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 A NODAL-BASED FINITE ELEMENT APPROXIMATION OF THE

 MAXWELL PROBLEM SUITABLE FOR SINGULAR SOLUTIONS*
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 Abstract. A new mixed finite element approximation of Maxwell's problem is proposed, its
 main features being that it is based on a novel augmented formulation of the continuous problem
 and the introduction of a mesh dependent stabilizing term, which yields a very weak control on
 the divergence of the unknown. The method is shown to be stable and convergent in the natural
 //(curl 0; 17) norm for this unknown. In particular, convergence also applies to singular solutions,
 for which classical nodal-based interpolations are known to suffer from spurious convergence upon
 mesh refinement.
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 1. Introduction. The simulation of electromagnetic phenomena with increasing
 complexity demands accurate and efficient numerical methods suitable for large-scale
 computing. Finite element (FE) methods are commonly used in this context because
 they can easily handle complicated geometries by using unstructured grids, provide a
 rigorous mathematical framework, and allow adaptation.

 In many applications of current interest, the electromagnetic problem is coupled
 to other physical processes. Salient examples of multiphysics phenomena that include
 electromagnetics are magnetohydrodynamics (MHD) and plasma physics. These two
 problems have gained increasing attention due to the need to develop numerical lab-
 oratories in fusion technology design. The simulation of these problems (and many
 others) would benefit from an all-purpose FE method that would be suitable for the
 different subproblems at hand, simplifying implementation issues and the enforcement
 of coupling conditions. In particular, an all-purpose continuous nodal-based formu-
 lation would be a favored candidate. For example, the Navier-Stokes equations are
 commonly solved with stabilized FE approximations that can deal with the singularly
 perturbed nature of the system for high Reynolds numbers and circumvent the re-
 strictions related to the corresponding inf-sup condition (see, e.g., [13, 14]). In plasma
 physics, fields computed by discontinuous FE Maxwell solvers create considerable nu-
 merical noise when embedded in a plasma code, e.g., using the particle-in-cell method
 (see [2]). Furthermore, nodal approximations are particularly well suited for time-
 dependent electromagnetic problems because the mass matrix can be consistently
 lumped without loss of accuracy, leading to inexpensive transient solvers.

 The Maxwell operator has a saddle-point structure, with the particularity that the
 Lagrange multiplier introduced to enforce the divergence- free constraint is identically
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 zero. Existing FE methods that satisfy the discrete counterpart of the inherent inf-sup
 condition for this problem are based on Nedelec's or edge elements (see, e.g., [27, 33]);
 edge elements lead to fields with discontinuous normal component on element edges
 or faces. We also refer to alternative formulations based on discontinuous Galerkin

 approximations [28, 24, 23, 34]. With the aim to solve the Maxwell problem with
 Lagrangian FEs, the differential operator of the problem can be transformed into an
 elliptic one by adding an exact penalty term containing the divergence (see [26]);
 the penalty is exact because the Lagrange multiplier vanishes. The resulting method
 satisfies the compatibility conditions over the element faces in a pointwise sense.
 Unfortunately, this method is not able to converge to nonsmooth solutions that appear
 in nonconvex domains, e.g., domains with reentrant corners (see [25, 17] and section 3).

 Using an innovative idea, Costabel and Dauge proposed in [17] a rehabilitation
 of H1 -conforming C° nodal (i.e., Lagrangian) FEs based on a weighted version of the
 penalty term that was able to converge to the "good" solution in nonconvex domains.
 In order to use the resulting numerical method, singularity regions have to be identified
 a priori and proper weighted functions constructed based on this information. On the
 negative side, it clearly complicates the numerical integration (of the weighted term),
 loses computational efficiency, and complicates automatization of the simulations. An
 alternative approach to solving the Maxwell problem is decomposition of the solution
 into singular and smooth parts (see [2, 26]), but this method is harder to generalize,
 especially in three dimensions. Very recently, Duan et al. have designed in [19] a
 method based on local projections that uses an FE space composed of cubic nodal
 elements enriched with edge and element bubbles. Introduction of local projection
 in the penalty term allows us to converge to nonsmooth solutions, but the same
 projection weakens convergence, which is only attained in the L2 norm. There are
 other nodal-based FE methods, but they converge to spurious solutions in nonconvex
 domains (see, e.g., [30, 31]).

 In this work, we aim at developing a new mixed FE formulation for Lagrangian
 FEs, based on a stabilized approximation of a novel augmented formulation of the
 Maxwell problem. See [6] for a similar approach regarding to the eigenvalue problem.
 The compatibility condition associated to the inf-sup condition can be avoided by
 introduction of stabilization and exact penalty terms. The method can be understood
 as a residual-based FE method heuristically motivated in a variational multiscale
 framework [29]. On the other hand, the resulting numerical algorithm is able to
 capture nonsmooth solutions, so it is suitable for problems in nonconvex domains.
 The method is stable and convergent for any pair of nodal FE spaces for the unknown
 and the Lagrange multiplier. The implementation is straightforward, since the extra
 terms are standard and can be integrated numerically like the Galerkin terms. It
 can be implemented in a stabilized FE solver for the Navier-Stokes equations with
 minor modifications. Thus, the method is an excellent candidate for use in MHD;
 we have developed a nodal-based FE formulation of the visco-resistive MHD problem
 where the magnetic subproblem is approximated following the ideas in this work in
 [5], reporting excellent results.

 The outline of the paper is as follows. In section 2 we introduce the Maxwell
 problem and different augmented and/or penalized formulations. Section 3 is devoted
 to the numerical approximation of the problem by Lagrangian FEs. The problem
 related to nonconvex domains is discussed and the new formulation introduced. A

 complete stability and convergence analysis is also provided. In section 4 we present
 some numerical experiments that confirm the theoretical analysis. Section 5 closes
 the article by drawing some conclusions.
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 2. The Maxwell problem. In this section, we introduce some notation and
 state the Maxwell problem. We consider different augmented and penalized formula-
 tions that will be used throughout the paper.

 2.1. Notation. Let ÍŽ be a bounded domain in with d = 2, 3 the space
 dimension. Given a Banach space X, we denote its associated norm by || • ||x; for
 conciseness, we will omit the subscript for the L2(Q) space of square integrable func-
 tions. The space of vector- valued functions with components in X is denoted by Xd.
 The dimension superscript will be omitted in the norm, i.e., we will simply denote its
 norm by || • ||x instead of || • ||x¿- The dual space of X is denoted as X' . The inner
 product between two scalar or vector functions /i, fi G L2(íi) is denoted by (/i,/2),
 whereas (/i,/2) is used for a duality pairing.

 Ws'm(Çt) is used for the standard Sobolev space with real coefficients s > 0 and
 m > 1. Hilbert spaces WSì2(Q) are denoted by We write Hq(ìì) for the space
 of functions in H1^) with null trace on dQ. We will make use of the spaces of vector
 fields

 (div; il) := {v € L2(ü)d such that V • v e L2(íi)} ,

 if(curl; íí) := {v e L2(Q)d such that V x v € L2(íi)d}

 and the subspaces

 H( divO; Í2) {v G H( div; íi) such that V • v = 0} ,
 #o(curl; fž) := {v G üí(curl; Q) such that n x v = 0 on díl} .

 We use the notation A < B to indicate that A < CB , where A and B are expres-
 sions depending on functions that in the discrete case may depend on the discretization
 as well, and C is a positive constant.

 2.2. Problem statement. In this work, we consider the Maxwell problem,
 which physically describes magnetostatics in a bounded domain ÍÍ surrounded by a
 perfect conductor. Let us consider Q C Rd to be a simply connected nonconvex poly-
 hedral domain with a connected Lipschitz continuous boundary dii. Besides its range
 of applicability, this system of partial differential equations exhibits the mathematical
 complications encountered in more involved model problems (see, e.g., [19, 10]). The
 Maxwell problem can be stated as a minimization problem that consists in finding
 the vectorial field u (magnetostatic field) that minimizes the potential

 £(v) = f (A|V x v|2 - 2v • f) dx,
 Jq

 with the constraint V • v = 0 and the homogeneous boundary condition n x v = 0
 over the boundary díí, for some divergence- free datum f; À is a positive physical
 parameter.

 2.3. Augmented and penalized formulations. The Maxwell problem can
 be recast as a saddle-point problem by enforcing the divergence constraint with a
 Lagrange multiplier p. The Euler-Lagrange equations read as follows: seek a pair
 (u, p) solution of

 (2.1a) AV x (V x u) - Vp = f ,
 (2.1b) Vu = 0
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 with nxu = 0 and p = 0 on dil. As we will see later on, p vanishes in the appropriate
 functional setting. Thus, the problem consists of finding u such that AV x V x u = f
 and V • u = 0 on ÍÍ. It has motivated the exact penalty approach, in which the
 divergence constraint is penalized and the Lagrange multiplier eliminated; it consists
 of seeking u solution of

 (2.2) ÀV x V x u - AV(V • u) = f in il.

 The regularization requires adding the boundary condition V • u = 0 on the boundary
 dil (see [26]). This restatement of the problem is (in principle) very appealing from
 a numerical point of view. However, as we will see in the next section, this exact
 penalty modifies the functional setting of the original problem, leading to spurious
 solutions for nonconvex domains.

 The variational interpretation of the mixed problem (2.1) admits two functional
 settings. The so-called curl formulation reads as follows: find u G i/o (curl; ÍÍ) and
 p G H ¿(il) such that

 (2.3a) (ÀV x u, V x v) - (Vp, v) = (f,v) Vv G i/o (curl; ÍÍ),

 (2.3b) (Vq, u) = 0 Vq G i/¿ (íí),

 where f G H (div 0; il) is assumed. However, this is not the only functional setting in
 which the problem is well-posed; the H1( ÍÍ) regularity for p can be "transferred" to
 u, leading to a curl-div variational formulation: find u G i/o (curl; íí) fli/(div; íí) and
 p G L2(il)/ R such that .

 (2.4a) (ÀV x u, V x v) + (p, V • v) = (f , v) Vv G i/o (curl; íí) D H( div; fž),

 (2.4b) -te,V-u)=0 Vq G L2(il).

 On the other hand, the exact penalty method only allows a curl-div formulation.
 Thus, its variational form reads as follows: seek u G i/o (curl; íí) fi i/(div;íí) such
 that

 (2.5) (AV x u, V x v) + (AV • u, V • v) = (f , v)

 for any v G i/o (curl; il) D H( div; íí). For conciseness, we introduce the bilinear forms

 o(u, v) = ( A V x u, V x v) , 6(v, p) = - ( Vp, v) ,

 and c(u,p; v,</) = a(u,v) + &(v,p) - 6(u, q). Let us also denote the Hilbert spaces
 i/o (curl; ÍÍ) and Hq(H) by V and Q, respectively, supplemented with the norms

 (2-6) ||v||v := ||v||//(curI;Q) = |||v|| + ||V x v||,

 (2-7) ll«llQ:=ll9lk(n) = filili + IIV«||,
 where £ = £(il) is a constant with dimensions of length that makes the norms dimen-
 sionally consistent. In the following, t will denote a length scale, not necessarily the
 same at different appearances. The norm associated to the product space V x Q is
 denoted by

 |||v,g||| = AÍ||v||v + ťA-i||g||<,.
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 From the standard theory of saddle-point problems, well-posedness of the curl formu-
 lation (2.3) is proved in the next theorem.

 Theorem 2.1. The following inf-sup condition is satisfied :

 (2.8) inf sup > ß > 0.
 (u,p)€VxQ'{0,0) (v,,)€VxQ'{0,0} IKpIIIIIKíW

 As a consequence , formulation (2.3) is well-posed.
 Proof The form a : V x V -» R is bilinear, continuous, and coercive when it is

 restricted to V D if (div 0; fi) (the closed subspace of V in the kernel of b(-,q) for any
 q G Q), since a(v, v) > A||V x v||2 for any v G V fi if (div 0; fi). The L2(fi) control of
 v is consequence of the Poincaré-Friedrichs inequality

 ¿IMI < cfIIV X v|| Vv € V n H (div 0; íí)

 (see [32, Corollary 3.51]). On the other hand, 6(v,p) is a continuous bilinear form
 such that for any p G Q, there exists vp G V with ||vp||v = 1 that satisfies 6(vp,p) >
 ßb''p''Q> This is true since Vp G V for any p G Q. The coercivity of a in the kernel
 of b and the inf-sup condition satisfied by b are necessary and sufficient conditions for
 proving (2.8) (see [21, Proposition 2.36]). We know from the theory of saddle- point
 problems that (2.3) is well-posed if and only if condition (2.8) is satisfied (see [21,
 Theorem 2.34]). □
 The curl-div formulations are equivalent to the curl formulation (2.3).
 Proposition 2.2. Formulations (2.4) and (2.5) with f G H( div0;fi) are well-

 posed. Furthermore j they are equivalent to (2.3) in the sense that they lead to the
 same u.

 Proof Let us only show that p = 0 in (2.3), which will be systematically used
 throughout the paper. Taking v = Vp (which clearly belongs to V) in (2.3), and
 using the fact that V x Vp = 0 and V • f = 0 a.e. in fi, we obtain || Vp|| = 0. Since p
 vanishes on dfi, it implies p = 0 a.e. in fi by virtue of Poincaré's inequality. We refer
 to [25, Propositions 3.4 and 3.5] for the completion of the proof. □

 2.4. A novel augmented formulation for the Maxwell problem. In this
 work, we propose a novel numerical approximation of the Maxwell problem whose
 starting point is a different augmented formulation. Since we are interested in a
 curl formulation for reasons that will become obvious in the next section, the idea

 consists of adding the term x^P to (2.1b); £ > 0 is the penalty value, with dimension
 of length. A length scale is inherent to the problem, since it is needed to define
 dimensionally consistent norms in (2.6)-(2.7). Theoretically, this length scale comes
 from the Poincaré-Friedrichs inequality of the problem at hand. The augmented
 formulation in strong form consists of finding u and p such that

 AV x V x u - Vp = f ,
 Í2

 -V • u - -A p = 0
 A

 in fi, satisfying n x u = 0 and p = 0 on dfi. Since p G Q is identically zero, the
 penalty is exact. The weak form of the new formulation reads as follows: find u G V
 and p G Q such that

 (2.9a) a(u, v) + 6(v, p) = (f , v) Vv G V ,
 (2.9b) -&(u, q) + Sp(p, q) = 0 Vg G Q,
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 where

 I2 f
 Sp(p . Q) = y Vp ' Vçdx-

 We now show the equivalence of the new formulation (2.9).
 Proposition 2.3. Formulation (2.9) is well-posed and its solution (u ,p) is the

 solution of (2.3) for f € i/(div0; ÍŽ).
 Proof Well-posedness is simply verified by proving that p = 0 in (2.9) (using

 the ideas introduced above) and testing the system against (v,g) = (u ,p). The new
 formulation is clearly stable in the norm ||| • ||| because of the stability of the original
 curl formulation and the positivity of the term added. Equivalence is now straight-
 forward. □

 3. Numerical approximation.

 3.1. FE approximation. Let Th be a partition of il into a set of FEs {K}. For
 every element K , we denote by hx its diameter and set the characteristic mesh size
 as h = maxxeTh h>K- We consider a nondegenerate family {Th}h>o of FE partitions.
 The space of polynomials of degree less than or equal to k > 0 in an FE K is denoted
 by Vk{K). The space of continuous piecewise polynomials is defined as

 (3.1) Nk(H) = {vh € C°(fi) such that vh'K € Vk(K) WK G Th) •

 This type of FE space is the one that we consider in this work for both scalar fields
 and every component of vectorial fields. These approximations are usually called
 H1- conforming approximations, because of the interelement continuity. Any function
 J'fk(H) can be uniquely determined by its values on a set of points (nodes) in il (see
 [7, 21]), and so this is a nodal FE approximation.

 For quasi-uniform partitions, there is a constant Cinv> independent of the mesh
 size h (the maximum of all the element diameters), such that

 (3.2) ''VVh''L2(K) < Cinv^llVhllL2^)* ''Avh''L2(K) < 1| Vvh || L2(K)

 for all FE functions Vh defined on K G Th- This inequality can be used for scalars,
 vectors, or tensors.

 3.2. The corner paradox. Although all the formulations introduced above are
 equivalent, stable, and consistent, numerical approximations of the curl-div formula-
 tions (2.4) and (2.5) lead to spurious solutions for nonconvex domains, e.g., domains
 with reentrant corners. Costabel provided in [15] a mathematical justification to this
 surprising observation.

 Lemma 3.1. If Q is not convex , V D Hl(Q)d is a closed proper subspace of
 VnH( div; il).

 Out of this result, //^-stable FE formulations cannot converge to solutions in
 V fi if (div; il) that do not belong to V fl H1(il)d. We can prove that this is the case
 of the curl-div formulation: find G Xh C üí1(íl)d D V such that

 (3.3) (AV X ufc, V X vh) + (AV • u^, V • vh) = (f , v^) Vvh G Xhì

 where Xh is an H1 -conforming FE space. From Lemma 3.1 we then have the following
 corollary.
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 Corollary 3.2. If il is not convex,

 lim II u - uh||vnH(div;iî) Ž 0,
 h- >0

 in general.
 Proof. Every element of the sequence {u/l}/l>o belongs to H1(Q)d. Further,

 every is solution of (3.3) and thus A||V x u^||2 + A||V • u/JI2 < C7||f || ||u/t|| for
 C uniform with respect to h. From [15, Theorem 4.1], we have that Hu/JI/fi^) <
 II V x Uh'' + II V • u^ll for Q being a polyhedron. (See also [15, Corollary 2.2] in
 the case when dQ G C1,1.) Thus, A||V x Uh'' + A||V • u^|| < ||f|| and {u/l}/l>o is
 uniformly bounded in Hl(Si)d Ç V H H (div; il) and cannot approximate an element
 in V n if (div; íí) which is not in H1(ii)d. □

 This result implies that approximations based on (2.4) and (2.5) cannot capture
 solutions u ^ V n H1(il)d of the Maxwell problem (2.3) and so are not suitable
 for numerical purposes. These kinds of solutions are called nonsmooth or singular
 solutions. Note that the key for this negative result is the spurious control on the
 divergence of the approximations based on (2.4) and (2.5), which implies that the
 whole gradient is uniformly bounded in L2(íí), since is a Hl(ft)d function for all
 h.

 Let us consider conforming FE approximations of the spaces V and Q, denoted
 by Vh and Qh, respectively. A crude Galerkin approximation of the curl conforming
 mixed problem (2.3) reads as follows: find u h G Vh and ph G Qh such that

 (3.4a) a(uh,Vh) + b(vh,Ph) = (f,v^) Vv^ G Vh,
 (3.4b) -6(11/ 1, qh) = 0 G Qh -

 The well-posedness of this finite dimensional problem relies on the discrete version of
 the inf-sup condition (2.8):

 /o r' • c cfahiPhiVhi Qh) ^ > Q n 0
 (3.5) /o r' inf • c sup

 (uhìPh)evhxQh'{oto} (vh,qh)eVhxQh'{ 0,0} IllUfc^fcllllllVh,^!!! îîhïï m

 for ßd > 0 uniform with respect to h (see, e.g., [8]). As far as we know, it is not
 known whether there is any nodal interpolation for Vh x Qh satisfying this inf-sup
 condition. However, it is satisfied when Vh is given by the celebrated Nedelec's (or
 edge) elements; those elements are only conforming in if (curl; fŽ), since they do not
 satisfy normal continuity over the element faces. A nodal FE space can then be used
 for Qh (see, e.g., [35]).
 As a result, nodal FEs have only been used with the "bad" formulation (3.3),
 leading to spurious solutions for nonconvex domains, e.g., domains with re-entrant
 corners. On the other hand, the "good" formulation (3.4) has been restricted to edge
 elements, since they do satisfy (3.5). Since the problem is the fact that a curl-div
 formulation is not suitable for numerical purposes, a rehabilitation of nodal FEs has
 been proposed in [17]. The key idea of this approach is to introduce a weight in
 the penalty div-div term in (3.3) which depends on the distance to the singularities.
 The resulting problem is posed in a weighted Sobolev space that does satisfy an
 approximability property.
 For the previous reasons, nodal elements have always been related to curl-div
 conforming formulations, whereas edge elements have always been related to curl
 formulations. Instead, in this article we construct a new curl mixed formulation and
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 a corresponding residual-based stabilized FE approximation that can be solved with
 nodal FEs. Thus, our approach is very different from the one in [17]. Furthermore,
 the formulation we propose can be automatically used for any problem without the
 need to know where the singularities are and to define a weight function around every
 singularity.

 3.3. A mixed FE formulation suitable for nodal approximations. It is
 obvious that a nodal FE approximation that would always provide the "physical"
 solution would be favored in many situations. In particular, the original motivation
 of this work lies in the multiphysics MHD problem. The numerical application of this
 phenomenon, with increasing interest in fusion reactor design, couples Navier-Stokes
 and Maxwell solvers. The ability to solve both problems with an all-purpose stabilized
 FE method would make the extension of existing fluid solvers to MHD multiphysics
 very easy.

 Our approach can be motivated as a residual- based stabilized discretization of
 the exact augmented formulation (2.9), although we will simply state the method
 without further heuristic motivation. The FE formulation we propose is designed for
 H ^conforming FE spaces. Then, Vh = Nk{£l)d n V and Qh - A//(íí) D Q for fc, I > 0
 the order of approximation for u and p, respectively; there is no restriction between
 k and /, and equal-order approximations are allowed. The method consists of seeking
 a Uh 6 Vh and Ph € Qh solution of

 (3.6a) o(u/i,vfc) + b(vhtph) + su(uh,vh) = (f,v/,) Vvfc € Vh,
 (3.6b) -b{ u/j, qh) + sp(ph, qh) =0 '% € Qh,

 where the stabilization term reads

 r

 (3.7) su( uh,vh)= ^2 cu A Jk / -^V • UftV • vhdx, K€Th Jk

 cu being an algorithmic constant. We can easily see that (3.6) is a residual-based FE
 approximation of the2 augmented formulation (2.9) (see, e.g., [29, 12]). The stabiliza-
 tion parameter cuX^~ must provide a dimensionally consistent method and it can
 be heuristically justified by using Fourier transform techniques (see, e.g., [3]). The
 benefit of this approach is twofold: it allows us to circumvent the need for a discrete
 inf-sup condition and it stabilizes singularly perturbed problems (see, e.g., [21]).

 The reason the su term is needed becomes evident from both theoretical analysis
 and numerical experimentation. Obviously, as h - > 0 this term vanishes, and the
 method is not a div-curl conforming algorithm. In the sequel, we analyze this method.
 We denote by

 Cs(uh,Ph.;vh,qh) = c(uh,ph;vh,qh) + su(uh, vh) + sp(ph, qh)

 the stabilized counterpart of c.

 3.3.1. Stability analysis. In the next theorem we establish stability of the
 bilinear form introduced above with respect to the mesh-dependent norm

 (3.8) |||v/„9h|||h = AÍ||Vxvh|H-AÍ ^HV-VfcH^ +^-||V«fc||.
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 Lemma 3.3. The bilinear form cs : Vh x Qh x Vh x Qh -> M ¿5 coercive with
 respect to the mesh- dependent norm (3.8).

 The proof of the lemma is straightforward. Unfortunately, this norm is not enough
 for numerical purposes, since it does not explicitly provide uniform control with re-
 spect to h in L2(Q). However, we show in the next lemma that the "continuous"
 norm for the FE solution can be bounded by its mesh-dependent norm.

 Lemma 3.4. The solution (w h,&h) € x Qh of the discrete problem

 (3.9) cs( wh,ah; vh,qh) = (f, vft) + ( g , qh) V(vh, Qh) &VhxQh

 for f e V' and g € Q' satisfies Klw^ct/J < |||w/l,a/l|||/l + H^Hq'. Furthermore, for any
 (vh,qh) Qh, we have |||vh,gfc|||/, < |||vfc,çfc|||.

 Proof Since Vh x Qh C V x Q, by virtue of the continuous inf-sup condition (2.8),
 there exists (w,ã) eVxQ such that |||w,ã||| = 1 and

 c(wh,ah;w,ä) > ß'''wh,OLh'''.

 Let us denote by SZh{-) the Scott-Zhang interpolation operator (see, e.g., [7]) into
 the corresponding FE space; the space (either Vh or Qh) is easily understood by the
 context. We have

 (3.10) c( Wfc, ah; w, ã) = c(wh, ah; w, ã - SZh(a)) + c(wh, ah; 0, SZh(a)).

 We bound the first term in the right-hand side as follows:

 c(wfc, ah) w, à - SZh{à))

 < A|| V x WfcllllV x w|| + ^2 llV-w'ilkl|â-«?-2/l(â)||Ar + || Var/»|| || w||
 Ken

 < A||V x H II V x w|| + ^IIV-wh|k||ã||wl(n) + ||Vah||||w||
 Ken

 (3.11) < HI w/j,, a/illl^lllw, ã|||,

 where we have used the interpolation properties of the Scott-Zhang projector (see,
 e.g., [7]). Using the fact that (w^,a^) is the solution of the stabilized problem (3.9),
 the second term in (3.10) can be treated as

 c(vrhiah]0,SZh(ã)) = (. g,SZh{à )) - sp(ah,SZh{ã))

 < Ibll^ll^^llQ + £||Vafc||||VS2k(ã)||
 < (lllwh^hlllh + IIÍ/IIQ') |||W, ã|||

 by using the continuity of SZh(-) in Hl(Q). Since |||w, ã||| = 1 by construction, we
 get the upper bound for ||| • ||| in the lemma. The lower bound is easily obtained using
 an inverse inequality (see (3.2)). □

 Remark 3.1. We infer from the previous lemma the importance of the h'' V • w/JI
 stabilization term, which is essential for bounding (V • w/^ã - SZh{à)) in (3.11). In
 fact, the requirement of having this stabilization is not only technical, as is shown in
 section 4 using numerical experimentation.

 The following corollaries are consequences of Lemmata 3.3 and 3.4.
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 Corollary 3.5. The stabilized bilinear form cs : Vh x Qh x Vh x Qh - > K zs
 continuous with respect to the norm ||| • |||.

 Corollary 3.6. Problem (3.6) zs well-posed, i.e., it admits a unique solution
 (u>h,Ph) bounded by the data as follows:

 (3-12) £ l|f||-

 Proof The coercivity in Lemma 3.3 with the upper bound in Lemma 3.4 for g = 0
 imply that

 (3.13) Illufc.PfelH2 < cs{uh,ph; u h,ph).

 Therefore (3.6) is a squared linear system of equations with a positive definite sys-
 tem matrix. Thus, it proves existence and uniqueness of solutions. On the other
 hand, using the Cauchy-Schwarz inequality we get (f, u^) < ||f || Hu/^H < || f || lllu/j,, ||| .
 Combining this result with (3.13), we prove the corollary. □

 Thus, the numerical approximation (3.6) is stable in the "continuous" norm. On
 the other hand, the consistency of the method is easily checked by the fact that both
 p and V • u are zero a.e. in Í2.

 3.3.2. Error estimates. As noted above, numerical methods based on the curl-
 div formulation fail to converge to singular solutions due to the lack of an approx-
 imability condition (see Corollary 3.2). Formulation (3.6) avoids this problem, since
 both stability and continuity hold for the same norm ||| • ||| in which the continuous
 problem is well-posed.

 In order to define the interpolation error function, we make use of the following
 result. We refer to [1, Proposition 3.7] for the proof of this lemma (see also [27,
 Lemma 4.2]).

 Lemma 3.7. If v G V DH( div; íí), then v G Hr(Çí)d for some real number r >
 and there holds

 0|v||^(fi)<||Vxv||-H|V-v||.

 The previous lemma leads to the following result, which is used in the definition
 of the error interpolation function.

 Corollary 3.8. Any function v G V n H(div;Q) belongs to L2(dK) for any
 KeTh.

 Proof As a consequence of the previous lemma, v G Hr(K)d for some r >
 Now, using the trace theorem for fractional Sobolev spaces in [18, Theorem 1], we
 obtain that v G Hr~ 2 (dK), which proves the result. □

 The interpolation error for the new formulation, which comes from the subsequent
 convergence analysis, is defined as

 (3.14) Eh(u,p):= inf g(u - wh,p - rh),
 (w h,rh)€VhxQt,

 where

 (3-15) e{v,q) := |||v,g||| + A* ^ ^£||v|| £2(Wf)^ ■
 Theorem 3.9. The solution (u h,Ph) of problem (3.6) for the family of FE par-

 titions {Th}h>o approximates the continuous solution (u ,p) of problem (2.3) in the
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 following sense:

 i!|u/i - u ,ph -p||| < Eh(u,p).

 Proof. On one hand, the Galerkin orthogonality, the consistency of the method,
 and the fact that the FE approximation is conforming lead to

 cs(uh-wh,Ph - rh;vh,qh) = cs(u - wh,p - rh; vh,qh)
 = c(u-w/,,p-r/1;v/1,5/1) + s„(u-w/l,v/l)

 (3.16) + sp(p-rh,qh)

 for any (w h^h) and (v^,^) in Vh x Qh- On the other hand, using integration by
 parts within each element domain K G Th for the su term, we get

 f h ?
 s„(u - wh, vh) = ^2 Cu X f V ■ (u - w/t)V • Vftdx

 K€Th J K

 = - ^2 CUX f K ^f(u-Wfc)' W-Vftdx K€Tu K

 + CuX [ ^(u- 1 wh) • nV • Vftdx K€Th JdK 1

 Z E ^^l|u-wfc||La(J0||VV.vfc||ia(jr)
 Ken

 h 2

 + E cuX-^-Wu - wh||L2(dlf)||v • vhWmdK)-
 Ken

 _ 1

 Using the inverse inequalities (3.2) and the relation ''<j>h''L2{dK) II^/iIIl2(K)î
 which holds for any piecewise polynomial function, together with Young's inequality
 and the continuity of c and sp, we get

 cs{uh - Wh,Ph -rh;vh,qh)
 '''vh,qh'''

 (3-17) +A^H7řllu~ wh''2L2{aK^j ■
 By virtue of Lemma 3.4 with (f,p) = cs(u - w h,p - r h' -, •) and the fact that

 -6(u- i whiq) + sp(p-rhiq)
 NIq' = sup - i

 q€Q'{ 0} ÏÏQÏÏQ

 we get

 lllufc -Wh,p/, -r/,111 < |||ufc - -Wh, Ph. -rfc|||fc + |||u - Wfc,p-rfe|||

 (3.18) < |||ufc - w h,Ph - oJU + e(u - w h,p - rh).

 Testing (3.17) against (vh,qh) = (u^ - w h,Ph ~ r h ) and using the coercivity of cs in
 Lemma 3.3 and the Cauchy-Schwarz and Young's inequalities, we obtain

 lllufc - w h,ph - rh'''l < |||ufc - w h,ph - rfe|||ß(u - w h,p- rh)

 < (|||ufc - w h,ph - rh III/, + g{u - w h,p- rh))g( u - w h,p- rh)

 (3.19) < ^llluft - w h,Ph - rh'''h + (1 + ß)ß(u - w h,p- rh)2
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 for ß > 0. Taking ß large enough in (3.19) together with (3.18), we obtain |||u h -
 Wh,P/i - Hi III ¿S i?(u - w/tiP - fh)- Combining this bound and the triangle inequality,
 we get

 (3.20)
 '''uh - u, ph p||| < IH u - Wfc.p-r/J + llluh. - vrh,Ph - rfc||| < g(u - wh,p - rh)

 for any (w h,Vh) G Vh x Q h- Taking the infimum for G Vh and rh G Qh, and
 invoking the expression for the interpolation error (3.14), we prove the theorem. □

 In the following, we obtain some a priori error estimates. Let us consider the
 interpolation estimates

 (3.21) inf H v - 0<s<t<k + l,
 w h€Vh

 (3.22) inf ||q - rh''Hs(K) < ht¿s''q''HnK), 0<s<t<l + l,
 Th^Qh

 for any K G Th (see [17]). We get the following order of convergence for regular
 solutions, which in fact does not depend on the order I of the approximation for p.

 Corollary 3.10. Let the solution of the continuous problem (2.3) be u G Hr(íl)d
 with r > 1. Then, the solution (u h,Vh) of problem (3.6) satisfies the error estimate

 ll|u - nh,p-ph''' £ Aî/it-1||u||Ht(n),

 where t := min{r, k + 1}.
 Proof We infer from (3.21) that

 'nL ^ III" - wh,P-r/J £ AU^IIulltf,^),
 (w h,rh)6Vh*Qh ^

 where we have used the fact that p = 0 a.e. in Í2. On the other hand, the trace
 inequality

 (3.23) IMIl2(ö/c) ~ ^¿/iMli2^) + hK''Vv''2LHK)

 that holds for v G Hl(K), K G 7^, allows us to obtain

 hK ||u - VíhWh(dK) £ II" - Wftlli^AT) + ^Arll" - Wfcllf/I (K)-

 The proof follows by taking the infimum with respect to (w h^h) in (3.20), the
 previous result, and (3.21). □

 We can prove a sharper a priori error estimate that is also applicable to nonsmooth
 solutions under some assumptions over the partition Th and/or the polynomial degree
 k of Vh- In order to do that, we will make use of the following lemma and Lemma 3.7.

 Lemma 3.11. Let u G V fi H(div;Q) be the solution of (2.3). Then , u can be
 decomposed into a regular part and a singular part as follows :

 u = u0 + V<£,

 where uo G i71+r(íž)d D ü/o(curl; Q), <p G H¿(ü) D Hl+r(Q) for some real number
 r>I.

 Lemma 3.11 is a consequence of the deep analysis about the singularities for the
 Maxwell problem due to Costabel and Dauge in [16] (see also [17, section 6]).
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 Error estimates for nonsmooth solutions can be proved, relying on an assumption
 over the FE space V^:

 Assumption 3.1. There exists an FE space Gh defined over the mesh partition
 Th such that for any function ^ G G/i, G Furthermore, this space satisfies
 the approximability property

 inf 110 - <t>h''H*{K) ^ htKS''(j)''H<{lK)

 for any K G Th for </> G Ht( K ) and 0<s<¿<l + fc.
 Lemma 3.7 proves that the solution u of the Maxwell problem (2.3) for a forcing

 term f G H (div 0; il) belongs to Hr(Q)d for some r > Without any assumption
 over the regularity of the solution, we get the following error estimate, which is based
 on the decomposition in Lemma 3.11.

 Corollary 3.12. Under Assumption 3.1, the solution (u h,Ph) of problem (3.6)
 satisfies the error estimate

 |||u- Ufc.p-pfclll < + ¿r=7/lK:'

 for any e g]0, t - 1/2 [ and for t = min{r, k}.
 Proof Following [17], we use the decomposition u = uo 4- in Lemma 3.11 and

 consider optimal interpolations ûo,^ G Vh and (ph £ G h for uo and <¿?, respectively.
 Then, we have

 ||uo - Ûo^llif^K") < h^-'WuoWHi+t^,

 (3-24) ''<p - íph''H"{K) ^ h)ft~8''(p''Hi+t(K)

 for 0 < s < t + 1 with t := min{r, k}. These estimates also hold locally, within each
 element. Now, we pick w h = üo ,h + G V^, We can easily see that

 ' - ' -

 III" - wft,p||| < -y-lluo - ûo.fcll + -y||V(<¿> - <čfc)||

 + AÍ II V X (u0-Û0,fc)||,

 where the contribution from p has been neglected because p - 0. For the second term
 in Eh(u) we use

 i i i

 h*K ||u - wh''L2{dK) < ft^||uo - ùo,h''mdK) + h2K''V{ip - <ï>h)''mdK)-

 The first term in the right-hand side of the previous inequality can be treated as
 above, using the trace inequality (3.23). For the second term, we use the embedding
 of W€'m(dK) into We+™ >m(K) (see [22]) for e > 0 and m - 2, getting

 hjc'Mv - ^/i)llL2(a/c) ^ h>Kť''V(ip - <Ph)''H*(dK )

 <hlt''V{ip-<ph)''HÍ¡+í(K)

 <h?Klt''<p-<ph''Hì+*{K)

 < hf(íthK 2 IMI/í'+'í/o»

This content downloaded from 5.196.89.225 on Thu, 05 Sep 2019 10:58:52 UTC
All use subject to https://about.jstor.org/terms



 NODAL-BASED FEM FOR THE MAXWELL PROBLEM 411

 where in the last step we have used the second interpolation estimate in (3.24) with
 s = I -h e < 1 + £. Note also that in the first step the fractional derivative in the norm
 in He(dK) would scale as heK , but we need to introduce a length scale Í independent
 of the element size to bound the whole He(dK)- norm.

 Combining the previous results, we easily get the desired error estimate. □
 Remark 3.2. When Assumption 3.1 is satisfied, the previous result is very strong

 in the sense that we have proved not only convergence toward the good solution but
 an (almost) optimal order of convergence, even for nonsmooth solutions. We can also
 weaken the approximability assumption over G^, and in the limit case

 ''<t>-<t>h''H»m =0, s < 1 + r,
 h^0(f)heGh

 we would get strong convergence toward the solution without order. Alternatively,
 instead of considering the decomposition of u, an interpolation result

 lim inf (r_1||u - Wfc||tf,-(n) + H V x (u - w/^H) = 0
 h->0vrh€Vtl

 for Vh would also lead to convergence toward the good solution, without the need to
 introduce Gh-

 Remark 3.3. We note that a similar method has recently been proposed in [6]
 for electromagnetic eigenvalue problems. The method in [6] depends on a coefficient
 a and corresponds to the method proposed here for a = 1 with the only difference
 that no restriction over the FE spaces or meshes is assumed. Unfortunately, the
 convergence of the proposed algorithm is deteriorating in the limit a -» 1 and the
 corresponding numerical analysis in [6] does not apply for the limit case considered
 in this work.

 3.4. FE meshes and spaces satisfying Assumption 3.1. Assumption 3.1 is
 known to hold for k > 4 in dimension 2 without any assumption on the mesh typology.
 In this case, we can take Gh as the FE space obtained for the Argyris triangle. For
 k > 2, G h can be constructed by using the Bogner-Fox-Schmidt triangle; in order to
 do this, the triangulation Th should admit a coarser mesh of macroelements. See [17]
 for a detailed discussion.

 For the most interesting case of linear interpolations, under the same kind of
 restriction over the mesh topology, the discrete space recently introduced in [36] , based
 on a Powell-Sabin interpolant (see Figure 3.1, right), makes true Assumption 3.1 for
 fc > 1, in both two and three dimensions (see also [9, 11]). Furthermore, we have
 observed from numerical experiments that a mesh with the crossed-box typology
 (see Figure 3.1, left) also satisfies this assumption. In a numerical code, it implies
 performing a cheap preprocessing of the original mesh. Given any original triangular
 mesh, the Powell-Sabin mesh is obtained by introducing additional nodes on the mid-
 points of the edges and the element barycentes and reconnecting the nodes properly.
 On the other hand, crossed-box meshes are obtained from a quadrilateral mesh by
 placing a node on its center and creating four triangles; in fact, the additional node can
 be condensed. These are the two typologies of meshes considered in section 4. See [4]
 for detailed numerical experiments about the effect of having a suitable macroelement
 structure in the convergence of the method. In [5] we have extended this work to three
 dimensions in the frame of MHD applications; we have considered both the three-
 dimensional Powell-Sabin element and a three-dimensional extension of the crossed-

 box; both choices exhibit excellent convergence properties.
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 Fig. 3.1. Crossed-box (left) and Powell-Sabin (right) macroelement typologies.

 4. Numerical experiments.

 4.1. Stabilized curl formulation. In order to check, using numerical experi-
 mentation, that the nodal-based FE approximation proposed in this article converges
 to both smooth and nonsmooth physical solutions, we take the datum f such that the
 solution of (2.3) in polar coordinates (r, 6) is

 ( 2il . 2 T10'
 (4.1) u = Vira sin-^-J .

 in the nonconvex domain Q = [-1, 1]2' [0, l]2 with one reentrant corner. We have that
 u G H2^~€(Q)2 for any e > 0. Since for n = 1 we have that u ^ Hl(il)2, by virtue
 of Corollary 3.2, curl-div-based FE approximations converge to spurious solutions.
 On the other hand, as proved in Theorem 3.9, the solution of formulation (3.6) must
 converge to the physical solution (4.1) by using h- refinement and appropriate meshes.
 In order to observe this, we have considered a family of structured triangular meshes
 obtained by a partition of the domain into squares and a subsequent division of the
 squares in the crossed-box fashion (see Figure 3.1). We consider linear elements in
 the resulting mesh. The number of divisions in every direction has been set to 2*
 with i = 3, 4, 5, 6; the characteristic mesh size h is 2~l and the number of triangular
 elements 2i+1. In Figure 4.1(a), we show the numerical errors eu = Uh - u and
 ep = ph - p for different norms as h 0. The convergence rate at every refinement
 level and numerical values of the error have been provided in Table 4.1. From these
 results, it is clear that the method we propose here can approximate numerically
 nonsmooth solutions, as Theorem 3.9 says. In fact, the order of convergence of the
 method is surprisingly high when compared to those for the weighted regularization
 in [15] and the discontinuous Galerkin technique in [28] (for the same test problem).
 Furthermore, optimal convergence in L2(ii) is obtained for this method.

 Now, in order to stress the importance of the /i||V • Uh'' stabilization, we have
 switched off the term (h2KV • u^, V • v^) from the formulation (3.6). In the previous
 stability analysis, this term is crucial for recovering L2(fì) -control of u^. We perform
 the same convergence test as above and show the plots in Figure 4.1(b). As expected,
 convergence is not attained for the quantity ||eu||. So, the introduction of this term
 is motivated by both theoretical and numerical observations.

 Going back to the full formulation (3.6), we perform the same convergence analysis
 with n = 2 and n - 4 in (4.1). In the case n = 2, the solution u h belongs to
 H%~e($ì)2 C Hl(Q)2. Then, both curl-div and curl formulations are able to capture
 the solution. In any case, the smoothness of the solution does not allow us to obtain
 theoretically optimal convergence for first order approximation of both u h and ph ,
 since u ^ H2(Cl)2. The convergence plot and convergence rates at every level of
 refinement can be found in Figure 4.1(c) and Table 4.2, respectively. The method
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 Fig. 4.1. Error plots for different quantities in L2(Q) norm for formulation (3.6) and the
 problem with analytical solution (4.1) with different values of n. Plot (b) corresponds to (3.6)
 without the stabilization term su(u^,v^).

 Table 4.1

 Experimental errors for method (3.6) for and rate of convergence (in brackets). Piecewise
 linear F Es for both and p.

 n- 1 n - 2 n - 4

 h II Heull HVxeull ||eu|| ||V x eu|| ||euH ||Vxeu||
 2~3 2.67e-l (-) 3.92e-l (-) 6.75e-2 (-) 9.96e-2 (-) 7.31e-3 (-) 2.66e-2 (-)
 2-4 1.51e-l (0.82) 2.03e-l (0.95) 2.49e-2 (1.44) 3.20e-2 (1.64) 1.93e-3 (1.92) 3.44e-3 (2.95)
 2"5 8.11e-2 (0.90) 9.22e-2 (1.14) 8.68e-3 (1.52) 9.08e-3 (1.82) 4.89e-4 (1.98) 4.34e-4 (2.99)
 2"6 4.52e-2 (0.84) 3.98e-2 (1.21) 3.12e-3 (1.48) 2.44e-3 (1.89) 1.22e-4 (2.00) 5.43e-5 (3.00)

 exhibits some superconvergence. For n = 4 the solution u belongs to H%~e(Çt)2 and
 the optimal error estimate should apply. We can see that this is in fact the case for
 both u and p in the continuous norm |||eu,ep||| in Figure 4.1(d) and Table 4.1. Again,
 the method exhibits super convergence.

 Finally, we solve the singular problem (with n = 1) with a Powell-Sabin mesh.
 As expected, the method shows a convergence order very similar to the one obtained
 for crossed-box meshes. The numerical errors and slopes with respect to h are shown
 in Table 4.3.
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 Table 4.2

 Experimental errors for method (3.6) for p^ and rate of convergence (in brackets). Piecewise
 linear FEs for both u h and p.

 h ' llep|| " I 1 HVepH - l|ep H " I 2 ||Vep[| ~ ||ep|| " | 4 ||Vep||
 2~3 1.56e-l (-) 1.05e+0 (-) | 3.72e-2 (-) | 2.68e-l (-) 8.69e-4 (-) | 1.14e-2 {-)~
 2~4 8.70e-2 (0.83) 8.75e-l (0.27) 1.30e-2 (1.51) 1.39e-l (0.95) 1.01e-4 (3.10) 2.10e-3 (2.44)
 2~5 4.09e-2 (1.09) 6.29e-l (0.48) 3.85e-3 (1.76) 6.27e-2 (1.15) 1.09e-5 (3.22) 3.56e-4 (2.56)
 2~6 1.76e-2 (1.22) 4.19e-l (0.59) 1.04e-3 (1.89) 2.63e-2 (1.25) 1.10e-6 (3.30) 5.88e-5 (2.60)

 Table 4.3

 Experimental errors for method (3.6) for and rate of convergence (in brackets) for the test
 problem with n = 1 and Powell-Sabin triangle meshes . Piecewise linear FEs for both u h and p.

 il n = 1
 h II lleull HVxeu^

 2*~3 2.13e-le-l (-) 2.99e-l (-)
 2"4 1.13e-l (0.91) 1.40e-l (1.10)
 2~5 5.98e-2 (0.92) 5.99e-2 (1.22)
 2~6 3.34e-2 (0.84) 2.48e-2 (1.27)

 We note that the stabilized FE formulation (3.6) leads to a positive-definite lin-
 ear system. In this work, this linear system has been solved using a direct solver.
 For larger-scale problems, a Kry lov iterative solver with a Schur complement type
 preconditioner could be explored (see [20]). This type of block-preconditioner allows
 one to decouple the computation of and ph at the preconditioner level, reducing
 the original problem into two smaller ones, for which effective preconditioners can be
 used.

 4.2. Stabilized curl-div formulation. Following the same idea as at the con-
 tinuous level, in which we went from (2.3) to (2.4) passing regularity from p to u, we
 can pass from (3.6) to a curl-div stabilized FE formulation. Proceeding this way, we
 get the discrete problem: find € Vh and ph G Qh solution of

 (4.2a) a(uh,vh) + b(vh,ph) + (cu'V -uh,V -vh) = (f,vh) Vvft e V) „

 (4.2b) -b(uh,qh) + "52 / -^Vph A • Vghdx = 0 € Qh. K€Tk k A

 Again, this method is a residual- based FE method, in which the stabilization parame-
 ter has been chosen to be cu X. The second term in the right-hand side comes from the

 penalty term in (2.9) but taking as penalty coefficient. The numerical analysis of
 this method uses arguments similar to the ones for (3.6). Since we have control over
 both the curl and the divergence of u^, and the control /i|| || only leads to L2(Si)
 stability for this problem is well-posed for the curl-div norm, for which there is no
 approximability property. Thus, this formulation is not able to deal with the singular
 solution (4.1) with n = 1; we show this in Figure 4.2(a). However, as expected, the
 method converges for n = 2 and n = 4 to the good solution, since u G H 1(fì). We
 show the error plots in Figures 4.2(b) and 4.2(c). We point out that in the curl-div
 formulation there is no control over Vp^, and so no convergence can be expected for
 it (see Figure 4.2(b)).
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 Fig. 4.2. Error plots for different quantities in L2{Q) norm for formulation (4.2) and the
 problem with analytical solution (4.1) with different values of n.

 5. Conclusions. The FE formulation proposed in this paper to approximate
 Maxwell's problem has been shown to allow one to use continuous Lagrangian in-
 terpolations for the unknown, yielding stable and convergent approximations to any
 solution of the continuous problem, including singular solutions. Convergence to
 smooth solutions is reached with optimal order.

 The essential point to converge to singular solutions is to avoid the spurious con-
 trol on the L2( fž)-norm of the divergence of the unknown, typical of penalized or
 curl-div formulations. Instead of avoiding this by using weighted L2(Q)- inner prod-
 ucts, we resort to the introduction of a Lagrange multiplier to enforce the zero diver-
 gence restriction. However, to ensure stability of this in the appropriate functional
 setting, a novel augmented formulation has been introduced, which consists of adding
 a Laplacian of the multiplier in the zero divergence restriction. Since the multiplier is
 zero in the continuous problem, consistency remains unaltered. The final ingredient
 is to use a stabilized formulation at the discrete level, in our case consisting only in
 adding a least-square form of the zero divergence condition. The stabilizing term is
 multiplied by the square of the mesh size, so that it mimics stability of the divergence
 of the unknown in not in L2(il), as curl-div formulations wrongly do. This
 new term is also responsible for obtaining stability in the L2(Çt) part of the whole
 H( curl; Q) norm of the unknown. Finally, in order to have approximability for linear
 Lagrangian elements, particular mesh typologies must be used for singular solutions
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 that can easily be generated by a cheap postprocessing of any original triangular or
 quadrilateral mesh, in both two and three dimensions.

 A classical numerical test has been used to check the theoretical predictions.
 Notably, very good convergence has been observed in the case when the solution is
 singular, as compared to other formulations that can be found in the literature.

 The practical interest of our approach is clear. Even if tailored approximations for
 Maxwell's problem may be afforded at a reasonable computational cost when it is an
 isolated problem, it is obvious that a classical Lagrangian type approximation greatly
 simplifies its implementation in situations where this problem is coupled to others, as
 in MHD (see [5]). On the other hand, our approach may be viewed as an alternative
 to the use of the so-called compatible discretization, satisfying the appropriate inf-sup
 conditions. In simple model problems, such as that of Stokes, Maxwell, and Darcy,
 our formulation allows us to use the same interpolation for the unknowns in all cases,
 instead of one compatible for each case.
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