures is performed, which is the main novelty of the research114

work. Based on the background knowledge developed by Junkers et.al [20],115

and further improved in [21], new linear regression-based models, designed116

to characterize the energy flexibility delivered by blocks of buildings, are de-117

veloped and validated in real cases. These new flexibility models address118

different implicit and explicit DR scenarios. For example, the activation vari-119

able can be the spot market price, the percentage of power to be activated, or a120

power trace to be tracked. This is also an extra contribution to the paper. One121

last novelty of the research lies in the fact of developing and applying these122

flexibility models on clustered residential buildings, ranging from high energy123

performance detached houses (Germany) to building blocks connected to low-124

temperature district heating (Switzerland) or a group of buildings formed by125

small shops, a food market and residential units (Spain). In all the scenar-126

ios, the methods were applied to remote-controlled heat pumps with different127

system configurations.128

The rest of the paper is organized as follows. Section 2 describes the devel-129

oped methodology, identifies potential flexibility markets, presents a common130

methodology for quantifying energy flexibility and describes the models and131

the new FF formulations. Hereinafter, the three case studies (Spain, Germany132

and Switzerland) are presented in Section 3. They comprise three clusters of133

buildings with heat pumps remotely driven by MPC procedures. The oper-134

ation of the DR services and the results are summarized in Section 4, where135

details of the outcomes of the different direct load control tests are presented.136

The energy flexibility is assessed, through the derived Flexibility models and137

Flexibility Functions, in this section. Finally, the findings are extensively dis-138

cussed in Section 5, and summarised in Section 6. Furthermore, some perspec-139

tives for future work are also envisaged in Section 7.140
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2. Methodology141

2.1. Identification of the addressed flexibility markets142

Different markets exist for the trading of electricity between buyers and143

sellers. In the day-ahead market, products are traded for delivery on the fol-144

lowing day. The intraday market trades products to balance possible devi-145

ations from the day-ahead forecast. Balancing or control reserves markets146

are needed to balance electricity generation and consumption in the short147

term. Three different types of control reserves markets are available: i) Fre-148

quency Containment Reserve (FCR), ii) Automatic Frequency Restoration Re-149

serve (aFRR), and iii) Manual Frequency Restoration Reserve (mFRR). They150

differ according to the principle of activation, to their bid minimum size and151

symmetry, and their activation speed. The last category of markets is the Re-152

serve Replacement (RR) market. These capacity mechanisms aim at ensuring153

the security of supply from a long-term perspective.154

In this paper, four of the above-mentioned markets are selected to be ad-155

dressed through direct load control DR services: i) the Spanish wholesale elec-156

tricity market (day-ahead); ii) the German operating reserve; iii) the German157

intraday spot market and; iv) the Swiss imbalance market (aFRR).158

In Spain, OMIE is the nominated electricity market operator (NEMO) for159

managing the Iberian Peninsula’s day-ahead and intraday electricity markets.160

The delivery takes place on the day after the trading day (incl. weekends or161

holidays), and trading sessions take place in one daily auction 365 days/year.162

Sale and purchase bids can be made considering between 1 and 25 energy163

blocks in each hour, with power and prices offered in each block. In the case164

of sales, the bid price increases with the block number; in purchases, the bid165

price decreases with the block number. The minimum size is 0.1 MW. The166

Spanish TSO, Red Eléctrica Española, has developed an information system167

known as ‘System Operator Information System (esios)’, specially designed168

to run all the necessary processes to ensure economic and reliable exploitation169

of the Spanish Power System in real-time. The esios portal offers an open API170

where the wholesale electricity prices for the next 24 h are published once the171

spot market is closed (at 13 h of every day). These electricity prices become172

the control variable for the direct load control services implemented in the173

Spanish use case.174

Unlike the day-ahead spot market in Germany and Switzerland, the intra-175

day market can be described as a corrector market because the time intervals176

between trade and activation and the activation period are significantly lower.177

Thereby, electrical energy is traded in intervals of one hour for Switzerland or178

15 min for Germany. In Germany, trades for 15 min intervals can be completed179

between 15:00 (CET) of the previous day until 5 min before activation [22].180

In Germany, four different TSOs are responsible for the reserve markets,181

and around 60 companies are pre-qualified to deliver operating reserves. There-182

fore, compared to the spot trade market, there is a highly reduced field of183

actors. The FCR activation time of a few seconds is very short term. aFRR184

requires an activation time of less than 30 s and 5 min to reach full power. RR185

requires 5 min for activation. mFRR and RR are traded daily and bids can be186

provided in blocks of 4 h. Negative and positive reserve power is traded. As187
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a first instance, positive or negative power is offered with different assigned188

prices. If an offer is accepted, a working price (e.g. EUR/MWh) is also offered,189

and the activation occurs according to the working price within a merit order190

list. The main drawbacks of mFRR and RR are that at least 1 MW of power191

must be certified. Thereby, an aggregated larger pool operation is necessary.192

The German operating reserve market, especially mFRR has seen dropping193

costs within the last years [23, 24], whereas in comparison the amount of en-194

ergy traded at the EPEX Intraday market has almost doubled from 2014 – 2019195

(from 47 TWh to 91.6 TWh) [25], shifting the favourability more to intraday196

trade. In the German pilot site, activations were carried out by Centrica, an197

aggregator company situated in Belgium, according to available market data198

from Belgium. This is justifiable due to the fact, that the spot market products199

are tradable in between Germany and Belgium [26] as well as the operating200

reserve market conditions are comparable [27].201

The Swiss operating reserve markets are managed only by one TSO (Swiss-202

grid). Compared to Germany, the minimum certified bid of the aFRR and RR203

markets is 5 MW, making them even less accessible for residential buildings,204

as a vast pool of assets would be needed. For aFRR, the trading is automated.205

The products traded are asymmetric and must be available 30 s to 5 min after206

the notification for a duration of up to 15 min. The size of the aFRR in Switzer-207

land in 2017 was ±380 MW [28]. The high participation of hydropower supply208

in the reserve markets limits residential DR. The high number of DSOs present209

in Switzerland [28], each of them with a limited asset pool, also hinders the210

development of DR services by the DSOs. For the field tests of the Swiss pilot211

site, the targeted reserve market was the aFRR, as its market constraints are212

the most accessible for heat pumps. By combining a pool of batteries with213

fast activation time and heat pumps whose power availability lasts longer,214

an aggregator could theoretically fulfil the market constraints. The trading in215

this work was done by Centrica (aggregator), and HES-SO Valais-Wallis car-216

ried out the activations in Switzerland. Real trading could not be tested, as it217

would have required 200 times the capacity offered by the pilot site to reach218

the minimum bid of 5 MW.219

2.2. New reference methodology to assess energy flexibility220

The methodology to characterize the energy flexibility in a more standard-221

ized way follows the initial methodology set out by [20]. This methodology222

defines a dynamic function, named the flexibility function FF, which charac-223

terizes the energy flexibility of any device through the use of penalty signals.224

In our research, the analysed use cases do not strictly follow the activation225

of the energy flexibility through penalty signals since they respond to other226

DR schemes. To address these different DR schemes, we took a broader ap-227

proach than [20] and implemented a methodology to include other kind of sig-228

nals and activation variables which are more realistic for the analysed energy229

flexibility markets. The proposed methodology follows the process shown in230

Fig. 1. As can be seen, the initial point starts with setting up the baseline mod-231

elling, which corresponds to the energy performance model of the buildings232

in a Business as Usual (BaU) scenario. This baseline model is then used to233

forecast the building energy consumption for the time horizon defined by the234
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activation period. This energy forecasting is integrated into a model predictive235

control optimization where the activation variable is the output. The cost func-236

tion depends on the flexible electricity market to be addressed. The activation237

period is different for each use case and flexible electricity market. It is driven238

by the optimized activation variable, ranging from a penalty signal, such as239

the day-ahead price, a percentage of power activation time, or a power trace240

to be tracked. The active power consumed throughout of activation period241

is registered. This time series is considered as the dependent variable within242

the flexibility model. The baseline forecasting and the activation variable time243

series are defined as the independent variables. The flexibility model is then244

formulated also to include the corresponding autoregressive terms. The next245

step consists of training this flexibility model with historical data of the acti-246

vation period. Once the flexibility model is trained and validated, the i-step247

prediction is used to define the flexibility function, FF.248

Figure 1 – The general process to quantify the energy flexibility

.

2.2.1. Baseline modelling249

Since the energy flexibility cannot be directly measured, as it represents250

the activation or deactivation of power usage, it is determined by compar-251

ing measured power during the activation period and forecasting the power252

consumed by the building as if the activation had not taken place. This sup-253

posed scenario is called the Business as Usual (BaU) scenario. To determine254

the energy load forecasting under the BaU scenario, a model of the thermal255

dynamics and the energy consumption of the building, prior to the activation256

period, needs to be developed. This model is called the baseline model. The257

baseline model can be defined as the energy characterization of the starting258
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situation and has a fundamental role in the determination of energy flexibil-259

ity. In fact, the baseline model allows isolating the effects of the activation260

variables from the effects of other parameters that can simultaneously affect261

the energy consumption. To obtain the baseline model, several approaches262

can be followed:263

• Empirical modelling based on a system of differential equations and heat264

transfer functions265

• Grey box modelling based on state-space models266

• Data-driven modelling based on transfer function models or machine267

learning techniques268

In this research, the three approaches have been used for the different use269

cases. The first approach requires detailed models with several monitored270

variables and a calibration stage to fit with the monitored data. An example of271

these kinds of calibration processes can be found in [29]. The second approach272

requires monitoring the state variable (indoor temperature or water tank tem-273

perature) and a precise process to identify the unknown parameters. A[30, 31]274

detailed description of the identification procedure applied over suitable grey275

box building heat dynamics models is presented. The third approach requires276

good data quality of a minimum historical period and the measurement of the277

control variable. Several authors applied this last approach to determine the278

heat dynamics of buildings. In [32], some of the most common data-driven279

methods used to develop baseline models are reviewed. The baseline mod-280

els developed in each use case are described in detail and referenced in the281

corresponding subsection of Section 3 of this document.282

2.2.2. Flexibility models283

A flexibility model is a regression-based model which aims at finding the284

correlation among the active power, the activation variable and the power285

under the BaU scenario. In this research, a data-driven approach is followed286

based on Autoregressive (AR) models. As previously mentioned, the initial287

modelling technique is defined by [20] is modified to adapt it to the specific288

constraints of the different activation variables. The original model by Junker289

et al. assumes that the active load when exposed to a the penalty signal can290

be separated into two parts; the load that dynamically responds to the the291

the penalty, and the non-responsive load (baseload power, in our equations).292

However, in our case the dynamics due to the active and baseload signal itself293

are added. Thus, an ARX model is considered based on the initial equation294

presented in [20]. This allows to better estimate the amount of time and load295

that can be flipped once an activation, a change of price, or a trace to follow is296

received. Additionally, it helps to the proper estimation of the rebound effect297

caused by a change in the penalty, as it considers the thermal inertia available298

in the system.299

In the use cases when the activation variable is the day-ahead electricity300

price of the wholesale spot market, the model formula is described in Eq. 1.301

φTo(B)P
e
t = ωTo(B)P

b
t +ΨTo(B)DAt + εt (1)
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The auto regressive terms φTo(B), ωTo(B) and ΨTo(B) are the parameters of302

the model. The sub index To represents their dependence with one categorical303

variable, the outdoor temperature. In order to better express this dependency,304

a 4 hours moving-averaged transformation is applied over the outdoor tem-305

perature for the testing periods. This averaged temperature is further split in306

two levels: [6.67 ○C - 12.3 ○C] and [12.3 ○C - 21.5 ○C]. Therefore, the To is not307

used as a exogenous variable of the model. The backward shift operators,B,308

are defined as Bkyt = yt−k, where yt is the considered variable (Pe
t , Pb

t ,DAt)309

at time t and k ∈ [0, j]. Here, j refers to the maximum order allowed to that310

backward shift operator, B. DAt corresponds to the activation variable, the311

day-ahead electricity price. The εt corresponds to the white noise residual of312

the model at time t.313

In the use cases when the activation variable is the percentage of activation314

time within each time step, the model formula is described in Eq. 2.315

φbd(B)Pe
t = ωbd(B)Pb

t +Ψbd(B)At + εt (2)

The auto regressive terms φbd(B), ωbd(B) and Ψbd(B) are the parameters of316

the model. The sub index bd represents their dependence with one categor-317

ical variable, the building number. bd comprises the categorical values of318

the building number for this use case [20, 22, 24, 25], and a virtual build-319

ing that aggregates the power of all of them. Therefore, the building number,320

bd, is not used as a exogenous variable of the model. The backward shift321

operators,B, are defined as Bkyt = yt−k, where yt is the considered variable (Pe
t ,322

Pb
t ,At) at time t and k ∈ [0, j]. Here, j refers to the maximum order allowed323

to that backward shift operator, B. At corresponds to the activation variable,324

which is the percentage of time, within every time step, with active power,325

At = [0%− 100%]. The εt corresponds to the white noise residual of the model326

at time t.327

In the use cases when the activation variable is a trace to be tracked, the328

power used within the activation period is no longer the model’s dependent329

variable. In Eq. 3, the dependent variable is substituted by the difference be-330

tween the active power, Pe
t , and the baseline power,Pb

t . The activation vari-331

able in Eq. 1 is then substituted by the difference between the power trace to332

be tracked, P
f

t and the baseline power, Pb
t . The modified formula is shown in333

Eq. 3.334

φs,To(B)(P
e
t − Pb

t ) = ωTo(B)(P
f

t − Pb
t )+ εt (3)

The autoregressive terms φs,To(B), ωTo(B) are the parameters of the model.335

The sub-index To represents their dependence on a categorical variable, the336

outdoor temperature. Based on a 4 hours moving-averaged transformation337

of the outdoor temperature, for the test periods, the results are split into two338

groups of outdoor temperature levels: [6.5 ○C - 15.7 ○C] and [15.7 ○C - 28.5 ○C].339

The sub-index s refers to the sign of the trace to be tracked in relation to the340

baseline power, being equal to 1 when it is positive, equal to 0 when there is no341

difference with the baseline power, and equal to -1 when it is negative. There-342

fore, neither the To nor the s are used as exogenous variables of the model. The343
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backward shift operators,B, are defined as Bkyt = yt−k, where yt is the consid-344

ered variable (Pe
t , Pb

t ,Xt) at time t and kǫ[0, j]. Here, j refers to the maximum345

order allowed to that backward shift operator, B. The εt corresponds to the346

white noise residual of the model at time t.347

2.2.3. Flexibility Functions348

The Flexibility Function (FF) can be understood as the impulse response349

function of each flexibility model since the flexibility models include autore-350

gressive terms of the dependent variables, which cause an influence over the351

Pe
t when t ≥ 1. To do so, an i-step prediction is performed to estimate the352

impulse response of the models properly.353

In the use case when the activation variable is the day-ahead price, the FF
is determined based on a positive and a negative change in the day-ahead
electricity price (±0.1 e/kWh) for the time steps n = 15, 60 and 120 minutes
and for a flexibility evaluation period of i = 480 minutes. When the activation
variable is the percentage of time of activation within each time step, 100 %
activation signals for time steps of n = 1, 2 and 4 hours are tested along a
flexibility evaluation period of i = 12 hours. Both use cases follow a similar
procedure to determine the FF:

t = (0, 1, ..., i) (4a)

Pe
t≤0 = 0 (4b)

Pb
t∈N = 0 (4c)

For the day-ahead electricity price as the activation variable:

DA =
⎧⎪⎪
⎨
⎪⎪⎩

0.1, if positive price change

−0.1 if negative price change
(4d)

DAt = (0, (DA, .., DA)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, (0, ..., 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
n-i times

) (4e)

Φ
b
k=0(B)P

e
t = −Φ

b
k≥1(B)P

e
t +Ψ

b(B)DAt (4f)

Φ
b
k=0(B) = 1 (4g)

FFt = Pe
t = −Φ

b
k≥1(B)P

e
t +Ψ

b(B)DAt (4h)

For the percentage of time activation within a time step as the activation vari-
able:

At = (0, (100, .., 100)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, (0, ..., 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
n-i times

) (4i)

FFt = Pe
t = −Φ

b
k≥1(B)P

e
t +Ψ

b(B)At (4j)

In the use case when the activation variable is a trace to be tracked, the FF
is determined by considering a 100 % activation signal of time steps n = 15,
30 and 60 minutes for a flexibility evaluation period of i = 120 minutes. A
multi-step prediction method is used to predict the expected response of ±1
kW of the trace to be tracked. The previous estimate of the flexibility function,
(Pe − Pb), is used for the new prediction step. The baseline power is set to
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Pb
t = 0 for t ∈ (0, 1, ..., i). Here, s is equal to 1 if the activation is pos equal to -1

if it is negative.

(Pe
t≤0 − Pb

t≤0) = 0 (5a)

(P f
t − Pb

t ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, if t ≤ 0

( (s, ..., s)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n times

, (0, ..., 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i-n times

), otherwise (5b)

Φs,To(B)(P
e
t − Pb

t ) = ωTo(B)(P
f

t − Pb
t ) (5c)

Φs,To k=0(B)(P
e
t − Pb

t ) = −Φs,To k≥1(B)(P
e
t − Pb

t ) +ωTo(B)(P
f

t − Pb
t ) (5d)

Φs,To k=0(B) = 1 (5e)

Considering the flexibility model of Equation 3 and the set up described in354

previous equations, the FF is defined as:355

FFt = (Pe
t − Pb

t )

= −Φs,To k≥1(B)(P
e
t − Pb

t ) +ωTo(B)(P
f

t − Pb
t )

(6)

3. Case studies356

The methodology to evaluate the energy flexibility is applied over three357

case studies which have in common a direct load control of space heating358

systems driven by heat pumps:359

• Case study of the Spanish wholesale electricity market price as the ac-360

tivation variable. Blocks of buildings placed in North-East Spain (Sant361

Cugat)362

• Case study of the percentage of activation time as the activation variable.363

Residential households placed in South Germany (Wüstenrot)364

• Case study of a trace to be tracked as the activation variable. Blocks of365

residential buildings placed in Switzerland (Naters)366

A new player, called the Cluster Manager (CM), is incorporated in these367

case studies. CMs are site managers that cluster together with the local en-368

ergy , which are remotely controlled (e.g. heat pumps). They have technical369

knowledge of these energy systems and the connected devices (control sys-370

tem, meters, sensors...). They manage these assets and act as the bridge be-371

tween the aggregator, who bid in the markets, and the end-user. Thus, they372

do not have to deal with market specifications handled by the aggregator.373

3.1. Spanish case study: wholesale market price374

This case study is a pilot site constituted by buildings that combine apart-375

ments, offices, shops and a local food market. They are placed in a city called376

Sant Cugat, in Northern East Spain. Figure 2 shows the space heating and377

cooling system configuration. It comprises a water storage tank of 3,500 litres378

fed by two reversible heat pumps accounting for 60 kW of electric power. The379
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heat pumps are controlled by an immersed temperature probe inserted into380

the bottom of the water tank. The heat pumps deliver thermal energy to the381

water storage tank through a primary circuit with two hydraulic pumps and382

external heat exchangers, which follow the same operation schedules as the383

heat pumps. The water tank provides hot and cold water to two different384

hydraulic circuits, which transfer this thermal energy to 32 offices, 3 shops385

and a local food market. These hydraulic circuits are managed by two 3-way386

motorized valves incorporating a proportional integral derivative (PID) con-387

trol, leading to variable water volume flow rates. The control variable of the388

system is the water tank setpoint temperature. Since the two heat pumps do389

not have variable-speed compressors, they are thermostatically controlled in390

ON/OFF modes.391

SHOPS
SHOPS

SHOPS
SHOPS

TANK

HP 1

HP 2 SHOPS
&

OFFICES

OFFICE

1

OFFICE

2

..
.

OFFICE

N

MARKET

Figure 2 – Space heating configuration of the Spanish use case. The zoom shows
details of the hydraulic distribution ring

.

The direct load control strategy followed in this use case is based on the392

augmented heat pumps performance with price information from the whole-393

sale market and weather forecast data for the current and following day. The394

heat pumps’ electrical use adjusts times when the Spanish wholesale market395

spot price is lower (day-ahead optimization). To make these services opera-396

tional, a Model Predictive Control (MPC) approach is put into practice. Every397

day at 00:00, a Genetic Algorithm (GA) optimizes the cost function, which is398

the minimum daily electricity consumption cost and gets the vector of the set-399

point temperature of the water storage tank, Ts
opt, for the next 24 hours in the400

more cost-effective way.401

The baseline model is developed based on the third approach mentioned402

in Section 2.2.1. It is a data-driven approach formed by two ARX models.403

They define the dynamic energy balance between the electricity load of the404

heat pumps, the water tank temperature and the thermal energy delivered to405

the offices, to the shops and the local food market, as well as the thermal losses406
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in the water storage tank and the water distribution rings. More details of this407

kind of model can be found in [33]. These two forecasting models need, as408

inputs, day-ahead predictions of the thermal energy consumed by the shops,409

the offices, and the local food market. Since they form a block of buildings,410

they can be simplified as a multi-space building formed by several thermal411

balance nodes. This model is expected to behave highly non-linear in relation412

to the external temperature and other climate-dependent exogenous variables.413

Therefore, data-driven models are also used to evaluate their energy perfor-414

mance. After a previous fine-tuning phase, where several machine learning415

models were evaluated, the Generalised Additive Model GAM, developed by416

Hastie et.al [34], provided the highest accuracy and was the selected one.417

3.2. German case study: percentage of activation time418

This case study is a pilot site situated in the rural municipality of Wüstenrot419

in southwest Germany. It consists of a newly built positive energy settlement420

with 18 residential single and multifamily buildings. These buildings are con-421

nected to a low-temperature district heating grid fed by a so-called “agrother-422

mal” – a large scale geothermal - collector. All buildings are equipped with423

decentralized heat pumps, thermal buffer storage tanks ranging from 175 to424

300 litres, radiant floor systems, and photovoltaic (PV) systems of installed425

power between 6 and 29 kWp per building. In addition, a cloud-based moni-426

toring system is installed for 12 buildings that include all relevant thermal and427

electrical energy flows. Within those 12 buildings, a local energy management428

system is installed to control the heat pumps. Figure 3 shows a scheme of the429

energy systems configuration of one of the households. Since different man-430

ufacturers provided the heat pumps, some connectivity problems appeared431

with the interfaces of some of them and the activation was only carried out432

for four heat pumps manufactured by Tecalor (Typ TTF 10 and TTC05). Two433

of these heat pumps have a maximum electrical power of 2.38 kW, and two434

have a maximum power of 3.82 kW. These activations aimed to test the poten-435

tial and challenges of flexible control of heat pumps from the viewpoint of a436

flexible service provider.437

Figure 3 – Energy systems configuration of one of the single households of
Wüstenrot pilot site

The development of the baseline model followed the first approach men-438

tioned in Section 2.2.1. For four of the selected households, a white-box model439

of each building was generated. More details of the models can be found in440
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[35] and in [36]. They include heat pumps, buffer storage water tanks and441

control systems. To increase the model’s accuracy, a calibration on parameters442

changeable by the users (indoor setpoint temperature and air exchange rate)443

with measured data was carried out. Given the unavailability of a baseline444

for the fifth household, due to inadequate monitoring data, this baseline has445

been derived from another house which was most similar (same heat pump446

type and no heating buffer) applying a linear extrapolation based on the his-447

torical consumption difference of both. Input parameters for the heat pump448

control are active power, DHW temperatures and floor heating temperatures.449

The control strategy is a direct load control over heat pumps on/off.450

3.3. Swiss case study: trace to be tracked451

This case study is a pilot site placed in the municipality of Naters, in South-452

ern Switzerland. It comprises 12 residential multi-family buildings connected453

to a centralized low-temperature district heating network (anergy network).454

It represents 166 residential units. The size of the buildings ranges from 4 to 36455

residential units per building. The buildings’ construction years range from456

1919 to 2015. Thus their envelopes have different thermal efficiencies and have457

either radiators or floor heating systems. Each building is equipped with one458

or two fixed speed compressor heat pumps, thermal buffer storage tanks for459

SH and DHW. Hardware components called ‘gateways’ are installed in each460

building. They collect, process and export data from the building devices (e.g.461

heat pumps, electricity meters) to a cloud-based platform that enables remote462

control of the heat pumps. The gateways installed in this use case do not have463

the same level of internal intelligence as the management system installed in464

the German use case. Due to some restrictions in the control interfaces with465

the heat pumps, only five out of fourteen heat pumps were intensively tested,466

accounting for a maximum aggregated electricity power of 34.3 kW. Figure 4467

shows and scheme the energy systems configuration of the multi-apartment468

buildings.469
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Figure 4 – Energy systems configuration of one of the multi-apartment buildings
of Nater’s pilot site

The test aims to confirm the potential and challenges of flexible control of470

heat pumps in residential buildings from the viewpoint of a flexible service471

provider. A transactive DR approach was tested (a two-way communication472

system). Its reliability and performance over consecutive days with multiple473

DR-events per day was also assessed. The framework can be divided into474

three steps: i) the site is waiting to provide DR services by running BaU; ii) the475

aggregator starts negotiating power traces with the CM; iii) once a trace has476

been agreed on, the CM tracks it with an MPC adapted from the formulation477

developed by [37]. The baseline trace is modelled based on the third approach478

mentioned in Section 2.2.1. It is a data-driven approach formed by a Seasonal479

Autoregressive model (SAR) for each building using the past 3 days’ power480

data. The aggregated baseline for the site is computed by summing up the481

estimated baseline of each building. The other traces are generated by solving482

scheduling optimization problems. The control variables of the heat pumps483

are the SH and DHW temperature set points, which are increased/decreased484

based on the new values optimized by the MPC.485

4. Results486

4.1. Operation of the Spanish case study487

Figure 5 depicts the results of the direct load control applied in the case488

study where the Spanish wholesale spot market price acts as the activation489

variable. An MPC optimization was applied during the activation period,490

which comprised from March 29th to April 12th 2020.491
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Figure 5 – Results of the direct load control of the use case of the Spanish
wholesale spot market price as activation variable

The upper figure shows, in a black-coloured line, the monitored active wa-492

ter storage tank temperature,Tt
opt along the activation period. It is compared493

with the water storage tank setpoint temperature,Ts
opt, the red-coloured line,494

obtained as the output of the day-ahead optimization performed every day.495

The Ts
opt is the direct control variable that drove the heat pumps performance496

along the activation period. As can be seen, the water tank temperature fol-497

lows the optimized setpoint temperature very well. The lower plot shows the498

simulated baseline forecasting of the water storage tank temperature (black-499

coloured line), Tt
b
, and the corresponding setpoint temperature (blue-coloured500

line), Ts
b
, in the BaU scenario, which is minimum operational temperature501

level required by the offices, shops and local food market to keep the comfort502

requirements. The differences in both plots show the effect of the activation.503

It can be seen that the baseline forecasting usually has two temperature peaks504

and a second smaller temperature level. In contrast, the optimized temper-505

ature shows a single peak that is slightly lagged in time. This time lagging506

shows the MPC is shifting the higher setpoint temperature values to the peri-507

ods with lower electricity prices.508

4.1.1. Time series inputs for the flexibility model development509

In Figure ,6 the day-ahead signal price, DA, the forecasting of the baseline510

power load,Pb, and the active power of the heat pumps,Pe, are shown. Com-511

paring the two time series of power, the differences due to the MPC are ap-512

preciable. The bigger differences can be seen for the first days of April, where513

the active power is concentrated in the lower price hours while the baseline514

forecasting also consumes in higher prices periods.515
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Figure 6 – Active power, Pe, forecasting of the power baseline, Pb, day-ahead
electricity price, DA and outdoor temperature, To of the heat pumps of the

Spanish use case, during the direct load control operation period

Since the objective of this use case is to reduce the cost of the energy con-516

sumption of the heat pumps, Figure 7 depicts the accumulated cost difference517

achieved between the active optimized energy performance (black line) and518

the BaU scenario (red line). The reduction of cost reaches 18 % at the end519

of the field test operation period. This is an auspicious outcome to consider520

day-ahead price optimization as an important way to optimize the operational521

costs of heat pumps systems while offering flexibility to the electricity system.522
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Figure 7 – The accumulated cost of the active optimized energy performance
(black line) compared to the BaU scenario (red line)

4.2. Operation of the German case study523

Before operating the Tecalor heat pumps, different tests were conducted524

to verify their control capabilities. An upwards signal of 100 % activation for525
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30 minutes, followed by a stop of 10 minutes and the second activation of 15526

minutes was sent to the heat pump controller. The result is shown in Figure 8.527

The time to start up was 56 seconds from the setpoint to on. Besides, the heat528

pump needed 15 minutes to reach 75 % of the maximum power. It can also be529

seen that the activation profile started with a first step increase, followed by a530

roughly linear ramp. The time to shut down was 1 min 22 seconds, whereas531

the shutting down profile was a decreasing step function. There is a 20-minute532

recovery time between switching off and switching the heat pump on again.533

These factors determine how a flexibility service provider can control the heat534

pump flexibly and integrate it into a virtual power plant.535
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Figure 8 – Heat pump control capabilities analysis

Another test was performed to assess a stepwise activation. For certain536

flexibility services, a heat pump may have to deliver a linear increasing or de-537

creasing power curve (e.g. track the TSO’s aFRR signal). Since the modulation538

of the power output of the heat pumps was not possible, the test performed to539

deliver a linear ramp was based on stacking the deactivation of heat pumps.540

In this test, 1 minute between each heat pump switching on/off was set up,541

and a variation time of switching on between 5 to 30 minutes. During this542

test, 3 heat pumps were available at the case study pilot site. Temperature543

measurements of both the DHW and the floor heating system were available,544

allowing us to estimate the available flexibility in the system. The ranking of545

the heat pumps to switch them on and off was based on the measured tem-546

perature in the floor heating circuit, which turned out to be the limiting factor.547

20



Figure 9 – Stepwise action of 3 heat pumps in the German pilot site

This test is shown in Figure 9. The results were not satisfactory to de-548

liver a service such as aFRR standalone. This can be explained by the small549

pool (3 units) and the fact that the heat pumps were often unavailable for550

(de)activation due to comfort/safety constraints. Furthermore, since the heat551

pumps controls are driven by load curves that are dependent on the indoor552

and outdoor temperatures, and the latest was high for the testing period, the553

heat pump power demand was lower than initially expected. In Figure 10 a554

deeper zoom on the (un)availability causes of one of the heat pumps is shown.555

Number 1 indicates forced on the situation, which means unavailability of the556

heat pump. This is due to the DHW temperature dropping below a threshold,557

forcing the heat pump to switch on for comfort reasons. Number 2 indicates558

a forced off situation, which means the heat pump is unavailable because the559

floor heating temperature exceeds the threshold temperature, forcing the heat560

pump to switch off for comfort/safety reasons. After the temperature drops561

again below the low threshold, the heat pump can be activated again, as can562

be seen from the graph.563
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Figure 10 – Power and temperatures of the heat pump systems along the
activation period

Looking at the overall results of the performed tests, it has been demon-564

strated that the flexible operation of heat pumps in the cases study is possi-565

ble and can be leveraged for multiple flexibility services or energy markets.566

Nevertheless, important points of attention are: i) the latency to ramp up to567

full power to ramp down to switch it off, which is around 1 minute; ii) and568

the recovery time, which is around 20 minutes. Furthermore, the comfort set569

points and the available storage in hot water tanks or the inertia of the build-570

ing clearly determine the duration for which the heat pump can be switched571

on or off.572

4.2.1. Time series inputs for the flexibility model development573

The operation of the case study in Wüstenrot, Germany, was a direct load574

control of four of the available heat pumps considering activation signals sent575

by a commercial aggregator. When activation was sent, the heat pumps had576

to operate for as long as possible during the whole activation period. In this577

case study, the control variable is the percentage of activation time (ON/OFF)578

of each building or heat pump (named 20, 22, 24 and 25). The energy flexi-579

bility is also analysed from this point of view. Figure 11 depicts the operation580

performance of the heat pumps from February 15th to March 31st. During581

those days, some activation signals were sent by the commercial aggregator.582

Therefore, as the actual heat pumps operation was affected by these signals,583

large differences between active power, Pe, and the forecasting of the baseline584

power in BaU scenario, Pb, can be appreciated for the activation period.585
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Figure 11 – Active heat pumps power (Pe), forecasting of baseline power in BaU
scenario (Pb) and percentage of activation time in each hour (A) of four

households in Wüstenrot pilot site

.

4.3. Operation of the Swiss case study586

The use case in Naters, Switzerland, consists of a direct load control of587

five HPs that consider activation traces negotiated between the CM and the588

commercial aggregator. When an activation trace is accepted, the heat pumps589

should track the trace during the whole activation period.590

Figure 12 represents the results of a day from a week-long test of direct591

load control services, detailed at the building level. The light grey vertical ar-592

eas display the 15 minute negotiation periods between the aggregator and the593

CM. The light red vertical areas display the direct load control periods per-594

formed on-site as solutions of the tracking MPC optimization. It is not always595

easy to assess what a system would have done without direct load control, but596

coupling set points, temperature and power measurements can visually help.597

As a reminder, HP’s local control works with hysteresis on the temperature of598

each storage. When the storage temperature drops too far below the setpoint599

value of the hysteresis, the compressor starts, and the HP runs until the upper600

value of the hysteresis is met. This is, of course the theory, but unforeseen601

events can sometimes change this behaviour.602
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Figure 12 – Power and temperature variation resulting from direct load control
for one building in the Swiss pilot site

The top panel of Figure 12 shows both the temperature setpoints used for603

controlling the HP and the power measurements. The dotted lines correspond604

to the setpoint values for SH and DHW, respectively. Outside the direct load605

control periods, the values of those set points are set back to their default val-606

ues. The solid coloured line displays the measured power consumed by the607

compressor of the HP. The solid coloured bars are the power consumption608

given as the solution of the tracking MPC. The middle panel represents the609

effect of direct load control on SH. The dashed line corresponds to the mea-610

sured departure temperature of the heating circuit after the 3-way valve. The611

dotted line represents the theoretical departure temperature of the circuit as612

given by the heat curve of the HP. It is modelled as a function of the SH set-613

point displayed in the top panel and To averaged over 3 hours. The bottom614

panel represents the effect of direct load control on DHW. In Figure 12, it can615

be seen that direct load control of SH perfectly matches the results of the track-616

ing MPC. Instead, for the DHW load, it appears to be more difficult. Having617

only one sensor to assess the energy state inside the DHW storage tank makes618

it difficult to predict when a new cycle will occur. For comfort reasons, DHW619

is always prioritized and setpoints are only reduced to a minimum of 47 °C.620

Therefore, delaying a DHW cycle for more than 30 minutes is not always pos-621

sible, as demonstrated for the DR call at 06:00. In the bottom panel, we can see622

that the storage temperature at the start of the period is low. This is because623

the setpoints are set to the lowest possible value. At 06:40, a DHW consump-624

tion brought the storage temperature below the lower bound of the hysteresis,625
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which starts a new DHW cycle. The DR called at 10:00 is a good example of626

the usefulness of MPC when dealing with direct load control. When the power627

traces are generated, the storage tank temperature is maximal. There is only a628

small chance that a DHW cycle will happen in the next hour. However, within629

the third 15 minutes interval, a sudden high DHW consumption puts the stor-630

age temperature below the lower bound of the hysteresis, and the heat pump631

starts a new DHW cycle. At 11:00, to avoid deviating further from the trace,632

the DHW setpoint is reduced, which directly stops the heat pump.633

4.3.1. Iterative tracking performance634

Figure 13 presents the results of a day from a week-long test of direct load635

control services over all the HPs. The light grey vertical areas display the636

15 minute negotiation periods between the aggregator and the CM. The light637

red vertical areas display the direct load control periods performed on-site as638

solutions of the tracking MPC optimization.639

1. Waiting (BaU) 2. Negotiations 3. Tracking

1

2

3

Figure 13 – Power deviation compared to the agreed-upon traces resulting from
the DR calls over a day for a weekly test in the Swiss pilot site

.

The top panel of Figure 13 displays the aggregated power (blue) of five640

participating HPs on May 14th 2020. The daily average outside temperature641

is 18 °C with temperatures above 20 °C from 12:00 to 20:00. Therefore, most642

HP consumption occurs during the early hours of the day when the outside643

temperature is still cold. The dashed red lines are the power loads P f agreed644

upon by the aggregator and the CM. The selected traces are assumed to be645

constant over the sampling period of 15 minutes. Each one corresponds to646

a power trace resulting from a 6-hour forecast scheduling optimization prob-647

lem proposed by the CM and selected by the aggregator. The bottom panel648

of Figure 13, represents the power deviation (P f − Pe). When the values are649

negative, it means that the on-site power was lower than the expected trace,650

and when they are positive, it means that the power was higher. The relative651
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deviation over the day is -6.4 kWh and the cumulative deviation, computed652

as the sum of all the absolute deviations, is equal to 32.7 kWh. When high653

power change occurs as a result of direct load control, high deviation spikes654

can be observed. The negative spikes correspond to an activation delay of the655

HPs: Even when conditions for the local controller are met, HP compressors656

are only started after a 2-minute delay by the local controller. To compen-657

sate, the tracking MPCs are launched two minutes before the new actuation658

periods. As soon as an optimal solution is found, the new setpoints are sent.659

Setpoints to switch off HPs are sent at the actuation time. HP compressors660

directly stop when conditions are met, except when an explicit minimum run-661

ning time is implemented by the local controller. The positive spikes observed662

can be the result of the monitoring sampling rate of 2 minutes and of the way663

power is measured: The power consumption of four out of five HPs is not664

directly measured but reconstructed from operating temperature time series665

and manufacturer datasheets. The interpolation and the model formulation666

can sometimes create mismatches.667

4.3.2. Time series inputs for the flexibility model development668

In this use case, the objective of the flexibility function is to characterize669

how flexible the HP consumption was due to the activation trace accepted670

by both entities in terms of amount and shift in time. In this case study, the671

control variables are the DHW and SH setpoint temperature of five multi-672

household buildings. The entity that controls these variables is the CM, which673

proposes feasible traces that can be fulfilled. Figure 14 depicts the perfor-674

mance of the HPs from April 3rd to May 15th. The granularity of the monitored675

data is two minutes, and the power is aggregated over the individual readings676

of the five available buildings. For this field operation period, multiple activa-677

tion traces were tested in several operation tests. They are represented sepa-678

rated by gaps in Figure 14. In the top panel, the difference between the power679

trace to be tracked and the baseline forecasting is represented. As expected,680

significant differences between these two time series are clearly appreciated.681

The middle panel shows the differences between the active power, Pe, and682

forecasting of the baseline power,Pb. As in the other graph, the differences683

show that the heat pumps are following the trace up to a certain level and that684

these traces have very different patterns than the BaU scenario.685
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Figure 14 – Difference between the trace to be tracked, P f , and the prediction of
the baseline, Pb, versus the difference between the active power Pe and the

baseline prediction of the baseline, Pb, and the 4-hour moving-averaged outdoor
temperature in the Swiss pilot site. The tests in May were week-long tests
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4.4. Energy flexibility evaluation and quantification686

4.4.1. Training and validation of the flexibility models687

For the case study where the activation variable is the Spanish day-ahead688

electricity price, a training and validation activation period was set up from689

March 29th to April 12th 2020. The flexibility model of this case study is de-690

fined in Equation 1. The training of the model to identify the regression pa-691

rameters was carried out using 90 % of the data. The remaining 10 % of data692

was used to validate the model with new data and then avoid model over-693

fitting. The Flexibility Function (FF) is finally inferred from this model. The694

top plot of Figure 15 depicts the training and validation periods with white695

and grey backgrounds, respectively. In this plot, the active power, Pe, is repre-696

sented by a black coloured line. The forecasting based on the flexibility model697

is represented by a red coloured line. It can be seen that no significant dif-698

ferences in residuals between the two periods are appreciated; therefore, it is699

confirmed that overfitting issues were avoided. Additionally, from the two700

bottom plots, the Auto Correlation Function, ACF, and the Partial Autocorre-701

lation Function, PACF, of the residuals of the training period, do not indicate702

autocorrelation in residuals. Therefore, they can be considered i.i.d, and the703

white noise condition is fulfilled. This is the requirement for a model to be704

considered valid.705
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Figure 15 – Flexibility model for the Spanish pilot site: the upper graph is a
comparison of the active power (black line) and the predicted one (red line); the
lower graphs show the autocorrelation functions of the training period residuals

For the case study where the activation variable is the percentage of activa-706

tion time, in the German pilot case, a training and validation activation period707

was set up from February 15th to March 31st 2020. The flexibility model of this708

case study is defined in Equation 2. The training of the model was carried out709

using 90 % of the data. The remaining 10 % of the data was used to validate710

the model. In Figure 16, the upper graph depicts the training and validation711

periods with white and grey backgrounds, respectively. In this graph, the ac-712

tive power, Pe, is represented by a black coloured line. The forecasting based713

on the flexibility model is represented by a red coloured line. It can be seen714

that no significant differences in residuals between the two periods are appre-715

ciated. Although there are two significant spikes in time lags 3 and 12 in the716

bottom plots of the ACF and PACF, there is no clear indication of autocorrela-717

tion in residuals of the training period. Therefore, they can be considered as718

i.i.d. and then, the white noise condition is fulfilled for this flexibility model.719
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Figure 16 – Flexibility model for the German pilot site; the upper graph shows a
comparison of the active power (black line) and the predicted one (red line); the
lower graphs show the autocorrelation functions of the training period residuals

.

For the case study where the activation variable is the trace to be tracked,720

the Swiss pilot case, a training and validation activation period was set up721

from April 3rd to May 15th in the Swiss pilot site case study. The flexibility722

model of this case study is defined in Equation 3. The training of the model723

was carried out using 90 % of the data. The remaining 10 % of data was used724

to validate that the model. In Figure 17, the upper graph depicts the train-725

ing and validation periods with white and grey backgrounds, respectively. In726

this graph, the difference between the active power and the prediction of the727

baseline power in BaU, (Pe − Pb), is represented by a black coloured line. The728

forecasting based on the flexibility model is represented by a red coloured line.729

It can be seen that no significant differences in residuals are appreciated. Al-730

though there is one significant spike in time lag 15, in the bottom plots of the731

ACF and PACF, there is no clear indication of autocorrelation in residuals of732

the training period. Therefore, they can be considered i.i.d. The white noise733

condition is fulfilled for this flexibility model.734
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Figure 17 – Flexibility model for the Swiss pilot site; the upper graph shows a
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.

4.4.2. Flexibility functions735

Figure 18 and Figure 19 show the obtained flexibility functions, FFs, for the736

Spanish case study, where the activation variable is the electricity day-ahead737

Spanish spot market. The activation variable, the day-ahead electricity price,738

is normalized to activation and deactivation signals of 10 cents. Figure 18739

shows the obtained FFs due to positive signals of different lengths and two740

different outdoor temperature levels. The left column shows the FFs for out-741

door temperature ranges between 6.67 ºC and 12.3 ºC. The right column shows742

the FFs for outdoor temperature ranges between 12.3 ºC and 21.5 ºC. It can be743

seen that the flexibility decreases for low outdoor temperature ranges. When744

outdoor temperatures are between 6.67 ºC and 12.3 ºC, the average maximum745

deactivated power reaches -7 kW, and it remains for the first 30 minutes. Then,746

it increases to -3.5 kW from 30 to 45 minutes, and finally, it linearly increases747

to -1 kW after 100 minutes of the initial price change. Whereas, when out-748

door temperatures are between 12.3 ºC and 21.5 ºC, the maximum deactivated749

power reaches -11 kW for the first 15 minutes; it decreases to -14 kW after750

30 minutes, and finally, it increases up to -1 kW after 100 minutes of the price751

change. The rebound effect achieves the same maximum power levels for both752

temperature ranges but in positive. They start just when the activation signal753

finishes and reach the maximum level within the first 30 minutes after the ac-754

tivation signal ends. Considering the maximum available power of the two755

heat pumps of 60 kW, this represents maximum flexibility between 11 % and756

23 %, with a rebound of the same level, for low and high outdoor temperature757

ranges, respectively. It can also be concluded that the estimated period where758

major energy shifts could be done is the starting 30 minutes after the price sig-759

nal is triggered, in both outdoor temperature ranges. This conclusion is closely760

related to the thermal capacity of the water storage tank, which is 3,500 litres,761
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and the permitted water tank temperature variation, which is constrained by762

the indoor comfort conditions in the offices, shops and the local food market.763

Change in price during 180 minutes

Outdoor temperature range: [6.67,12.3)

Change in price during 180 minutes

Outdoor temperature range: [12.3,21.5]

Change in price during 120 minutes

Outdoor temperature range: [6.67,12.3)

Change in price during 120 minutes

Outdoor temperature range: [12.3,21.5]

Change in price during 60 minutes

Outdoor temperature range: [6.67,12.3)

Change in price during 60 minutes

Outdoor temperature range: [12.3,21.5]

Change in price during 15 minutes

Outdoor temperature range: [6.67,12.3)

Change in price during 15 minutes

Outdoor temperature range: [12.3,21.5]

0 100 200 300 400 0 100 200 300 400

-10

0

10

20

-10

0

10

20

-10

0

10

20

-10

0

10

20

0.0
0.1

0.0
0.1

0.0
0.1

0.0
0.1

minutes

C
h

a
n

g
e

 i
n

 p
o

w
e

r 
[k

W
]

E
n

e
rg

y
 p

ric
e

 [€
]

Figure 18 – FFs of the Spanish case study for positive changes of the spot market
price

Figure 19 depicts the obtained FFs due to negative signals of different764

lengths and the same outdoor temperature levels. The flexibility performance765

is identical to the case of positive activation but another way around. The re-766

bound effect achieves the same maximum power levels for both temperature767

ranges but in negative. The same conclusions as in the case of positive signals768

can be deducted.769

770
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Figure 19 – FFs of the Spanish case study for negative changes of the spot
market price

Figure 20 shows the Flexibility Functions, FFs of four heat pumps and their771

aggregated power, of the case study where the activation signal is the percent-772

age of activation within an activation period. The activation variable has been773

normalized to 100 % activation time. The Figure 20 represents the FFs of each774

heat pump/building, named as 20, 22, 24 and 25 in the legend, and the ag-775

gregated flexibility of all of them, named as ”all” in the legend. Every plot776

shows a FF for several activation periods ranging from 1 h to 4 h. From this777

Figure, multiple insights in relation to the achieved flexibility of a cluster of778

heat pumps can be extracted. The total amount of power flexibility for the779

cluster of 4 buildings reaches 2.8 kW -on average- for the first hour of acti-780

vation. And from there, it decreases to 2.3 kW for the second and the third781

hours of activation. If the activation period is extended to four hours, maxi-782

mum flexibility decreases to 2 kW. Considering a maximum available power783

of the four heat pumps of 10.9 kW, this represents maximum flexibility of 25784

% for the first hour, 20 % for three hours and 18 % for four hours. After the785

activation periods, Figure 20 depicts a long wave rebound effect of about 20786

% of the total active power. Nonetheless, around 70 % of this rebound takes787

place within the first 3 h after the activation period ends.788
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Figure 20 – FFs of 4 heat pumps of the German case study

In Figure 20, it can also be seen that the reactions of buildings 20, 22 and789

24 are quite similar and also very similar to the aggregated FFs. However, a790

very different behaviour happens in building 25 since it seems this heat pump791

is not activated. This may be due to less flexible indoor comfort conditions.792

Figure 21 shows the FFs for the swiss case study. In this case, the activa-793

tion variable is a power trace that should be tracked, and the flexibility is as-794

sessed as the deviation towards the traces and towards de predicted baseline795

in the BaU scenario. In Figure 21, the left Y-axis describes the change in power796

(Pe − Pb) and the right Y-axis describes the change in power due to the trace797

negotiated with the commercial aggregator (P f − Pb). The flexibility is anal-798

ysed for two different outdoor temperature levels; low-to-mid range [6.5 ºC,799

15.7 ºC] in yellow and mid-to-high [15.7 ºC, 28.5 ºC] in black. Two types of nor-800

malized activation traces of 1 kW (e.g. red signal [-1, 0, 1]) are tested: (1) Neg-801

ative, when the consumption is lower than the baseline, and (2) Positive, when802

the consumption is higher than the baseline. The terms Negative and Positive803

used here have to be differentiated from the existing positive (Upward) and804

negative (Downward) reserve services defined in the market regulation and805

provided by conventional generators. In this methodology, the term Positive806

refers to an increase in power consumption compared to the baseline, which,807

from a market perspective, is equivalent to a decrease in power production808

(negative reserve).809
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Figure 21 – Flexibility Function (FF) of a 5-buildings cluster in Naters

In the case of tracking negative activation traces (left panels) in low-to-mid810

outdoor temperature levels (yellow lines), the active power follows 80 to 90811

% of the power trace to be tracked for the first 15 minutes, reaching the max-812

imum deactivation peak (98 %) after 13 minutes. Then, the deactivation de-813

creases to 75 % after 30 minutes, maintaining this percentage for 30 minutes814

more. When tracking a positive activation trace, the actual power follows 80-815

90% of the theoretical activation for the first 15 minutes, then, it linearly de-816

creases to 50 % after 30 minutes and maintains this percentage, with a small re-817

bound (+10 %), up to the 60 minutes. This means that heat pumps involved in818

this case study, when the outdoor temperature is in the low-to-mid range, can819

provide the amount of flexibility required by the commercial aggregator for820

the first 15 minutes. Still, then, the limited availability of thermal energy stor-821

age in the building (either for SH or DHW) does not allow for full activation822

compliance. In both outdoor temperature levels, the rebound effect reaches823

up to 30 % change in power. It starts just after the activation/deactivation of824

the trace, and its peak is after approximately 13 minutes. In the case of mid-825
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to-high outdoor temperatures levels, the flexibility peak of the first 15 minutes826

no longer exists in both negative and positive traces to be tracked. This can be827

explained mainly because at these temperature levels; the buildings have less828

thermal storage capacity and hence less energy flexibility to keep the indoor829

comfort within the user-defined comfort boundaries. In this case, the system830

which can still provide a certain level of flexibility is the DHW system, which831

is thermostatically controlled by the water tank temperature set points. The832

average compliance of tracking the trace is 60 % along the 60 minutes of ac-833

tivation in the case of positive and 75 % in the case of negative traces. The834

rebound effects follow the same path as in the lower temperatures case but835

with smaller peaks of around 25 % of the change in power.836

5. Discussion837

Some specific conclusions can be drawn from the operation of the DR ser-838

vices in each of the three pilot sites:839

• The direct load control of the heat pumps of the Spanish pilot site achieved840

18 % of accumulated cost savings at the end of the testing period (2841

weeks). This is a promising result to demonstrate the benefits of opti-842

mising the operational costs of heat pumps through augmented perfor-843

mance with price information from the wholesale market forecast data.844

• In the German pilot site, it was demonstrated that using the flexibility845

of the heat pumps allowed to optimize the heating energy cost on the846

day-ahead energy market. This flexibility also enabled balancing a BRP’s847

portfolio and optimization on the balancing market. With a limited num-848

ber of heat pump assets and only ON/OFF control, it was impossible to849

deliver linear power ramps based on the stacking of heat pumps.850

• In the Swiss pilot site, a success of 91 % heat pump activation for the851

transactive DR approach and 50-95 % fulfilment of the activation traces852

was achieved for the testing period. The results are strongly correlated853

with the external temperature. Mid-range outdoor temperature condi-854

tions offered more flexibility, as highlighted by the higher activation suc-855

cess and the FF closer to 100 % of the theoretical activation.856

The developed standard methodology for assessing the flexibility allowed857

to compare results from the different DR use cases and gave the necessary858

support for cross-comparison of the most significant energy flexibility indica-859

tors. Some specific conclusions can be deducted for the achieved flexibility in860

each pilot site:861

5.1. Spanish case study862

Considering the peak power of the heat pump system, the maximum flex-863

ibility achieved was between 11 % and 23 %, depending on low or high out-864

door temperature ranges, respectively. A contrary rebound effect at the same865

level was achieved in both cases. Table 1 summarizes the achieved active flex-866

ibility for this pilot site:867
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Table 1 – Achieved active power and rebound effect defined by the FF in the
Spanish use case

Activation time [min] Maximum change in
power [kW]

Maximum power
rebound [kW]

Flexibility with low outdoor temperature [6.6 ºC ≤ T ≤ 12.3 ºC]

positive/negative change of price
t ≤ 30 -7/7 6/-6
30≤ t ≤ 45 -3.5/3.5 3/-3
45≤ t ≤ 100 linear increase linear decay
t > 100 -1/1 0.8/-0.8

Flexibility with high outdoor temperature [12.3 ºC ≤ T ≤ 21.5 ºC]

Positive/negative change of price
t ≤ 15 -11/11 8/-8
t ≤ 30 -14/14 12/-12
30≤ t ≤ 45 -8/8 6/-6
45≤ t ≤ 100 linear increase linear decay
t > 100 -1/1 0.8/-0.8

5.2. German case study868

In the German pilot site, considering a maximum aggregated power of 10.9869

kW, 25 % of flexibility was achieved for the first hour. For activation of three870

hours, it was reduced to 20 %, and it finally decreased to 18 % for activation871

of four hours. A long wave rebound effect of about 20 % of the total activated872

power appears in all cases. However, around 70 % of the total rebound effect873

occurs within the first 3 h after the activation period ends. Table 2 summarizes874

achieved active flexibility for this pilot site:875

Table 2 – Achieved active power and rebound effect defined by the FF in the
German use case

Activation time [min] Maximum change in
power [kW]

Maximum power
rebound [kW]

Flexibility under a 100 % positive activation signal

t ≤ 60 2.8 -0.8
60≤ t ≤ 180 2.3 -0.5
180≤ t ≤ 240 2 exponential in-

crease
t > 240 —- 0.0

5.3. Swiss case study876

The heat pumps involved in the Swiss case study can provide the amount877

of flexibility required by the commercial aggregator for the first 15 minutes.878

Still, then, the limited availability of thermal energy storage in the buildings879

does not allow for full activation compliance. In both outdoor temperature880

levels, the rebound effect reaches up to 30 % change in power. The average881

compliance of tracking the trace is 60 % along the 60 minutes of activation in882
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the case of positive activation traces and 75 % in the case of negative ones.883

Table 3 summarises the achieved active flexibility for this pilot site:884

Table 3 – Achieved active power and rebound effect defined by the FF in the
Swiss use case

Activation time [min] Maximum change in
power [%]

Maximum power
rebound [%]

Flexibility with low outdoor temperature [6.49 ºC ≤ T ≤ 15.7 ºC]

positive/negative trace to be followed
t ≤ 15 85/-98 -40/40
15≤ t ≤ 30 linear decrease/-75 linear increase /

linear decay
30≤ t ≤ 60 60/-75 0/0

Flexibility with high outdoor temperature [15.7 ºC ≤ T ≤ 28.5 ºC]

Positive/negative change of price
t ≤ 15 60/-75 -25/25
15≤ t ≤ 30 60/-75 linear increase /

linear decay
30≤ t ≤ 60 60/-75 0/0

6. Conclusions885

This study confirms that thermostatically controlled heat pumps represent886

a huge potential for DR flexibility. Furthermore, it is possible to manage clus-887

ters of heat pumps to respond to requests for DR flexibility. In addition, it has888

been proven that forecasting and optimization algorithms can be tailored to889

the particularities of each system configuration (e.g. HP interface, HP instal-890

lation, and temperature sensors).891

The operation tests performed in three European pilot sites demonstrated892

that the flexible operation of heat pumps in the field is possible and can be893

leveraged for multiple flexibility services or energy markets. However, sev-894

eral problems need to be addressed with most legacy systems. In general,895

those systems do not provide fully interoperable connectivity with the heat896

pump, resulting in constraints to the control and less flexible systems. Addi-897

tionally, it has been confirmed that outdoor conditions, configured set points898

and the available thermal storage, both in hot water tanks or inertia in the899

building, determine the duration for which the heat pump can be switched on900

or off. Another important conclusion from this research is that a new player,901

called the Cluster Manager (CM), is essential to assure a successful operation902

of the DR services in real market scenarios.903

7. Future work904

Although the developed methodology to assess the flexibility in the differ-905

ent pilot sites shows promising outcomes to demonstrate its scalability and906

wider application, some procedures’ limitations to determine the FF need907
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further research. These limitations are mainly related to the non-accurate in-908

corporation of the dynamic variability of the flexibility and the dependencies909

between the active energy and the activation variable. Both have been ad-910

dressed in this research by including the autoregressive terms in the model.911

However, this procedure is not accurate enough and can miss some of the non-912

linearities. Therefore, some improvements should be addressed. As an ex-913

ample, recent papers [21] opened alternative methodologies to address these914

non-linearities in price-based DR schemes. These complementary approaches915

should be investigated in real practice experiences. Finally, simpler and more916

cost-efficient computational methods to evaluate the flexibility potential of917

large amounts of buildings and HVAC systems need to be further developed918

to assure a seamless connection with commercial practices of aggregators and919

cluster managers in already existing European energy flexible markets.920
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ano, “Evaluation of a multi-stage guided search approach for the cali-1021

bration of building energy simulation models,” Energy and Buildings.1022

ENB-D-14-01064R1.1023

[30] P. Bacher and H. Madsen, “Identifying suitable models for the heat dy-1024

namics of buildings,” Energy and Buildings, vol. 43, pp. 1511–1522, 2011.1025

40



[31] P. Bacher, H. Madsen, H. A. Nielsen, and B. Perers, “Short-term heat1026

load forecasting for single family houses,” Energy and Buildings, vol. 65,1027

pp. 101–112, Oct. 2013. 00045.1028

[32] B. Grillone, S. Danov, A. Sumper, J. Cipriano, and G. Mor, “A review of1029

deterministic and data-driven methods to quantify energy efficiency sav-1030

ings and to predict retrofitting scenarios in buildings,” Renewable and1031

Sustainable Energy Reviews, vol. 131, p. 110027, Oct. 2020.1032

[33] F. Amblard, J. Page, R. Parakkal Menon, M. Brennenstuhl, and1033

J. Cipriano, “D.3.1-Optimization strategies for the use case scenarios.1034

SIM4BLOCKS H2020 project. Grant agreement n° 695965.,” Tech. Rep.1035

Deliverable D.3.1., SIm4Blocks project, 2018.1036

[34] T. Hastie and R. Tibshirani, “Generalized additive models,” p. 10, 1990.1037

[35] F. D’Ettorre, M. Brennenstuhl, A. Kathirgamanathan, M. D. Rosa,1038

M. Yadack, U. Eicker, and D. P. Finn, “A set of comprehensive indicators1039

to assess energy flexibility: a case study for residential buildings,” E3S1040

Web of Conferences, vol. 111, p. 04044, 2019. Publisher: EDP Sciences.1041

[36] L. Romero Rodrı́guez, M. Brennenstuhl, M. Yadack, P. Boch, and1042

U. Eicker, “Heuristic optimization of clusters of heat pumps: A simu-1043

lation and case study of residential frequency reserve,” Applied Energy,1044

vol. 233-234, pp. 943–958, Jan. 2019.1045
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