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Urban rail transit (URT) scheduling requires designing efficient timetables that can meet passengers” expectations about the lower
travel cost while attaining revenue management objectives of the train operators. This paper presents a biobjective timetable
optimization model that seeks maximizing the operating revenue of the railway company while lowering passengers’ average travel
cost. We apply a fuzzy multiobjective optimization and a nondominated sorting genetic algorithm II to solve the optimization
problem and characterize the trade-off between the conflicting objective functions under different types of distances. To illustrate
the model and solution methodology, the proposed model and solution algorithms are validated against train operation record
from a URT line of Chengdu metro in China. The results show that significant improvements can be achieved in terms of the travel

cost and revenue return criteria when implementing the solutions obtained by the proposed model.

1. Introduction

Being fast, reliable, safe, and convenient, URT has been
able to provide satisfactory trip services and thus mitigate
urban traffic congestion in Metropolitan cities, e.g., Tokyo
[1], Beijing [2], and New York [3]. In Beijing, for example,
seventeen URT lines are currently operating to serve over
10 million passengers each day [4]. Satisfying passengers’
expectation about service quality and operators’ expectations
regarding economically viable return have been among the
main operational challenges of managing this massive transit
mode. These issues have been the focus of many research
efforts and many sophisticated solutions, with a special
focus on timetable optimization, have been proposed over
decades. Since the price of URT tickets and thus the passenger
fares do not change for short-term periods, the managerial
decisions are restricted and there is more focus on reducing
the operating costs. As studies on URT system operations
show, train moving operations consumes more than 50% of

total electrical energy during train operations [5]. However,
reducing energy consumption alone may lead to a timetable
with long travel times and thus diminish the service qual-
ity. Therefore, an operating timetable should consider both
passengers’ point of view and operators’ objectives. In this
regard, the New Haven line of the Metro-North Commuter
Railroad can be mentioned as a real-world case where mini-
mizing energy consumption in track alignment, speed limit,
and schedule adherence objectives are considered to satisty
passengers and operators expectations simultaneously [6].
In another effort, to obtain energy-efficient train operations
and distribute the total trip time among different sections, a
numerical algorithm is proposed in [7].

Since the impact of train speed on energy consumption
is significant, train energy consumption mainly depends on
the driving strategies and the operational timetable. Also, any
change in the train timetable can affect the operating costs,
including passenger travel times (costs) and ticket fares, and
thus the quality of transport services. The operating revenue
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and travel cost are sensitive to the duration of operations
defined in the timetable. This necessitates an integrated
model to plan train operations such that the operating
revenue and travel cost objectives are optimized. In this paper,
we present a biobjective timetable optimization model that
maximizes the operating revenue and minimizes passengers’
average travel cost, to optimize the (average) operating speed
of trains. To solve the optimization problem, we apply
a fuzzy multiobjective optimization and a nondominated
sorting genetic algorithm II. Next, using a case study from
Chengdu metro in China, we perform a numerical analysis
to characterize the behavior of the incompatible objectives
at different scenarios, to figure out dominating operational
strategies for improved and efficient train services.

The rest of this paper is organized as follows. The next
section provides a brief review of the relevant literature
on train speed and timetable optimization problems. In
Section 3, we analyze the passenger boarding behavior and
present our biobjective optimization model. In Section 4,
we apply a fuzzy multiobjective optimization method and
nondominated sorting genetic algorithm II to identify the
relationship between different decision variables and objec-
tive functions. In Section 5, a case study from Chengdu
metro in China is presented to verify the performance of the
proposed model. Finally, Section 6 comes with conclusions
and directions for future research.

2. Literature Review

To meet the unpredictable and varying operational require-
ments, timetable rescheduling is the most common practice
in URTs. This problem has been tackled from various theoret-
ical and operational perspectives by practitioners. From sav-
ing energy perspective, Zhou and Xu proposed a multitrain
coordinated operation optimization algorithm that considers
both the buffer time and safety constraints [8]. Miyatake
and Ko used three different methods, including dynamic
programming, gradient method, and sequential quadratic
programming, to solve the URT timetable rescheduling
problem for URT operations by optimizing energy con-
sumption [9]. Some studies have also investigated improving
multiple factors such as train movement profile, passenger
comfort, safety, and operation stability. For instance, Su
et al. considered timetable optimization and speed profiles
among successive stations for energy-efficient and optimized
train operations [7]. A stochastic optimization model is
proposed in [10] that redistributes the time supplements and
buffer times in a given timetable, to improve the safety and
operation stability of URT system. Assis and Milani analyzed
the evolution of train headways and train passenger loads
along URT lines and presented a methodology to optimize
train timetables in URT lines [11].

Regarding train operation costs and total passenger travel
time, Ghoseiri et al. and Chang et al. developed multiob-
jective optimization models for railways, to minimize fuel
costs and total travel times [12, 13]. Li et al. proposed a mul-
tiobjective train scheduling model by minimizing the train
energy and carbon emission costs as well as the total travel
time of passengers [14]. They applied a fuzzy multiobjective
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optimization algorithm to solve the model. Corman et al.
proposed an optimization model to generate timetables and
to effectively manage the traffic in real-time, which illustrated
the effects of changing trains’ speed profile in open corridors
[15]. Chevrier et al. introduced the speed profiles found by
the evolutionary algorithm produced by a set of solutions
optimizing both the running time and energy consumption,
which can be used to optimize the running of the trains [16].

The literature listed above mainly has focused on the
long-distance railways. In the URT system, there are similar
models to deal with the fuel costs reduction and travel-
time saving. A biobjective integer programming model with
headway time and dwell time control and a genetic algorithm
with binary encoding to find the optimal solution were
conducted in [17]. The idea of optimizing metro train speed
profiles was also applied to reduce energy consumption
[18]. A bilevel train scheduling optimization is proposed
in [19] that takes into account stop-skipping strategies and
the passenger travel time, and energy consumption gave the
origin-destination-dependent passenger demand.

To improve the quality of metro service and reduce pas-
senger costs, demand-sensitive orientation timetable models
were presented in [20]. Moreover, a bilevel demand-oriented
approach was applied to obtain a timetable for a suburban
railway [21]. Considering the passenger demands, transfers,
and passenger flow splitting, an event-driven train scheduling
model for a URT network was proposed in [22] that con-
cludes the nonfixed headway train schedules have a better
performance.

Though some researchers have focused on the train
timetable scheduling problem, few of them considered the
timetable scheduling problem from an operational efficiency
perspective and the concerns about the lower travel cost from
passengers’ side. This paper tries to fill this gap, proposing
a multiobjective optimization model considering operating
revenue and travel costs simultaneously.

3. Biobjective Optimization Model

3.1. Train Energy Consumption and Speed Analysis. Acceler-
ating, coasting, and braking are the main phases of a train
movement when performing running activities between suc-
cessive track sections [23]. One can ignore small variations in
train speed as the preventive maintenance of infrastructures
and facilities keeps the operational conditions at the required
level. With this simplifying assumption, train motion formula
can be described as shown in (1). In this equation, we consider
the basic line resistance, the track gauge, the maximum speed,
and the signal systems, for instance, but we do not consider
the curve and tunnel resistances.

= f ) )

)

dt 1

dx v
where a is the acceleration of train operation, v is the speed
of train operation, f is the time of train operation, f(v) is the

maximum unit traction of the train, y¢ is the coeflicient of
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the traction output ratio, and r(v) is the unit basic resistance
of the train; it indicates the basic resistance of trains under
unit weight, N/kN.

Using this formula, when a train runs in a section, the
relationship between energy consumption and the maximum
speed can be derived as follows:

max

El,. = Lml (4 f () - My) )

14
—d
W fm-rm"

where v/} is the optimal maximum speed of the train in
section i; it is not equal to the maximum speed limit of the
train in section i v}j}] < the maximum speed limit (the
maximum speed limit of subway trains is equal to 80 km/h in
China); M, is the weight of the train. Equation (3) is another
expression proposed by Gu et al, to calculate the energy
consumption of a train in a section from the perspective of

traction work [24].

lil,z’+1
Ez{,’i-f-l = L (‘uff OF MO) cx-dx 3)

More simplified formulations can be derived from (3) as
follows:

Lz
E = | (a0 M) - ax

11+1t1
L /Aff(v)-Mo)-x-dx

L (rf ) - My) vt v dt (4

xx+lt1 v
J;) [/‘ff(V)Mo)Vt;dV

v

Viirtl
= v)-My) vt ———— - dv
J, " (et ©-) RIOEAC)
there is r(v)/ f(v) = 0, because, in practice, r(v) is much
smaller than f(v) and yy = 1, when the train runs at the
accelerating phase in a section [24]. Therefore, (2) and (4) can

be reformulated into (5), given y ¢ f)—r(v) = f(v).
E;M = J - vM, dv
0
(5)
iivitl
E;’M = J vM, - vt - dv
0

In (4) and (5), llll .1 is the running distance of the train

at the accelerating phase in section i. We know that ll 1 =
V11t where v, ;. is the average running speed of the train in
section i; t is the quantity of the state that satisfies oAt = 0. It

refers to the time period when the speed of the train increases

25 ¢

=

—_—

20 -

10 -

Speed (m/s)

L L L 1

0 1 2 3 4 5 6 7 8 9
Section

10 11 12 13 14

FIGURE 1: The trend of polyline y, and polyline y,.

from v to v + oAv. After some calculation and simplification,
(5) can be further developed into

max

Viji+1 1 2
! max
Ei = Jo vM,dv = > (Vi,i+1) M,
" r,r+1tl 1 _ 3
Ejj= . VM, - vt - dv = 3 (Viisatr)” Mot
te [0’ ti,i+1] (6)
Vmax
] i+l 3
Ej=Ejn = . \j Vit 't = \/3 il
i,i+1
B = ;
il = constant;
t, = constant; t = oAt

Owing to the theoretical derivation of the mathematical
formula, we assume the correlation coefficient € between v}";

11+1
and v;,,,, to be
max max
Viier L Vi 1 @)
Viier € Vign €

We approximate the value of ¢ using train movement
data in track sections, including the optimal maximum
speed, average operating speed, and the relationship between
the optimal maximum speed and the average operating
speed [23]. The instance is shown in Figure 1, in which y,
represents the average operating speed while y, represents
the maximum operating speed and the correlation value & can
be calculated by (8). Given this, (2) can be transformed into
(9). Therefore, we get the relation between average speed and
energy consumption, but this relation has the range of validity
as follows.

(1) The object of the study must be urban rail transit sys-
tem; the maximum speed of trains should not exceed
80km/h. And considering the comfort of passengers,
the maximum train acceleration is restricted to 1 m/s*
and thze maximum train deceleration is constrained as
-1m/s”.



Journal of Advanced Transportation

Passenger change is A;

Train
- . [ | O mm O - o Track
Station 1 Station i-1 Station i \ Station i+1 Station J:—
) DO VO |
[ I )]
"0 5. |
arar | @D N
"o . |
anan i @MEREd |
9 o
“ aia
R
> dy(Ty) N;(1)

FIGURE 2: Schematic diagram for A;.

(2) The distance between the two stations is very short
(the distance between the two stations should be less
than 3 kilometers in principle); the train running in
the section only includes three phases: accelerating,
coasting, and braking, without cruising phase.

- 1 13 )/1 (X)
€—Exxz::1y2(x) (8)
Viir1/€ v
Ejj = L (upf ) - My) - m ~dv (9)

3.2. Description of Variables and Model Assumptions. We first
provide the definitions and assumptions used in this study
and then describe ticket pricing schemes in URT. We denote
the number of stations along a line by i, the headway between
successive trains in the same direction by T}, the operation
time of a train in a full day by T, and the running time of
a train in section i by t;,,,. Also, we set s; as the dwell time
of a train at station i, the passenger carrying capacity of a
train as D, the occupied rate of passenger carrying capacity
as §, the total length of the Metro line as L, and, finally, the
length of section i as [;;,,. Generally, two different kinds of
ticket pricing schemes are used in URT. The first one depends
on the train operating distance, and the second one depends
on the number of pass-through sections. In Chengdu Metro,
the latter method is applied for which the price of tickets can
be expressed by (10). In this equation (¢;,¢,,...,¢,) indicates
different ticket prices, where j — i to the number of sections
that passengers pass through.

[, 0<j-i<i
o L <j-i<i,

CiJ:‘c3 1, <J—1<13 (10)
L Cn in—1<j_iSin

Assuming that the number of passengers arriving at
station 7 during the time period [0,t) is N;(t), because the
passenger flow of line 4, phase 1 in Chengdu Metro is small,
and the stations are equipped with passenger volume control
measures to avoid congestion, that means we can use Poisson
distribution to describe the arrival of passengers. Therefore, it
satisfies the Poisson distribution with a distribution intensity
A;; we can express it by (11).

As the headway between two adjacent trains is T}, the
waiting time of most passengers would be less than T}, and
the number of passengers waiting for a specific approaching
train at station i is defined as N;(T}). In addition, some of the
passengers may choose to wait for the next train instead, if
they find the first arriving train too much crowded. Therefore,
we consider a passenger boarding rate x that equals the ratio
calculated by the number of boarding passengers divided
by N;(T}). We let the number of passengers traveling from
station i to station j (j > i) to be d{ (T,) and the number of
passengers traveling from station i’ (0 < i’ < i) to station i to
be d:(Tk). The variation in the number of passengers A; in the

train at station i, as illustrated in Figure 2, can be calculated
by (12).

N; (1) = At ()

i-1
A;=«kN;(t) = Y di (Ty) (12)
i'=1

If the energy consumption of a train in section i is
E;;;, and the total energy consumption of the train from
the original station to the terminal station is E,, then the
relationship between E, and E;;,, can be expressed in (13).
In this model, the power conversion rate is denoted by &, and
the electricity rate is denoted by #.

n-1
E, = ZEi,iH
i=1

The total number of passengers orientated from station
i in a day is N;(T;). Passengers’ value of time is V5, which

(13)
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can be represented by the local hourly average wage since the
Metro is running in the same city every day. The average travel
cost can be represented as follows:

Um = VOTTm + Cm T é&n (14)

where U,, is the generalized travel expenses of the Metro;
T, is the travel time, which is defined as the beginning of
passenger arrive at station i to the end of departure (the
passenger arrive at station j (j > i) and it is the time that
the train arrives at the station j (j > 1)), including the
waiting time and running time; C,, is the cost (ticket fares)
for passengers; ¢, is a set of random variables that related to
the travel cost, where ¢,, = ¢c;, and ¢ € [-10%, —5%] is the
influence coefficient.

3.3. Objective Functions and Constraints. The proposed
model aims to maximize the revenue while minimizing the
average travel costs of passengers. We assume that fixed costs
such as air conditioning and lighting are not considered. In
addition, we consider that the expenditure is mainly borne by
revenue and do not consider the government subsidy for the
cost of the subway, though some lines are subsidized by the
government, but, considering the generality, we assume that
the operating revenue is only derived from ticket sales; the
tickets sold to passengers can serve to represent the revenue
function. Therefore, the income equals the fare income minus
the sum of the operating costs and the train running energy
consumption. As a result, the operating revenue can be
represented by

In the same way, the average travel costs of passengers
can be expressed as the average travel costs per trip that
include the travel time and the ticket fare costs. We determine
the travel time costs based on the waiting time costs and
the transit time costs. Equation (16) represents the transit

time costs, In (16), d{(Tk) is the number of passengers
traveling from station i to station j (j > i). Zi,j(df (Ty,) -
(Zf_l(ll-)l-Jrl/Vi)iJrl +'s;) — sp)) is running time of passengers
from i station toj (j > i) station; for example, if i = 1,
j -1 - .

= 3, Zi)j(df(Tk) X U1 /95400 + s) — 51)) s equal to

3 — — 3 — —
dy(Ti)-(hp/ V15 + D3/ Va3 +5y)s the d () (L o /vy p + 1 3/ 5+
s,) represents the running time of passengers d(T},) from i
stationtoj (j > i) station. Therefore, V- Y| ¥ i +1(d] (Ty)-
Zf l(li)i +1/7Vii41 +8;) — s1)) represents the transit time costs.
Equation (17) represents the waiting time costs, in (17),
because the arrival of passengers conforms to the Poisson

T

distribution, so jo “ kAt dt express the total waiting time of
all pas;engers at station i within [0, T}]. Therefore, Vi -
"__11 JOkK/\it dt is the total waiting time of all waiting
passengers when the train is from starting station to terminal

station.
Considering the effects of the random variables ¢,,,, since

the ticket fare costs can be expressed by (18), in (18), cij
represents the fare from i station to j (j > i) station (see (10)).
¢ is a set of random variables related to the travel cost (see

(14)). (1 + </>)cij d{ (T}) represents the total fare of passengers
dJ(T;,) from i station to j (j > i) station. Z?:_ll Z;':i a1+
(p)cij d{ (T) represents the total fare of all passengers when the

nlbonooo E train is moving from starting station to terminal station.
max Z = Z Z ¢ -dl(T,) - ?71 15) Therefore, the average travel costs of passengers per trip
i=1 j=itl can be represented by (19).
n- Ly
U:n=V0T'Z Z (dl (Ty) - <Z<-”’—++Si>—sl>> (16)
i=1 jeir1 i\ Vii+l
w Tk
UY =Vor - ; L KAt dt 17)
-y 2 (1 g)qdl (1) (18)
i=1 j
i i—1 — n— T
VOT [Z Z] =i+1 (d1] (Ty) - (Zf (Liior [Dijr +5) = 51)) + Zi:ll fok KAt dt] Yo Z, i (1+¢) dej (T%) (19)

Zz 1 KN (Tk)

To guarantee the QoS and prevent the train from
extreme cases, the proposed multiobjective optimization
model should satisfy the following constraints.

(1) When the number of running trains per day is N, T
is the operation time of a train in a full day and the operating

Zz 1 KN (Tk)

speed of the train in the sections should satisfy the following
constraint:

(N-1T, + Z i Zs =T, (20)

i=1 "ii+1 i=1
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TABLE 1: Value of p corresponding to different distance calculation methods.

Value of p p=1 p=2 p =+00

The Meaning of Objective Function Manhattan distance Euclidean distance Chebyshev distance

Objective function model L = max(A, ¥, + A,y,)

L =max\(Ay,)* + (A,p,)°

L = max [max (A, v, 1,,)]

(2) The carrying capacity of the trains should meet the
following constraint as (21). In (21), A; represents the train
arriving at i station and the number of passengers getting
on the train minus the number of passengers getting off
the train. D6, ,, is the maximum carrying capacity of train,

.
s0 Y; A; < D8 ¥i' = (1,2,3,...,n — 1) means the
total number of passengers on the train can not exceed the

maximum carrying capacity of the train at any station.

YA, < DS

i

mae Vi =(1,2,3,...,n-1) (21)

(3) The minimum following distance and the following
maximum speed between two adjacent trains should satisty
the relations defined in (22). In (22), according to the
kinematics formula, we know that v, — v,* = 2as, v, is the
terminal velocity, v; is the Initial velocity, a is the acceleration,
and s is the distance. Assuming that the speed of the following
train is v;;}} and the speed of the preceding train is zero,
the maximum braking force of train is b, so the distance
L s between the adjacent trains should be satisfied to L >

max>

(vg;f;)z /2b,,.«> ensuring that there is no conflict between the

adjacent trains.

- ("?:i}i )2 (22)

4., Solution Approaches

4.1. Fuzzy Multiobjective Optimization Algorithm. A fuzzy
multiobjective optimization algorithm is used to optimize
trains’ operating speed. To reflect the preferences of decision-
makers regarding the objective functions, we have used
different weight coefficients to obtain a trade-off between the
expectations of decision-makers. The steps of the algorithm
are listed as follows.

Step 1. Transform the objective function Z into a standard
form, and let X = —Z, so that the objective function Z can be
converted to a minimization objective function X.

Step 2. Construct minimized ideal value vector G™" and
maximized inverse ideal value vector G™ of two objective
functions X and U,,, while satisfying all of the constraints, as
shown in

Gmin _ (Xmin, Umin)

Gmax — (Xmax’ U::llax)

(23)

where X™" and U™™" are the minimum value of the objective
functions X and U,,,, respectively, while X™** and U,)** are
the maximum value of the objective functions X and U,,,.

Step 3. Build membership functions y, and y, of two
objective functions X and U,,,, as shown in the following.

(1 X < x™in
max
Y1 = 7);}( X)“(‘i“ XX < xm™ (24)
0 X > X
(1 U<umn
Umax _ U .
27 Umz; {Umin Up" <U<U,™ (25)
m m
0 U U™

Step 4. According to the principle of the fuzzy multiobjec-
tive optimization algorithm, the multiobjective optimization
problem is transformed into the following single-objective
optimization problem, as shown in

L = max [(AIWI)p + (/\2‘//2)1)]1/? (26)

where L is the new objective function combining X and U,,,;
A; (i =1,2) > 0 with Zle A; = 1is the weight coefficient of
the original objective functions X and U,,. In (26), p is the
distance parameter.

Step 5. Change the value of A according to their preferences;
change the weight coefficients of the original objective func-
tions X and U, ; select different distance models by changing
the value of p; the decision makers can specify the value of
p according to different preferences which are corresponding
to different distance calculation methods, as shown in Table 1.

4.2. Nondominated Sorting Genetic Algorithm II (NSGA-II).
The NSGA-II algorithm is improved based on the original
NSGA algorithm, and a fast nondominated sorting method
is proposed to cope with the complexity issue [25]. The
NSGA algorithm uses the congestion comparison operator
and does require specifying the shared parameters. Also,
the introduction of elite strategy and the expanding of
the sampling space allows the parents and their offspring
participate in the competition to produce the next generation
of the population to generate better offspring.

(1) Dominance and Noninferior. In the multiobjective opti-
mization problem, if all the targets of the individual p are
not worse than individual g and there is at least one target
of the individual p which is better than that of the individual
¢> then we say that p dominates g, and it also implies that p is
noninferior to q.

(2) Rank and Front. If p dominates g, then the order value of
p is lower than g; otherwise, if p and g do not dominate each
other, or if p and g are noninferior to each other, then p and g
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Initialize the

population

v

Non-domination sorting and
congestion calculation

Selection, crossover,
mutation

v

Population consolidation

v

Non-domination sorting and

congestion calculation

v

Generate new population

Gen=Gen+1

Genc< set value?

FI1GURE 3: The framework of the NSGA-IT algorithm.

have the same order value. An individual with the order value
of 1 belongs to the first front, while the individual with the
order value of 2 belongs to the second front. With the current
population, the first front is completely unobstructed, and the
second front is dominated by the individuals which are in the
first front. In this way, all the individuals in the population are
assigned to different fronts.

(3) Crowding Distance. Through step (2), we know that if p
and g are noninferior to each other, then p and g have the
same order value; it means p and ¢ in the same front. The
crowding distance is used to calculate the distance between
the individuals (p and gq) in the same front, and it can be used
to characterize the degree of crowding between individuals.
The greater the crowded distance is, the less crowded is,
and the better the diversity of the population is. As the
crowded distance is used to calculate the distance between
the individuals (p and g) in the same front, the greater the
crowded distance is, the smaller the number of individuals
distributed at the same front is and the greater the total fronts
are because the population size is fixed. In this case, we call
the better the diversity of the population is. For example, we

assume that the population size is 500; case 1 is as follows: all
individuals are distributed at three fronts; case 2 is as follows:
all individuals are distributed at four fronts, so we can say that
the population diversity of case 2 is better than that of case 1.

(4) Optimal Front Individual ParetoFraction. The optimal
front individual ParetoFraction is defined as the proportion
(ranges from 0 to 1) of the individuals in the optimal front
(Pareto front) in the population. In other words, it is the
Pareto front that is equal to the minimal value between
ParetoFraction multiplied by the population size and the
number of existing individuals in the front. For example, we
assume that the population size is 500 and the generations
is 100, because the optimal front individual ParetoFraction is
defined as the proportion (ranges from 0 to 1); we assume it
equals 0.3, so the optimal front equals 150. But considering
that the population has to iterate to generate new populations,
after 100 iterations, the number of existing individuals in the
front is 100. According to the rules, we know that the Pareto
front = min(150, 100), so the Pareto front =100.

In summary, the framework of the proposed NSGA-II
algorithm is shown in Figure 3, in which “Gen” is the counter
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TABLE 2: Basic information of line 4, phase 1 in Chengdu Metro.

Station ID M1 M2 M3 M4 M5 M6 M7 M8
Dwelling Time/s 25 25 25 25 25 30 25 25
Section Length/m 2585 2140 1887 2150 171 985 900 1166
Operation Time/s 154 138 108 139 74 72 67 84
Station ID M9 MI10 Mil M12 Mi13 Mi14 Mi15 Mi6
Dwelling Time/s 30 30 30 30 30 30 25 25
Section Length/m 972 1537 1140 750 1630 1560 820

Operation Time/s 71 113 83 61 105 101 64

TABLE 3: Other parameters used in the model.

K ¢ Vor/(CNY/h) M,/kg £ n/CNY/(kw-h) O rnax
0.98 -10% 25.63 196000 0.95 1 1.2

of the number of generations, population consolidation is
that selection, crossover, and mutation of the previous popu-
lation; we can get the new population, through the nondom-
inant relationship and the crowding degree of individuals;
we can get suitable individuals of the new population, and
the suitable individuals are selected to form a new paternal
population and then continue to produce new offspring
population. Congestion calculation is the calculation of the
density of a given individual and its surrounding individuals
in a population.

5. Numerical Experiments

5.1. Numerical Experiments Setup. For the numerical experi-
ment, the URT line 4 of phase 1 in Chengdu Metro is studied
to show the effect of using optimal train operating speed

|

203
—0.002032v + 0.49281% — 42

max

166

max

w, = 2.031 +0.0622v + 0.001807+*

The daily passenger flow of the metro line is depicted
in Figure 5. The node of the polyline “passenger flow of
MI” represents the passenger flow from MI to any other
succeeding stations, and the other 14 polylines have the same
functions with the polyline “passenger flow of M1”.

Finally, given the number of sections that the passengers
pass through, the price of tickets in Chengdu Metro is listed
as follows:

0<j-i<6
6<j-i<10
10<j-i<16
16<j-i<24

(30)

(S e " I \S)

obtained by the proposed model. It has 16 stations, which
are numbered from M1 to M16; the basic information of this
line, including the length of the sections, the travel time, and
dwell times, respectively, for each section and at each station,
is provided in Table 2. The operation hour of the trains is from
6:30 to 22:30, the headway is 3 minutes in peak hours and
it is 5 minutes in nonpeak hours; the maximum operating
speed is 80km/h. Considering the comfort of passengers, the
maximum train acceleration is restricted to 1 m/s* and the
maximum train deceleration is constrained as -1 m/s’. Finally,
both the headway between two adjacent trains and the turn-
back-time are set as 300s, and other parameters are listed in
Table 3.

Also, the empirical train traction characteristic curve
and running characteristic resistance curve corresponding to
(27), (28), and (29) are shown in Figure 4 [26].

0 <v<51l.5km/h

0.1343v* — 25.07v + 1300 77 < v < 80 km/h

(27)
13v+ 1343 515 < v < 80km/h
0<v<77km/h
(28)
(29)

5.2. Results of the Fuzzy Multi-Objective Optimization Algo-
rithm. We use MATLAB to implement the proposed opti-
mization algorithm to obtain the optimal train operating
speed in every section under different input weight and
distance parameters, as shown in Table 4. The optimization
results show that when the weight of the operating revenue is
as important as the average travel cost of the passengers in the
objective function (i.e,, A; = A, = 0.5), the optimal speed (V)
is 18.3m/s. In that case, the maximum revenue of the Metro
company (Z) is 491.50 CNY per train, and the average travel
costs of the passengers (U,,,) are 9.13 CNY with the distance
parameter (p) being equal to 1 or 2.

When the operating revenue of the Metro company is
more important than the average travel cost of the passengers
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TABLE 4: The objective function values and the respective optimal train operating speed obtained by the fuzzy multiobjective optimization

algorithm.
Value of p Value of (A, 1,) v (m/s) Z (CNY/train) U,, (CNY/train)
(0.0,1.0) 18.3 491.50 9.13
(0.2,0.8) 18.3 491.50 9.13
(0.4,0.6) 18.3 491.50 9.13
p=1 (0.5,0.5) 18.3 491.50 9.13
(0.6,0.4) 18.3 491.50 9.13
(0.8,0.2) 18.3 491.50 9.13
(1.0,0.0) 11.5 578.60 10.77
(0.0,1.0) 18.3 491.50 9.13
(0.2,0.8) 18.3 491.50 9.13
(0.4,0.6) 18.3 491.50 9.13
p=2 (0.5,0.5) 18.3 491.50 9.13
(0.6,0.4) 18.3 491.50 9.13
(0.8,0.2) 115 578.60 10.77
(1.0,0.0) 11.5 578.60 10.77
(0.0,1.0) 18.3 491.50 9.13
(0.2,0.8) 115 578.60 10.77
(0.4,0.6) 115 578.60 10.77
p=+00 (0.5,0.5) 115 578.60 10.77
(0.6,0.4) 115 578.60 10.77
(0.8,0.2) 115 578.60 10.77
(1.0,0.0) 1.5 578.60 10.77
Note: because the optimization result shows that v, , = v, 3 =¥, ;,; ... = V514, then we use v to express average train operating speed in every section.
250 5.3. Results of the Nondominated Sorting Genetic Algorithm
II. We use the “gamultiobj” built-in function in MATLAB to
200 F | solve our biobjective model with the NSGA-II algorithm. For
this case, our parameters are tuned as follows: ParetoFraction
= 0.3, population size = 100, generations = 200, “stall Gen
Z 150 The traction characteristic curve 1 Limit” = 200, and “Tol Fun” = 0.01 in the options of function
% """"" Running resistance characteristic curve gaoptimset. Here, “ParetoFraction” is the optimal individual
E 100l .coefﬁ.cient, “stall Gen lelt is the generation of stopping
iteration, and “Tol Fun” is the error of fitness function.
Figure 6 depicts the Pareto-frontier solutions, in which objec-
50 t 1 tive 1 means —Z and objective 2 represents U,,,. It presents the
Pareto solutions based on NSGA-II algorithm, showing the
P e ‘ . 100 sets of data of ¥, min(-Z), and minU,,, including two

0 10 20 30 40 50 60 70 80
Speed (km/h)

FIGURE 4: The traction characteristic curve and running character-
istic resistance curve.

in the objective function (i.e, A; = 08,1, = 02,1, =
1.0, A, = 0), the optimal train operating speed (V) is
approximately 11.5m/s. In that case, the maximum revenue
of the Metro company (Z) is about 578.60 CNY per train,
and the average travel costs of the passengers (U,,,) are almost
10.77 CNY. These results imply that the maximum operating
revenue is positively related to the optimal speed while the
average travel costs of the passengers are negatively correlated
with the optimal train operating speed.

extreme optimization results. It can be concluded that (v =
11.50, Z =578.60, U,, = 10.77) is the best optimal solution
from the viewpoint of the company while (v = 18.30, Z =
491.54, U,, = 9.13) is the best optimal solution from the
viewpoint of the passengers. The specific optimization results
based on NSGA-II algorithm are shown in Table 7.

5.4. A Comparative Analysis of the Optimization Algorithms.
The fuzzy multiobjective optimization algorithm is to obtain
the optimal operating speed by changing the weight and dis-
tance parameters in the objective function, so the subjective
intention of this algorithm is very significant, and the result
will be affected easily by the coefficient values of objective
functions, as shown in Table 4. Because of the significant
differences in the values of those two objective functions, the
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FIGURE 5: The daily passenger flow of line 4, phase 1 of Chengdu Metro (Source: The ACC office of Chengdu Metro).
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FIGURE 6: The Pareto solutions obtained by the NSGA-II algorithm.

optimization results thus do not change after increasing the
weight of the first objective function.

The relationship between average speed and energy con-
sumption is as shown in Figure 7, which indicates that opera-
tion energy consumption is increasing with the increasing of
average speed.

The optimization results of the NSGA-II algorithm, as
shown in Figure 8, indicate that the higher operating speed
benefits the passengers more, and lower operating speed
benefits the metro operating company more.

5.5. Comprehensive Analysis of the Optimized Timetable. The
duration of the running cycle in the current timetable is 3,938
seconds, and the absolute error of total travel time variations
between the current timetable and the optimized timetable
is restricted to £120 seconds. The travel time of the current
timetable (CUT), the optimized timetable with the operating
speed benefitting the company (OTC), and the optimized

timetable with the operating speed benefitting the passengers
(OTP) respectively are presented in Figure 9. Tables 5 and 6
present the timetable of OTC and OTP.

The optimization results indicate that the operating rev-
enue (Z) in CUT, OTC, and OTP is 536.52 CNY, 544.32 CNY,
and 52773 CNY, respectively. The average travel costs of the
passengers (U,,,) in CUT, OTC, and OTP are 9.70 CNY, 9.84
CNY, and 9.56 CNY, respectively. Comparing with the OTC
and CUT, the revenue is increased by 1.45%, and the average
energy consumption of each train in sections is reduced
by 7.88%. Considering maximizing operating revenue, we
conclude that the OTC performs better than the current one
CUT and OTP.

5.6. The Sensitivity of the Main Parameters. In order to
research the relationship between the main parameters and
decision variables ¥;;,, in the model, we analyzed the sen-
sitivity of the main parameters (the electricity rate # and
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FIGURE 7: The relationship between the average speed and energy consumption.
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FIGURE 8: The trade-off between the objective functions and the train average operating speed in the sections.
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FIGURE 9: Comparison between the optimized timetable and the current timetable.
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TaBLE 5: The optimized timetable of OTC.
Down M1 M2 M3 M4 M5 Mo M7 M8
Dwell (s) - 25 25 25 25 30 25 25
Arrival(s) - 161 330 469 639 741 846 941
Departure(s) 0 186 355 494 664 771 871 966
M9 MI10 M1l MI2 Mi3 Mi14 M15 Mi6
Dwell (s) 30 30 30 30 30 30 25 -
Arrival(s) 1053 1158 1304 1420 1513 1652 1788 1879
Departure(s) 1083 1188 1334 1450 1543 1682 1813 -
UP Mieé Ml15 Mi4 Mi3 Mi12 M1 MI10 M9
Dwell time(s) - 25 30 30 30 30 30 30
Arrival(s) - 2245 2376 2515 2608 2724 2870 2975
Departure(s) 2179 2270 2406 2545 2638 2754 2900 3005
M8 M7 M6 M5 M4 M3 M2 Ml
Dwell (s) 25 25 30 25 25 25 25 -
Arrival(s) 3092 3187 3287 3394 3564 3703 3872 4058
Departure(s) 3117 3212 3317 3419 3589 3728 3897 -
TABLE 6: The optimized timetable of OTP.
Down M1 M2 M3 M4 M5 M6 M7 M8
Dwell (s) - 25 25 25 25 30 25 25
Arrival(s) - 147 304 431 589 685 784 873
Departure(s) 0 172 329 456 614 715 809 898
M9 MI10 Mil Mi2 M13 Mi4 M15 Mie6
Dwell (s) 30 30 30 30 30 30 25 -
Arrival(s) 979 1076 1216 1326 1415 1546 1672 1759
Departure(s) 1009 1106 1246 1356 1445 1576 1697 -
UP Mi6 M15 Mi14 Mi13 Mi12 M1 M10 M9
Dwell time(s) - 25 30 30 30 30 30 30
Arrival(s) - 2121 2242 2373 2462 2572 2712 2809
Departure(s) 2059 2146 2272 2403 2492 2602 2742 2839
M8 M7 Mo M5 M4 M3 M2 M1
Dwell (s) 25 25 30 25 25 25 25 -
Arrival(s) 2920 3009 3103 3204 3362 3489 3646 3818
Departure(s) 2945 3034 3133 3229 3387 3514 3671 -

passengers’ value of time V{;;) affecting train running costs
and passengers’ average travel cost in the model. Assuming
the sensitivity range of # is 0.5-1.5 CNY/(kw - h), the step
length is 0.1 CNY/(kw - h), and the sensitivity range of Vi1
is 18-30 CNY/h, the step length is 1 CNY/h. Therefore, we
get the relationship between the two parameters and decision
variables v, ;,; under different weights at p = 1, as shown in
Figure 10.

The train average operating speed in the sections
decreases with the increase of the electricity rate x and
decreases with the increase of A, when the electricity rate
is greater than 1.3 CNY/(kw - h). Also, the train average oper-
ating speed in the sections increases with the increase of pas-
sengers value of time V5 and increases with the decrease of
A, when passengers’ value of time Vi is less than 23 CNY/h.

6. Conclusions

In this paper, we proposed a biobjective mathematical model
to find an improved timetable by optimizing the average
train operating speed in sections. The objectives are to
maximize the revenue of the system planner who operates
trains while trying to minimize the average travel costs of the
passengers. The optimization model observes the actual pas-
sengers boarding rate to satisfy the operational requirements.
Also, the paper studies the trade-off between the maximum
running speed and the average train operating speed in
sections based on the identified parameters and decision
variables. In the solution process, the fuzzy multiobjective
optimization algorithm is adopted as an effective method
for the optimization model. Moreover, we also presented
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TABLE 7: The optimization results based on NSGA-II algorithm.
v min(-2) minU, v min(-2) minU,, v min(-2) minU,, v min(-Z2) minU,,
11.50 -578.60 10.77 16.67 -516.00 9.40 17.29 -506.88 9.29 15.76 -528.74 9.58
18.30 -491.54 9.13 13.42 -558.03 10.14 11.73 -576.25 10.68 13.53 -556.77 10.11
18.30 -491.54 9.13 15.45 -532.82 9.64 14.03 -550.82 9.98 12.48 -568.53 10.43
12.70 -566.12 10.36 11.78 -575.84 10.67 16.29 -521.35 9.47 16.11 -523.93 9.51
14.02 -550.90 9.98 17.85 -498.48 9.20 14.53 -544.73 9.85 13.80 -553.56 10.04
16.95 -511.95 9.35 18.22 -492.76 9.14 15.24 -535.67 9.69 14.85 -540.71 9.78
11.50 -578.60 10.77 15.09 -537.54 9.72 12.09 -572.61 10.56 16.22 -522.29 9.49
11.86 -575.00 10.64 16.40 -519.83 9.45 12.30 -570.44 10.49 16.92 -512.42 9.36
15.30 -534.80 9.68 12.19 -571.59 10.52 12.35 -569.87 10.47 13.96 -551.73 10.00
18.09 -494.74 9.16 1722 -507.98 9.31 15.16 -536.70 9.71 17.60 -502.37 9.24
16.33 -520.82 9.47 12.81 -564.87 10.32 14.10 -549.96 9.96 15.58 -531.07 9.62
12.02 -573.29 10.58 12.51 -568.17 10.42 11.98 -573.79 10.60 16.06 -524.62 9.52
13.90  -552.45 10.01 17.77 -499.67 9.21 14.60 -543.87 9.84 1753 -503.37 9.25
1426 -548.05 9.92 11.63 -577.30 10.72 12.86 -564.40 10.31 13.84 -553.12 10.03
15.71 -529.34 9.59 16.80 -514.11 9.38 17.45 -504.56 9.27 15.39 -533.69 9.66
1734 -506.26 9.29 17.96 -496.86 9.18 13.58 -556.17 10.10 13.65 -555.37 10.08
14.81 -541.15 9.79 15.80 -528.17 9.57 14.75 -541.91 9.80 11.89 -574.69 10.63
16.88 -512.92 9.36 14.92 -539.80 9.76 11.55 -578.15 10.75 13.24 -560.09 10.19
12.73 -565.75 10.34 16.58 -517.35 9.42 15.49 -532.25 9.63 13.01 -562.66 10.26
14.70 -542.51 9.81 14.43 -545.89 9.87 11.67 -576.93 10.71 16.80 -514.11 9.38
17.07 -510.20 9.33 14.20 -548.74 9.93 14.33 -547.20 9.90 15.03 -538.32 9.73
13.06  -562.17 10.25 16.48 -518.74 9.44 12.40 -569.32 10.45 18.29 -491.66 9.13
11.59 -577.75 10.74 1717 -508.79 9.32 13.15 -561.09 10.22 15.16 -536.60 9.71
14.33 -54718 9.90 17.66 -501.37 9.23 13.75 -554.23 10.05 17.08 -510.08 9.33
1278  -565.24 10.33 12.26 -570.86 10.50 12.12 -572.28 10.55 14.47 -545.49 9.87
30 15
29 — (0208) \ 14
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FIGURE 10: The trade-off between the main parameters and the train average operating speed in the sections.

the nondominated sorting genetic algorithm II that seeks
the relationship between decision variables and objective
functions. Both algorithms can effectively reduce the effort
to obtain acceptable solutions. As a case study, the numerical

experiments of Chengdu Metro showed that higher operating
speed benefits passengers more, while lower operating speed
benefits the operating company more. Comparing with the
OTC that obtained by the proposed model and algorithms
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and CUT, the OTC performs better than the current one CUT
as the revenue is increased by 1.45% and the average operating
energy consumption of each train in sections is reduced
by 7.88%. To satisfy the more operational requirements, we
will further strengthen the proposed model to integrate the
timetable optimization and other practical constraints.

Appendix
See Table 7.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. (1) We present a biobjective timetable optimiza-
tion model to make a balance between the operating rev-
enue of the railway company and average travel cost of
passengers. (2) We apply a fuzzy multiobjective optimization
and a nondominated sorting genetic algorithm II to solve
the optimization problem. (3) We characterize the trade-oft
between the conflicting objective functions under different
types of travel distances.
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