
D4.4 API and runtime (complete with
documentation and basic unit testing) for

IO employing fast local storage

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: BSC
Deliverable Type: Other
Dissemination Level: Public
Related WP & Task: WP 4, Task 4.5
Status: Final version

Deliverable 4.4

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Rosa M Badia BSC Sections 1, 4 & Exec. Summary V0.1,V0.4
Jorge Ejarque BSC Sections 2.1-2.3.1, 2.4, 3.1 & 3.2.2 V0.2
Stanislav Böhm IT4I Sections 2.3.2 & 3.2.2 V0.3
Rosa M Badia BSC Sections 1, 4 & Exec. Summary V1.0

Change Log

Versions Modified Page/Sections Comments
V0.1 First document version
V0.2 Storage and MPI API and PyCOMPSs contribution
V0.3 HyperLoom and Quake contribution
V0.4 Introduction, conclusion and Executive summary
V1.0 Final Review

Approval

Aproved by:
Name Partner Date OK

Task leader Jorge Ejarque BSC 27 November 2019 OK
WP leader Rosa M. Badia BSC 28 November 2019 OK
Coordinator Riccardo Rossi CIMNE 29 November 2019 OK

Page 2 of 16

Deliverable 4.4

Executive summary

This deliverable presents the activities performed on the ExaQUte project task 4.5 Devel-
opment of interface to fast local storage. The activities have been focused in two aspects:
reduction of the storage space used by applications and design and implementation of an
interface that optimizes the use of fast local storage by MPI simulations involved in the
project applications.

In the first case, for one of the environments involved in the project (PyCOMPSs) the
default behavior is to keep all intermediate files until the end of the execution, in case
these files are reused later by any additional task. In the case of the other environment
(HyperLoom), all files are deleted by default. To unify these two behaviours, the calls
“delete object” and “detele file”have been added to the API and a flag “keep” that can
be set to true to keep the files and objects that maybe needed later on. We are reporting
results on the optimization of the storage needed by a small case of the project application
that reduces the storage needed from 25GB to 350MB.

The second focus has been on the definition of an interface that enables the optimiza-
tion of the use of local storage disk. This optimization focuses on MPI simulations that
may be executed across multiple nodes. The added annotation enables to define access
patters of the processes in the MPI simulations, with the objective of giving hints to the
runtime of where to allocate the different MPI processes and reduce the data transfers,
as well as the storage usage.

Page 3 of 16

Deliverable 4.4

Table of contents

1 Introduction 7

2 Storage API and runtime implementation 7
2.1 Storage abstraction . 7
2.2 API calls for optimizing the storage . 8

2.2.1 Deleting object . 8
2.2.2 Deleting Files . 8
2.2.3 Keeping used task data . 8

2.3 Runtime management . 9
2.3.1 PyCOMPSs . 9
2.3.2 HyperLoom . 11

2.4 Experimentation results . 11

3 Extensions for supporting MPI to optimize local storage usage 12
3.1 API definition for supporting new extensions to MPI tasks 12
3.2 Runtime design . 14

3.2.1 PyCOMPSs . 14
3.2.2 Quake . 15

4 Conclusions 16

Page 4 of 16

Deliverable 4.4

List of Figures

1 Storage used during the application execution. 11
2 Application example with collections and MPI tasks 13
3 Example application execution graph. 14
4 Quake architecture. 16

Page 5 of 16

Deliverable 4.4

Nomenclature / Acronym list

Acronym Meaning
API Application Programming Interface
ExaQUte EXAscale Quantification of Uncertainties for Technology

and Science Simulation
DAG Directed Acyclic Graph
GPFS General Parallel File System
HPC High Performance Computing
IN Parameter of a function that is not modified
INOUT Parameter of a function that is modified during the call
OpenMP Open Multi Processing
MLMC Multi-Level MonteCarlo
MPI Message Passing Interface
PyCOMPSs Python binding for COMPS Superscalar
SLURM Simple Linux Utility for Resource Management
SSD Solid-State Drive
OUU Optimization Under Uncertainties
UQ Uncertainty Quantification

Page 6 of 16

Deliverable 4.4

1 Introduction

The goal of Task 4.5 in ExaQUte is to provide a simple C and Python API that allows
to take advantage of the fast local storage available in the current HPC system nodes
for IO operations. While most of these systems come with a global file system, many
vendors are nowadays providing new local persistent storage devices. For example, while
MareNostrum 4 is equipped with a 14PB GPFS shared file system, each node also comes
with with a 240GB SSD local disk. However, most of the current applications are not
getting benefit of these local devices. Our goal is to provide a useful interface that enables
the runtime to benefit from these local persistent storages. Another aspect considered in
this deliverable is how the task-based runtimes can optimize the applications by means
of taking into account the data used in the different MPI simulations that compose the
project applications. We take into account that while a given MPI simulations may be
accessing a large amount of data, this data is not globally needed by each of the processes
that compose the MPI simulation, which at the same time can be running in different
HPC system nodes. For this reason, an extension to the ExaQUte API is proposed that
enables to describe the access pattern of the different processes. This access pattern is
then used by the runtime to reduce the data transfers and storage needed by each MPI
simulation.

The deliverable is structured as follows: In section 2 we describe the storage abstrac-
tions used to optimize the storage space used. A simple API is proposed, and the runtime
functionality implemented is described. The section concludes with the description ob-
tained with an experimentation using this API against the default case. In section 3 we
present the extensions to the API and runtime to optimize the use of local storage and
to reduce the data transfers. Finally section 4 concludes the deliverable.

2 Storage API and runtime implementation

This section presents how the ExaQUte API and runtime environments manages the
application data storage and how they work to optimize the required storage and the
usage of the different storage technologies available in current supercomputer such as
shared parallel file systems (such as GPFS or Lustre), SSD local disk, and Non-Volatile
memories.

2.1 Storage abstraction

ExaQUte proposes the usage of a task-based programming model for implementing appli-
cations to enable Uncertainty Quantification (UQ) and Optimization Under Uncertainties
(OUU) in complex engineering problems.

The programming model consist of annotating the Python methods as tasks. A Python
method is candidate to be a task if it has a certain amount of computation in order to
benefit from a remote execution, it is executed several times and can run concurrent
other tasks. To define tasks, developers have to indicate the directionality of the method
parameters that indicate how the task accesses the data. (i.e. direction IN when the task
only reads the data, INOUT if the task read and writes the data or OUT if it generates
or completely overwrites the data).

Page 7 of 16

Deliverable 4.4

This model has the benefit of providing a level of abstraction that most of developers
are familiar with. The complexity of implementing an application is quite similar to
implementing its sequential version since the programming model provides the view of a
single address space memory and a shared file system where objects and files are created
using standard clauses, and hides the complexity of the parallelism and data management
since it does not define an specific API for defining explicit parallelism or data transfers.

The application parallelism and the required data management is inferred at runtime
based on the task definition and the available storage and computing infrastucture. For
instance, data directionality enable the runtime to detect data dependencies between
tasks, while depending on the infrastructure where the data is stored and computed, the
runtime will decide when to copy, move or remove data. The runtime mechanism to
achieve these functionalities will be explained in the next subsections.

2.2 API calls for optimizing the storage

As introduced in previous section, data management actions is inferred by the runtime
system based on the task definition. However there are some situations where task an-
notations are not sufficient to infer an optimal data management decision. To overcome
these situations, ExaQUte provides a set of mechanisms to optimize the use of the storage
space.

2.2.1 Deleting object

The first situation to optimize is the deletion of objects. In Python, objects are automat-
ically managed by the Python interpreter, so the interpreter will decide when an object is
not used anymore by the application based on the references. However, depending on the
object management done at runtime, the object can be referenced in some runtime data
structures which prevent the Python’s garbage collection to free the resources. For that
reason, we introduced the API call delete object. This API method enables the user to
indicate to the runtime that this object is not going to be used in a task or synchronized
anymore. So, the runtime can take the appropriate data management decisions to release
storage space without generating any side-effect.

2.2.2 Deleting Files

Files also require an special treatment when they are removed inside the application code.
When a file is used or generated by a task, this file can be replicated (to enable further
parallelism) or generated in the locations where tasks was executed (to exploit locality).
In this situation performing an standard file deletion is not safe. The delete call can
fail because the file is not in the final destination path or it can only remove the replica
located in the master node keeping the replicas in the worker nodes. So, to perform a
proper file deletion and an optimal use of storage resource, developers have to use the
delete file when deleting a file that will go through the COMPSs runtime.

2.2.3 Keeping used task data

Finally, the runtime system may have a policy to minimise the storage usage by considering
that input parameters are by default temporal data and the runtime can remove them

Page 8 of 16

Deliverable 4.4

when it considers than this is necessary. This can produce some data races and the data
required by several tasks have been removed from the system before all the tasks have
been executed. For that reason, the user may set the flag keep to True to prevent removing
this data once the task finishes.

2.3 Runtime management

The ExaQUte API to define tasks and perform data optimizations has been implemented
for two runtime environments PyCOMPSs and Hyperloom. In this subsection, we describe
how each runtime manages the storage during the application execution.

2.3.1 PyCOMPSs

This section describes how the PyCOMPSs runtime transparently manages data using the
different available storage options. In the following paragraphs, we will discuss how users
can specify the storage devices to use as well as how the runtime manages the different
data versions and replicas as well as deciding when to copy or remove versions and replicas.

Defining the storage infrastructure
When executing an ExaQUte application with PyCOMPSs, the user has to describe

which infrastructure wants to use. This is described in the resources.xml and project.xml.
In this resources.xml, users describe the available infrastructure, indicating the available
computing units, the memory and storage devices, while in the project.xml indicates
which of these resources are used for the actual execution and other configuration options
such as applications’ and libraries’ paths as well as the working directories. When using a
supercomputer, these files are automatically generated when submitting the application
to the system job scheduler with the enqueue compss command. When the submitted
application job starts the execution in the system a prolog script gets the information
from the allocated resources an generates the PyCOMPSs configuration files according to
the allocation and other flags provided in the enqueue compss command.

As introduced above, users can describe the available storage infrastructures in the
projects and resources file. It is mainly done according to the following:

1. Defining the available local storage device
In each compute node defined in the resources.xml file, we describe the available
local storage describing the type, size and bandwidth. It is useful to describe local
SSD disk as well as Non-volatile memories mounted as a local disk.

2. Defining a shared parallel file systems
If the computing system has a file system which is shared between nodes, it can be
described also in the resources.xml file. In this case, we will have a global definition
of the shared disk to describe these properties (size, etc), and, inside the computing
nodes which have access to this shared disk, we will set the path where the disk is
mounted in the computing node.

3. Define master and worker working directories
Finally, user can define where the runtime is going to deploy the working directories
for the master and worker in the project.xml. It can be a path inside a shared disk
or in a local storage device.

Page 9 of 16

Deliverable 4.4

Depending on the specified path either in a application file path, the working directo-
ries paths and the described storage interface, the runtime will automatically detect if a
data is located in a shared disk or in local storage which provides a valuable information
to make a proper data management.

Data versioning and replication Each data which is accessed by tasks is tracked
by the PyCOMPSs runtime. According to the access done by tasks to data, it detects
the data dependencies between tasks. The PyCOMPSs runtime uses data versioning and
replication to solve some of these dependencies and exploiting the maximum inherent
parallelism of the application. On the one hand, the data versioning can be applied when
a data is accessed as INOUT or OUT. In this situation, the runtime creates a version for
the original value and another one for the modified. So, the tasks which are modifying
the data can run in parallel with any previous task which is reading this data. On the
other hand, replication can be used when we have several tasks reading a data version
and they can not be executed in the resource where the data is already located, in this
case the runtime replicates the data to another resource to allow more parallelism in the
application.

To sum up, the runtime keeps tracks of all the versions generated for an accessed data
knowing what is the latest version and which task is generating this version. For each
version, it stores the location of all its replicas and the number of tasks which are currently
reading (or waiting for reading) a data version. This information will determine how the
runtime can do an optimal use of the storage resource without degrading the application
performance

Obsolete data clean-up There are some situations that a data version can be de-
clared as obsolete and the runtime can proceed to remove all its replicas in order to save
space. This situation is detected when a data version, which is not the latest, does not
have task readers for this value. Then all the locations of this data version will be marked
as obsolete. Every time that a task is submitted to a node, it includes the obsolete data
which is pending to delete in this node.

Besides to the in-task obsolete clean, the runtime periodically forces to clean up all
obsolete data in all the nodes in order to avoid long delays from different clean-up pro-
cesses due to the long duration of the tasks.

Out of order data remove The autonomous obsolete data clean-up process described
above ensures that we are not storing old versions of the data. However, the runtime can
not delete the final versions by itself because it can not differentiate if a data is temporal
or it will be used after a synchronisation point. For this reason the user has to use the
delete API calls. When calling the delete method the runtime has to ensure that this
data is removed once all the tasks using its data versions have finished. The PyCOMPSs
implementation of this call is performing the deletion in an asynchronous way in most
of the cases, and it only perform the deletion in a synchronous way when a data file is
going to be reused later in the application. This second case is indicated in the call to
the delete with a parameter (True).

To perform the data deletion in an asynchronous way, the runtime marks all its data
versions with a to be deleted flag. Then, when a version marked with this flag has no more
reader tasks, it is marked as obsolete and removed by the autonomous clean-up process.

Page 10 of 16

Deliverable 4.4

2.3.2 HyperLoom

When executing ExaQUte API with HyperLoom, no shared filesystem is need or used.
HyperLoom uses only local storage and all data communication is realized as peer-to-peer
communication between workers over TCP/IP without any intermediate layer. Server
manages global references of data objects, worker local references by running tasks. When
both drops to zero, data is removed.

The same architecture is used in Quake (described below) where data service realizes
communication between workers, again without using shared file system.

2.4 Experimentation results

To validate the optimization of the storage resources, we have compared two executions
of the Problem0 of the Multi-Level Montecarlo (MLMC) application. It is the same appli-
cation as the experiments performed in Deliverable 4.3 with a different configuration (less
nodes and concurrent batches). In the first execution, we have executed the application
without appliying any storage optimization. In the second, execution we have introduced
the delete call to indicate to the runtime what data is temporal in each iteration.

Both executions have been run in the MareNostrum supercomputer usign 12 worker
nodes with 48 CPU cores each. The MLMC has been configured with 3 levels of tasks
where each level is using the following resources: first level is using a single core, level
two is using two cores, and level 3 is using four cores. In every iteration, the MLMC is
evaluating a bunch of 120 tasks of the first level, 60 tasks of the second level and 8 for the
third level. We started with the tasks of 10 iterations running in parallel and, to make
both executions comparable, we have limited the execution to 20 iterations.

To measure the storage usage per execution, we have run an script which was concur-
rently running with the application execution that periodically monitors the space used in
the master working directory, where the master stores the temporal data, and the workers’
working directory, where the tasks’ data is generated.

Figure 1: Storage used during the application execution.

Figure 1 shows the values measured by the script when running both executions. The
blue line shows the total storage used by the execution without optimizations and the

Page 11 of 16

Deliverable 4.4

orange line shows the total storage used by the execution with the delete calls. We can
observe that the used storage is drastically reduced from almost 25 GB used in the first
run to 350 MB in the optimised run. Moreover, we can also see that introducing the
delete calls has not introduced any performance degradation because the duration of the
optimal execution is even a less than the normal one. This is because in the first case, all
the data was transferred back to the expected location at the master’s directory, while in
the optimized case we only do this for the final data.

3 Extensions for supporting MPI to optimize local

storage usage

In the first versions of the ExaQUte applications, the parallelism inside tasks was pro-
vided by OpenMP which allow to parallelize codes running in a single node. This option
was quite simple to support from the programming model and runtime point of view, by
mapping the computing units of the task constraints to the number of OpenMP threads.
However, it limits the scalability of the whole application because the maximum par-
allelism in a task will be limited to available CPU cores in a node. One alternative to
improve the task scalability is implementing some of the application tasks with MPI which
will be able to use resources from different computing nodes. Supporting these tasks will
require some changes in the programming model API in order to describe an MPI task
as well as in the runtime to manage the scheduling and execution of these tasks, not only
in a infrastructure with shared file systems which are the systems where MPI is normally
used, but also systems with fast local storage where the data management will be more
complex.

3.1 API definition for supporting new extensions to MPI tasks

A new Python decorator is used to indicate that a task is implemented with MPI. In this
decorator, a developer can specify the following properties:

• runner This specifies the command to spawn the MPI processes. By default an
MPI application is executed with the mpirun command, but there are other runners
to spawn MPI processes such as the srun command in systems managed by Slurm

• processes Indicates the number of MPI processes used by this task

• data layout Indicates the mapping between the task parameters and MPI pro-
cesses. It provides hints to the runtime about how to optimize the scheduling, data
transfers and objects serialization/deserialization in order to reduce the MPI exe-
cution overhead. A task parameter data layout can be set to ALL (default value),
to an specific rank number, or defining a block inside a set of data. For instance, if
an MPI task has a collection of objects as argument, and each MPI process is using
a subset of this collection, the data layout will indicate how the data subsets are
mapped to each MPI process. Data subsets are defined following the same syntax
used by MPI to define a strided vector. The developer has to indicate the number
of blocks, the block length and the stride.

Page 12 of 16

Deliverable 4.4

In addition to the @mpi decorator, a new type of data is introduced to indicate that a
task parameter is a set of parameters. The new type is called COLLECTION and it will
allow developers to pass a set of parameters without needing to indicate all the elements
as arguments of a function. The combination of the COLLECTION data type with
the @mpi decorator allow developers to create complex applications where the output
generated by MPI processes of a task can be used by the MPI processes of another task.

nprocs = 4

@mpi(runner="mpirun", processes=nprocs)

@task(returns=nprocs)

def init(seed):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

return rank+seed

@mpi(runner="mpirun", processes=nprocs)

@task(input_data=COLLECTION_IN, returns=nprocs)

def scale(input_data, i):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a = input_data[rank]*i

return a

@mpi(runner="mpirun", processes=nprocs)

@task(input_data=COLLECTION_IN, returns=nprocs)

def increment(input_data):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a = input_data[rank]+1

return a

@mpi(runner="mpirun", processes=nprocs, idata_layout={block_count=nprocs, block_length=nprocs, stride=nprocs})

@task(idata={Type:COLLECTION_IN, Depth:2}, returns=nprocs)

def merge(idata):

from mpi4py import MPI

rank = MPI.COMM_WORLD.rank

a=0

for data in idata[rank]:

a=a+data

return a

if __name__ == '__main__':

input_data = init(0)

partial_res=[]

for i in [1,10,20,30]:

p_data = scale(input_data, i)

for j in range(2):

p_data = increment(p_data)

partial_res.append(p_data)

results= merge(partial_res)

Figure 2: Application example with collections and MPI tasks

Figure 2 shows an example of this complex applications where the @mpi decorator and
COLLECTION data type are combined. This sample application is performing several
simple operations (scale, increment) over a set of data generated in the init task. All
these operations are parallelized with MPI an defined as MPI tasks. In the code snippet,
you can see that the init task implements an MPI task which returns a list of four values,
each one generated by a different MPI process. Then the scale and increment tasks get a
collection of four values and generate a new collection, where each value of the collection
is computed by a MPI process. Finally, the merge task is getting a collection of 16 values

Page 13 of 16

Deliverable 4.4

(four lists of four elements) and we are indicating with the layout property, that indicates
data is treated in four disjoint blocks of four elements.

1

2

d1v2 d2v2 d3v2 d4v2

5

d1v2 d2v2 d3v2 d4v2

8

d1v2 d2v2 d3v2 d4v2

11

d1v2 d2v2 d3v2 d4v2

3

d6v2 d7v2 d8v2 d9v2

4

d11v2 d12v2 d13v2 d14v2

14

d16v2 d17v2 d18v2 d19v2

6

d21v2 d22v2 d23v2 d24v2

7

d26v2 d27v2d28v2 d29v2

d31v2 d32v2 d33v2 d34v2

9

d36v2 d37v2 d38v2 d39v2

10

d41v2 d42v2d43v2 d44v2

d46v2 d47v2 d48v2 d49v2

12

d51v2 d52v2d53v2 d54v2

13

d56v2 d57v2d58v2 d59v2

d61v2 d62v2 d63v2 d64v2

python_mpi.init
python_mpi.scale

python_mpi.increment
python_mpi.merge

Figure 3: Example application execution graph.

When the code of the figure is executed, the runtime system is able to detect the
dependencies between tasks generating the DAG depicted in Figure 3. Next section
provides the details about how the runtime manages the execution of this type of graphs
composed by MPI tasks.

3.2 Runtime design

Beside the specific API defined to support MPI, the runtime system has to be extended
with new features in order to perform an efficient MPI execution. Next paragraphs de-
scribe how these features have been implemented.

3.2.1 PyCOMPSs

Multi-node task scheduling The first required extension in the runtime is the support
for scheduling and executing tasks which are using several nodes. To implement this fea-
ture, the MPI tasks is defined as a set of single tasks where the number of single tasks is
the number of MPI processes defined by the user in the MPI annotation. All this single
task set is scheduled as other normal tasks. To avoid deadlock in the scheduling of tasks
belonging to different sets, once a task of a set is scheduled the rest of tasks of this set
have priority to other tasks (from other sets). This ensures that all tasks of a set are
scheduled together.

Data staging
Additionally to the changes in the scheduling, another extension required focuses on

data staging. Designing a efficient data staging mechanism in MPI tasks is complex. In
standard tasks, all input data which is not in the node where a task is allocated must
be transferred. In the case of MPI tasks, input data should be located in all the nodes
by default because, all MPI processes could access input data. This implies that several
replicas must be produced with the corresponding network contention. However, not all
the data will be used by all the MPI processes, so we are performing unnecessary copies.

Page 14 of 16

Deliverable 4.4

Developers know how the MPI processes are using the data, so they can provide hints
with data layout properties defined in MPI task. It allows the runtime to perform an effi-
cient data management because it tells the runtime which data is required by the different
processes. With this information, the runtime can try to allocate the resources where the
data is located or just make the required data transfers to the nodes where the data is
going to be used.

Task Execution
Once all the tasks of an MPI task set are scheduled and data staging performed, the

first single task of the subset will act as master managing the execution of the MPI task.
It will create the MPI configuration files and flags (number of processes, hostfile, rank to
host mapping , etc.) based on the MPI task set allocations and data layout. Then, it will
execute an executor Python script by means of the mpirun command with the generated
configuration. Each MPI process will execute the executor script which is in charge of
deserializing the input data which corresponds to this process according to the data layout
and executing the method defined as MPI task and serializing the output data.

3.2.2 Quake

HyperLoom is system heavily optimized to running a large number of relatively short
single node tasks (hundreds of milliseconds). This is very different use case than running
MPI programs. They has different requirements on scheduling, runtime and task specifi-
cation. The biggest difference came from the fact that tasks are multi node and result of
such a task is naturally distributed. On the other hand makespan of MPI applications is
more than order of magnitude bigger than what was target makespan for HyperLoom.

We decided not to modify HyperLoom for running MPI programs, because it would not
get benefits from most of optimizations and architectural decisions, while these existing
optimization would increase code complexity. Therefore, we have decided to create a new
solution from scratch that matches ExaQUte needs for MPI applications called Quake.

Quake (Quantified Uncertainty - Another tasK Engine) architecture is depicted in
Figure 4. It consists of:

• Server – it controls and monitors the computation. It also does the task graph
scheduling. Quake client is a simple Python wrapper that communicated with Quake
server. The server initiates MPI application via mpirun that perform the actual
tasks.

• Worker – a wrapper of actual task process that downloads or data necessary fort
ask execution. Worker communicates only with its local data service.

• Data service – Data service is responsible for holding objects between MPI tasks
and allows to interchange of data peer-to-peer with other computing nodes. It can
be seen as a simplified peer-to-peer filesystem.

• Client – A thin python library that communicates with the server. Its main role is
to submit a task graph to server and download results to clients application.

The current version of Quake is a working prototype with a simple scheduling algo-
rithm.

Page 15 of 16

Deliverable 4.4

Figure 4: Quake architecture.

4 Conclusions

IO operations can be a bottleneck in HPC application and therefore the use of storage is a
critical aspect. Additionally, new storage devices are made available to the HPC commu-
nities and it becomes very important to include them in the design of new programming
models and runtimes.

In ExaQUte, the applications involve HPC workflows with a large number of simula-
tions and analytics, that generate a large number of files as well. As it has been seen in
figure 1, even for a small runs, the use of storage can be very inefficient if not managed
appropriately.

Furthermore, MPI simulations are spread along multiple nodes. When involving them
in workflows, it is important to offer hints to the runtime that orchestrates the execution
to exploit that data locality and reduce data transfers. What is more, the proposed
interface supports the coupling of MPI simulations involving different MPI ranks, which
is a feature needed in ExaQUte.

Page 16 of 16

	Introduction
	Storage API and runtime implementation
	Storage abstraction
	API calls for optimizing the storage
	Deleting object
	Deleting Files
	Keeping used task data

	Runtime management
	PyCOMPSs
	HyperLoom

	Experimentation results

	Extensions for supporting MPI to optimize local storage usage
	API definition for supporting new extensions to MPI tasks
	Runtime design
	PyCOMPSs
	Quake

	Conclusions

