
Citation: Silva-Cancino, N.; Salazar,

F.; Sanz-Ramos, M.; Bladé, E. A

Machine Learning-Based Surrogate

Model for the Identification of Risk

Zones Due to Off-Stream Reservoir

Failure. Water 2022, 14, 2416.

https://doi.org/10.3390/w14152416

Academic Editor: Roohollah Noori

Received: 27 June 2022

Accepted: 27 July 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A Machine Learning-Based Surrogate Model for the
Identification of Risk Zones Due to Off-Stream
Reservoir Failure
Nathalia Silva-Cancino 1,* , Fernando Salazar 1,2 , Marcos Sanz-Ramos 2 and Ernest Bladé 2

1 International Centre for Numerical Methods in Engineering (CIMNE), 08034 Barcelona, Spain
2 Flumen Institute, Universitat Politècnica de Catalunya (UPC BarcelonaTech)—International Centre for

Numerical Methods in Engineering (CIMNE), 08034 Barcelona, Spain
* Correspondence: nsilva@cimne.upc.edu

Abstract: Approximately 70,000 Spanish off-stream reservoirs, many of them irrigation ponds, need
to be evaluated in terms of their potential hazard to comply with the new national Regulation of the
Hydraulic Public Domain. This requires a great engineering effort to evaluate different scenarios with
two-dimensional hydraulic models, for which many owners lack the necessary resources. This work
presents a simplified methodology based on machine learning to identify risk zones at any point in
the vicinity of an off-stream reservoir without the need to elaborate and run full two-dimensional
hydraulic models. A predictive model based on random forest was created from datasets including the
results of synthetic cases computed with an automatic tool based on the two-dimensional numerical
software Iber. Once fitted, the model provided an estimate on the potential hazard considering
the physical characteristics of the structure, the surrounding terrain and the vulnerable locations.
Two approaches were compared for balancing the dataset: the synthetic minority oversampling
and the random undersampling. Results from the random forest model adjusted with the random
undersampling technique showed to be useful for the estimation of risk zones. On a real application
test the simplified method achieved 91% accuracy.

Keywords: machine learning; Iber; off-stream reservoirs; dam breach; floods; random forest;
surrogate model

1. Introduction

Off-stream reservoirs are essential structures for the regulation and supply of water.
In contrast to dams, they are not usually affected by surface runoff, which results in higher
hydrological safety. Nonetheless, many of these structures are located in high elevations,
near to urban areas and important infrastructure that can be affected in case of failure.

With the modification of the Spanish Regulation of the Hydraulic Public Domain
derived from the Royal Decree 9/2008 [1], the potential hazard of off-stream reservoirs
higher than 5 m or with volume storage above 100,000 m3 must be evaluated with the same
procedure as for large dams (higher than 15 m or with more than 100,000 m3 of capacity).
This means that around 70,000 off-stream reservoirs currently in operation in Spain [2]
need to be assessed on the potential hazard due to failure.

The Spanish Technical Guide for dam classification based on potential hazard [3],
hereinafter the “Technical Guide”, lists the recommended methods to analyse the dam
breach formation and flood propagation. Three categories are described in the Technical
Guide, namely A, B and C, from higher to lower potential hazard. The classification
process involves two main steps: (a) identification of the relevant elements potentially
affected (e.g., households, roads) and (b) generation of the flood maps. This is generally
performed through the application of two-dimensional (2D) hydraulic models that consider
the hydraulic characteristics of the flow propagation downstream of the dam breach and
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provide results in terms of maximum depths and velocities, allowing for the identification
of the flooded area [4].

The complete method, which involves hydraulic 2D models, is recommended to repro-
duce the breach formation, the failure hydrograph and the flood propagation. Currently,
different software tools meet the requirements of this method, such as the National Weather
Service Dam-break Flood Forecasting Model (NWS DAMBRK) [5], the Simplified Dam-
Break model (SMPDBK) [6], and Iber [7], among others [4]. The results of the hydraulic
model are the basis for evaluating the affections to the zones of interest. Simplified methods
are also accepted if the classification of the structure is obvious.

The necessary work to make a complete and accurate classification assessment of the
potential hazard requires engineering knowledge and resources often unavailable for many
owners. In addition, the administration responsible for the review and approval of the clas-
sification assessments and emergency plans requires relevant time and human resources.

Despite the increasing growth in the exploitation of off-stream reservoirs and the need
for safety analyses, few studies have been published on their potential hazard. Soler et al. [8]
analysed the effect of using 1D or 2D models for flood propagation in case of failure. Two-
dimensional models were more accurate for the simulation of free surface flows, allowing
for a better classification of the structure. Espejo [9] characterized the hydraulics of off-
stream reservoir failures by defining the storage factor to facilitate the selection of the
empirical formulas for computing breach parameters (width and formation time). Hence,
the hydraulic operation regarding the breaching of the off-stream reservoir is projected
based on the height and volume of the reservoir, in terms of the probability of occurrence
of a specific flow discharge. Additionally, a cartographic representation of the areas most
likely to be affected was created using 5000 simulations of synthetic scenarios and stochastic
analysis (Monte Carlo approach). Hori et al. [10] developed a disaster prevention support
system for irrigation ponds in Japan after the failure of many off-stream reservoirs due to
an earthquake in 2011. The system allows for determining the risk in heavy rain scenarios
and calculating inundation areas in case of failure. Sánchez-Romero et al. [11] explained in
detail the process of generating flood maps due to the failure of off-stream reservoirs using
FLDWAV and Iber for two piping and overtopping. The results showed smaller peak flows
in overtopping failure, although the discharge volumes are larger than those produced
by piping.

The development of simplified tools for analysing the consequences of dam breach
has been a topic of increasing interest in the last years. Different methodologies have been
proposed, most of which are based on Geographic Information System (GIS) tools. Cannata
and Marzocchi [12] developed a GIS-embedded approach to derive maximum flooding
maps based on elevation raster maps. The tool solves the 2D shallow-water equations using
a finite volume method and achieved 75% accuracy as compared to the official flooding
map of an existing dam. In addition, Albano et al. [13] implemented a GIS-based method
to delineate flood-prone areas in case of dam break. A set of cross-sections are created over
a digital elevation model (DEM) along the downstream river reach, and the maximum
discharge, elevation and time are computed with a 1D unsteady flow solver. The tool
achieved an accuracy of 86% with respect to maps generated with a 2D model.

In parallel, some authors applied machine learning (ML) techniques for simplifying
dam breaching and dam safety analysis. Hooshyaripor et al. [14] proposed an artificial
neural network model (ANN) to predict the peak discharge due to breaching of embank-
ment dams using a dataset with 93 failures. The results showed that the method is not
applicable for peak outflows lower than 100 m3/s due to the small size of the dataset. In
another study, Hooshyaripor et al. [15] reported higher accuracy on a synthetic dataset
generated by means of copulas based on the independent relationship between height
and volume of water in the reservoirs. ML algorithms have also been applied to other
dam safety problems, such as the prediction of dam behaviour [16,17], the detection of
anomalies [18–20] based on monitoring data, or the prediction of flood maps [21,22].
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The aim of this work is to present a methodology based on ML to estimate the potential
affection in case of failure of an off-stream reservoir on any location in the surrounding
area without the need of running a detailed 2D hydraulic model. The information required
includes 10 parameters related to the geometry of the reservoir, the roughness and slope
of the terrain and the relative location of the potentially affected elements. The required—
large—dataset to fit the model is created with the results of synthetic cases generated using
a tool based on Iber [7,23] and Latin Hypercube Sampling (LHS) [24].

The paper is organised as follows: first, the methods used are explained in Section 2,
including the automated generation and parametrization of synthetic cases for construc-
tion of the database, the ML algorithms, and their calibration and validation; results are
presented in Section 3; application to a real case is shown in Section 4. Section 5 includes
the discussion, while conclusions are summarized in Section 6.

2. Methods

The ML models were fitted using synthetic data generated by means of complete 2D
hydraulic models developed in Iber. The steps included in the overall workflow are:

1. Parametrization of the physical variables of the structure and the surrounding terrain.
2. Design and generation of synthetic cases.
3. Automation of Iber for computing breach formation and flood propagation and for

extracting the results of each synthetic case.
4. Generation of the dataset and classification of the results based on the criteria estab-

lished in the Spanish Regulation [1].
5. Training, calibration and performance assessment of a ML classification model.
6. Validation of the ML model and analysis of the results.

2.1. Data Generation

The synthetic cases were defined based on ten parameters shown in Figure 1. The
length of the domain is 4000 m (LA), and the width is 1500 m (WA), with three sections: A,
B and C (Figure 1a). The default maximum top elevation (Et) is 505 m for all cases. The
off-stream reservoir is located in Section A (brown area) and has the highest elevation.
The location of the off-stream reservoir can vary along the y-axis. Section B represents a
transition zone between the off-stream reservoir and section C with a longitudinal slope (SlB)
between 0% and 1% and no transversal slope. In section C, a main channel is assumed to
exist at the origin of the y-axis (y = 0) with a rectangular shape (cyan area). The area outside
the channel has a given constant transversal slope (St) leading the flow into the channel.
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Table 1 shows the parameters with their symbols and ranges of variation. For cases
without a defined channel (Wc = 0), the geometry was designed to convey the water flow
towards the centre of the terrain based on the transversal slope in section C.

Table 1. Geometry parameters and ranges of variation.

Parameter Symbol Unit. Min. Max.

Breach location concerning the axis of the
main channel Bl m −750 750

Off-stream reservoir width Wr m 50 250
Off-stream reservoir length Lr m 60 550
Off-stream reservoir height Hr m 5 15

Width preferred channel Wc m 0 10
Transversal slope St % 0 2

Longitudinal slope section C Slc % 0.1 10
Longitudinal slope section B Slb % 0 1

Depth preferred channel Hc m 0 2
Length section B LB m 10 500

A design of experiment (DoE) technique based on Latin hypercube sampling (LHS)
was applied for generating the combination of parameters for each synthetic case. LHS is a
statistical method for sampling that ensures that the distribution of each input parameter is
fully represented using all areas of the sample space. LHS allows fewer simulations to be
performed while obtaining similar precision and lower variance than other methods such
as random sampling, which does not take into account the previously generated sample
points [24,25].

Two sets of samples were generated with LHS. In the first 50 samples, no main channel
was defined, i.e., Hc = 0 and Wc = 0. This dataset accounts for cases in which no clear flow
path exists in the vicinity of the off-stream reservoir. In the other 150 samples, all parameters
were equally sampled along their range of variation, always using uniform distributions.

For each combination of parameters, the geometry was generated by means of a list of
points with xyz coordinates. In section A, the separation between points is from 5 to 40 m
in the x-axis, depending on the length of the off-stream reservoir, and 5 m in the y-axis. For
sections B and C, the separation is 20 m for both axes, except on the main channel, where
the separation is 0.5 m in the y-axis. For section A, the off-stream reservoir needed more
detail for the estimation of the breach.

The breach is placed at half the width of the reservoir and starts at the crest. The
storage volume in the reservoir is approximated using the volume equation of a trapezoidal
prism with Hr, Wr and Lr dimensions.

For the extraction of results, 200 points (or gauges) were considered for each case as
vulnerable locations. They are situated at random in the area where the flood is expected to
affect, i.e., close to the reservoir, the breach axis and the channel axis. More precisely, the
location of the gauges was parametrized on the basis of three variables (Figure 2). Dresx
is the distance to the off-stream reservoir embankment (location of the breach) along the
x-axis, Dresy is the distance to the breach axis, and Dchannely is the distance to the main
channel axis. The values for Dresy and Dchannely vary from −750 to 750 and for Dresx from
60 to 3950.
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Figure 2. Scheme location of gauges (blue points) and parametrization relative to the off-stream
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2.2. Automation in Iber

Iber is a 2D numerical tool for modelling hydrodynamic and sediment transport [7,23],
which currently includes additional calculation modules for simulating hydrological pro-
cesses [26,27], pollutant propagation [28], large-wood transport [29], physical habitat suit-
ability assessment [30] and dam and off-stream reservoir breach formation [31–33]. Iber
uses the finite volume method to solve the 2D depth average shallow water equations
and is integrated in the pre- and post-processing interface of GiD, a software for defini-
tion, meshing and results visualization of numerical models [31,34]. Additionally, Iber
calculations can be accelerated using graphical processing units (GPUs) [35].

A tool in Iber was developed to automate the process of model generation and results
extraction. With this tool, the information regarding the geometry, breach parameters and
gauges for each synthetic case is read, and the roughness of the model is assigned. Six
land use types were considered: 0.020, 0.025, 0.032, 0.050, 0.080 and 0.120 s/m1/3. Each
synthetic case is computed with six different Manning coefficients, resulting in 1200 models
(200 × 6). Then, the mesh is generated, the models are run and the results exported in CSV
format: depth (h), specific discharge in x (qx) and specific discharge in y (qy) every 300 s for
each gauge.

The total calculation time was set at 16,000 s. It was obtained from an estimated
average velocity of 0.25 m/s to ensure that the flood wave propagation over the entire area
is computed.

2.3. Definition of Hazard

The Spanish Regulation 9/2008 in its article 9 (2) states that a hazard to human life
is considered to exist when the depth of water is 1 m or more, the velocity is 1 m/s or
more, or the product of depth and velocity is 0.5 m2/s or more [1]. Therefore, two classes
were defined: class 0 when none of the three criteria are met and class 1 when one or more
criteria are true.

2.4. Machine Learning

The main goal of ML models is to reproduce the response of a system for unseen
scenarios based on patterns previously identified from a typically large database (training
set). The accuracy of an ML model is typically evaluated on a dataset not used for model
fitting (test set).

There are two types of ML supervised models according to the type of output. Numer-
ical responses are predicted with regression, while categorical outcomes are estimated with
classification models.
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In this work, supervised classification models were used, because the output is cate-
gorical (class 0 or class 1 as described in Section 2.3). Among the available ML classification
algorithms, random forests (RF) was chosen for this work because: (a) it showed to be
useful and easy to implement in previous works [19,36]; (b) it outperformed other classifi-
cation algorithms in a comprehensive comparative analysis [37,38]; (c) the application of
RF models has increased in water engineering due to their high accuracy, flexibility and
possibilities for interpretation [37–39].

2.4.1. Random Forest

An RF model is a combination of a large number of decision trees, each of which is
bootstrapped to a random sample taken from the training set. The bootstrapping involves
resampling the data with replacements, eliminating some of the samples and duplicating
others. Then, each decision tree is fitted with a different sample. The RF method introduces
additional randomness by taking a random subset of the input variables when computing
each split for each tree in the model. The final prediction of the algorithm is calculated
based on the average of the results of each of the trees used. A detailed description of the
algorithm can be found in the seminal work of Breiman [40]. For more practical descriptions
of the method, the reader can consult [41,42].

In this work, the scikit-learn package developed for Python was used, which includes
the random forests classifier option [43]. The main parameters to build an RF model are
the number of trees to be ensembled (n_estimators), the minimum number of samples
required to split an internal node (min_sample_split) and the maximum number of features
considered for each tree (max_features).

2.4.2. Balanced Dataset

Imbalance datasets are reported as a major problem to the development of accurate ML
classifiers algorithms [44]. Our training set is imbalanced because one class (class 0) heavily
outnumbers the samples from the other class (class 1). Among the available methods for
alleviating this problem, we tried under- and oversampling methods: synthetic minority
oversampling technique (SMOTE) [45] and random undersampling (RUS) [46].

SMOTE is a combination of oversampling of the minority class and undersampling of
the majority class. New synthetic examples based on the characteristics of the existing data
are created using interpolation with the k-nearest neighbour technique. With RUS, samples
corresponding to the predominant class are eliminated, and no new information is intro-
duced. Thus, the majority class is reduced to the same amount of samples corresponding
to the minority class [44].

2.4.3. Calibration Procedure

The observations excluded from a bootstrap sample are called out-of-bag data (OOB).
The OOB predictions are calculated only using the trees for which the observations are
OOB [47]. The OOB error is calculated as the average of the OOB error rate for each
observation. This procedure can be considered as implicit cross-validation, which can
obtain a good estimate of the prediction error without the need to explicitly separate a
subset of the available data [48].

A calibration process was performed based on the OOB error rate to find the best
combination of parameters for the RF model. The OOB error rate was estimated for different
possible combinations of the model parameters, and the best combination (lowest OOB
error) was selected to fit the final RF model. All possible combinations of n_estimators
(600, 800, 1000 and 1200), min_sample_split (2, 3 and 5) and max_features (3, 4, 5 and 6) were
considered to fit the RF models.

2.4.4. Measures of Accuracy

Henceforth, the correct estimation of class 1 is considered as positive experiments (true
positives, TP), while the correct prediction of class 0 corresponds to negative experiments
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(true negatives, TN). False positives (FP) are cases where the model predicts a risk to
human life in an unaffected area, and false negatives (FN) are those for which the model
predicts no risk in areas with true damage [49]. The measures of accuracy considered are:

Precision =
TP

TP + FP
(1)

Recall (True positive rate, TPR) =
TP

TP + FN
(2)

Acuraccy =
TP + TN

TP + FP + TN + FN
(3)

The adjusted F-score can place higher importance on the precision or recall according
to the nature of the study. Since false negatives are more relevant in our problem, recall is
considered more important, and the F2 score is estimated with the generalized Fβ-score
formula with β = 2 [50].

Fβ =
(

1 + β2
) precision ∗ recall

β2 ∗ precision + recall
(4)

The receiver operating characteristic (ROC) curve is a useful tool to visualize the
performance of binary classifier algorithms. Plotting the FPR against the false positive rate
(FPR) generates the ROC curve [46]. The area under the ROC curve (AUC) is an additional
measure for evaluating the predictive ability of classifiers [51]. Values of AUC close to one
represent a good classifier, while the model is not able to distinguish between classes when
AUC is equal to 0.5.

False positive rate (FPR) =
FP

FP + TN
(5)

3. Results
3.1. Data Preparation

The training set includes 150 of the 200 available geometries (75%), taken at random.
The remaining 50 (25%) are kept for the test set. Additionally, the results from 20 synthetic
models not included in the training or testing set, each one with six different land uses,
formed a validation dataset (120 models).

In the training set, 62% of the samples belong to class 0 and 38% for class 1. In addition,
the ratio of class 1 samples decreases as the Manning coefficient increases (Table 2).

Table 2. Class distribution versus Manning coefficient for the training set.

Manning Coefficient (s/m1/3) Class 0 Class 1

0.020 17,165 (58%) 12,685 (42%)
0.025 17,136 (57%) 12,714 (43%)
0.032 17,849 (60%) 12,001 (40%)
0.050 20,141 (67%) 9710 (33%)
0.080 24,245 (81%) 5605 (19%)
0.120 26,430 (88%) 3420 (12%)

Therefore, each subset of the training data, segregated by the Manning coefficient, was
balanced with two methods (SMOTE and RUS) to ensure that the RF model can predict
with high accuracy both categories. Figure 3 presents the distribution of the classes before
and after balancing the subsets with both methods. Hereafter, “RF-OS” stands for the RF
model fitted with the dataset balanced with SMOTE and “RF-US” for the model fitted with
the dataset balanced with RUS.
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3.2. Calibration

Figure 4 shows the OOB error score for all combinations of parameters tested for
both the RF-OS and RF-US. Small variations of the OOB error are obtained among com-
binations, which confirm the previous findings regarding the robustness of the algo-
rithm [52]. However, the combination corresponding to the lowest value was selected for
both cases: n_estimators = 1000, min_sample_split = 5 and max_features = 6 for RF-OS and
n_estimators = 1000, min_sample_split = 5 and max_features = 3 for RF-US.
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Figure 4. Results of calibration process. OOB overall error rate as a function of n_estimators,
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Tables 3 and 4 present the confusion matrix generated with the test set for each RF
model, together with the accuracy metrics. RF-OS presented a larger recall score than
RF-US, but the precision and accuracy scores are lower. Table 3 shows that the RF-OS
model overestimated samples of Class 1 (many FP), affecting its overall performance.
Conversely, the RF-US had good results for all scores, although recall is lower than RF-OS
recall (more FN).
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Table 3. Confusion matrix for RF-OS model with the test set.

Predicted Class

0 1 Precision Recall F2 Accuracy

Observed
class

0 29,348 11,637
1 1004 17,710 0.603 0.946 0.849 0.788

Table 4. Confusion matrix for RF-US model with the test set.

Predicted Class

0 1 Precision Recall F2 Accuracy

Observed
class

0 37,443 3542
1 4333 14,381 0.802 0.768 0.775 0.868

The differences in the performance between models were observed graphically for the
cases in the test set (Supplementary material Section S1). As an example, Figure 5 presents
maps of classification of potential hazard estimated with both models for two synthetic
cases included in the test set corresponding to the larger (ID:084) and the smaller (ID:099)
reservoir volume.
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Figure 5. Map classification of potential hazard due to off-stream reservoir failure predicted with RF
models and results from Iber. (a) Results with RF-OS model synthetic case 084 (Manning coefficient:
0.025 s/m1/3). (b) Results with RF-US model synthetic case 084 (Manning coefficient: 0.025 s/m1/3).
(c) Results with RF-OS model synthetic 099 (Manning coefficient: 0.05 s/m1/3). (d) Results with
RF-US model synthetic case 099 (Manning coefficient: 0.05 s/m1/3).
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For high Manning coefficients, the maps generated with the RF-US model included
most of the gauges of Class 1 estimated with Iber, although some class 0 gauges were
incorrect. By contrast, the RF-OS estimated most of the area of the maps as Class 1,
as observed in the confusion matrix. For lower Manning coefficients, RF-US provided
better results.

These maps show only a few examples and might not represent the reality for all
synthetic cases. Therefore, the analysis of the confusion matrix and precision metrics are
more important than the graphic analysis. Consequently, the RF-US model was selected to
carry out the study.

3.3. Analysis and Validation
3.3.1. Feature Importance

Feature importance provides an estimate of the influence of each input variable on
the predictions of the RF model. Each feature is rated with a number between 0 and 1,
computed by aggregating the feature importance over the trees in the model. The higher
the number, the more important the variable [53].

Figure 6 presents the importance of each feature in the RF-US model. Those associated
with the location of the gauges (Dchannely, Dresx and Dresy) have the highest importance,
while the channel geometry (Wc and Hc) results have low relevance.
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The performance of the chosen RF model (RF-US) was further analysed by means of
the confusion matrix for the validation set (Table 5). The measures of accuracy were similar
to those obtained for the test set.

Table 5. Confusion matrix for RF-US model with the validation set.

Predicted Class

0 1 Precision Recall F2 Accuracy

Observed
class

0 11,165 819
1 2399 5915 0.878 0.711 0.740 0.841

3.3.2. Effect of the Manning Coefficient

Since the Manning coefficient has the greatest influence on potential hazard after the
gauge location (Figure 6), it was analysed in more detail. Figure 7 shows the results of
precision, recall and F2 scores segregated by the Manning coefficient.
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The F2 score tends to decrease as the Manning coefficient increases, probably because
of the reduced size of the training set after undersampling for high Manning values
(Figure 3).

3.3.3. Class Probability

RF models employ class probabilities to estimate the correct predicted class in each tree
and in the overall prediction [54]. The classifier generates a positive or negative prediction
based on a probability threshold, which equals 0.5 by default [46]. Predictions with high
probabilities are expected to be more reliable than those close to 0.5. For example, two
cases with probability of Class 1 equal to 0.51 and 0.99 will be taken as positives, but the
prediction is more reliable for the latter. In this section, we analyse the probability threshold
for the estimation of the classifier.

Probability maps of Class 1 were generated for each case of the validation set
(Supplementary material Section S2). An example from the validation set with differ-
ent Manning coefficients (0.02 m/s1/3 and 0.12 m/s1/3) is included in Figure 8, which
corresponds to the larger reservoir volume (ID 001V). The maps show the probability
for Class 1 estimated for the RF model, and the contour of the area identified as Class
1 (probability above 0.5).

The area classified as Class 1 in Figure 8b presents mainly probabilities near 0.5, while
higher values are obtained for the smaller Manning (Figure 9a). This suggests that the
model is less reliable for higher Manning coefficients.

Figure 9a shows the ROC curve for the RF-US model estimated with the validation set
and the corresponding AUC higher than 0.9. From the ROC curve, the optimal decision
threshold was calculated (0.41), i.e., the value that ensures the best trade-off between the
cost of failing to estimate TP against the cost of overestimating the positive class (FP).

The measures of accuracy were calculated for different decision thresholds, and they
are plotted in Figure 9b. Decreasing the operating point ensures the estimation of more TP
values; therefore, the recall and F2 scores increase. However, FP values increase as well,
and the precision decreases.

Figure 10 shows the results for the optimal threshold as a function of Manning coeffi-
cient. Although the recall is higher than 0.8 for all coefficients, the precision is lower than
for the default value (Class 1 overestimation).
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4. Application to Real Case
4.1. Generation of Input Data

The application of the simplified model to a real case requires computing the input
data for the ML model from the actual geometry of the reservoir (Wc, Wr, Lr, Hr, vol,
Hc), the surrounding area (Bl, Slb, St, Slc, LB, Manning) and the location of vulnerable
points (Dresx, Dresy and Dchannely), hereinafter the areas of interest (AoI). The geometrical
parameters of the off-stream reservoir can be derived from the actual structure. By contrast,
the remaining inputs must be converted from the real terrain to the parametrized geometry
used for fitting the RF model.

The Supplementary Material Section S3 includes a detailed guide for the parametriza-
tion of the real case using the open-access software QGIS [55]. Figure 11 shows an overview
of the main tools for identification of the drainage network, selection of AoI and estimation
of Dresx, Dresy and Dchannely for each AoI.
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4.2. El Rubial Off-Stream Reservoir

The case of El Rubial off-stream reservoir, located in Alicante, Spain, was chosen to
apply and validate the ML model. The reference solution was computed with the complete
method (2D model on Iber) [56]. Three possible locations of the breach were considered:
south dike (southeast corner), side dike (southwest corner) and north dike.

The DEM for the 2D model had a 5 m resolution, and the peak discharge and time of
formation of the breach were calculated with the formulas and methods from Sanchez [57].
The physical characteristics of the off-stream reservoir and terrain are depicted in Table 6.

Table 6. Characteristics El Rubial off-stream reservoir.

Parameter Value

Depth (Hr) 4.8 m
Volume 0.11 hm3

Main channel (Hc, Wc) There is no main channel
Manning coefficient 0.04 m/s1/3

Width reservoir (Wr) 198 m
Length reservoir (Lr) 154 m

4.2.1. Main Channel and AoI

Figure 12a contains the drainage network of the area of study, obtained following
the methodology explained in Supplementary Material Section S3. Pixels classified with
a Strahler order higher than four were extracted. Although two paths can be identified
downstream of the reservoir (red and yellow lines), only the main channel used in the
reference document was considered. Nevertheless, the ML model can be applied for the
two paths in real cases without information on the complete method.
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Figure 12. (a) Drainage network (Strahler order larger than 4) and selected main channel (red line);
(b) Location of AoI, main channel, breach and reservoir axes. x and y axes represent UTM coordinates.

The 56 AoI that may condition the category of the reservoir include houses, medium-
and high-voltage poles and agricultural constructions. Their location is shown in Figure 12b
together with the main channel and the reservoir and breach axes.

Following the procedure described in Supplementary Material Section S3, the breach
and reservoir axes were estimated (rotation angle (θ) equal to 75◦), and the minimum
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distances between the AoI and the three axes (Dresx, Dresy and Dchannely) were computed
(Figure 13).
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4.2.2. Terrain Parameters and Data Preparation

Figure 14 shows the cross sections at four locations extracted from the DEM used in
Iber. Despite no main channel in the terrain, a “V” shape with around 10 m of width and
0.5 m of depth can be seen in the cross sections.

Water 2022, 14, x FOR PEER REVIEW 16 of 26 
 

 

   
(a) (b) (c) 

Figure 13. Parametrization AoI. (a) Distance between AoI and reservoir axis (Dresx). (b) Distance 
between AoI and breach axis (Dresy). (c) Distance between AoI and main channel (Dchannely). Axes 
represent UTM coordinates. 

4.2.2. Terrain Parameters and Data Preparation 
Figure 14 shows the cross sections at four locations extracted from the DEM used in 

Iber. Despite no main channel in the terrain, a “V” shape with around 10 m of width and 
0.5 m of depth can be seen in the cross sections. 

 
Figure 14. Cross section in different points of the main channel from the DEM. 

Additionally, the distance between the off-stream reservoir and the channel (Bl) was 
measured from the location of the main channel and the reservoir. Table 7 shows the esti-
mated terrain parameters. A database with the 15 inputs for each AoI (Bl, Slb, Slc, St, LB, Wr, 
Lr, Hr, Hc, Wc, Manning, volume, Dchannel, Dresx and Dresy) was generated to apply the ML 
model. 

Table 7. Terrain parameters El Rubial. 

Parameter Value 
Longitudinal slope section C (Slc) 0.5% 
Longitudinal slope section B (Slb) 0.8% 

Transversal slope (St) 0.6% 
Longitude Zone B (LB) 250 m 
Location reservoir (Bl) −350 m 

Figure 14. Cross section in different points of the main channel from the DEM.

Additionally, the distance between the off-stream reservoir and the channel (Bl) was
measured from the location of the main channel and the reservoir. Table 7 shows the
estimated terrain parameters. A database with the 15 inputs for each AoI (Bl, Slb, Slc, St, LB,
Wr, Lr, Hr, Hc, Wc, Manning, volume, Dchannel, Dresx and Dresy) was generated to apply the
ML model.
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Table 7. Terrain parameters El Rubial.

Parameter Value

Longitudinal slope section C (Slc) 0.5%
Longitudinal slope section B (Slb) 0.8%

Transversal slope (St) 0.6%
Longitude Zone B (LB) 250 m
Location reservoir (Bl) −350 m

Width channel (Wc) 10 m
Depth preferred channel (Hc) 0.5 m

4.3. Hazard Estimation Using the ML Model
4.3.1. Classification of Hazard with the Complete Method

The maximum flow velocity and depth were extracted from the Iber model and were
plotted over a 10 m × 10 m grid (Figure 15a,b). Figure 15c shows the potential hazard
obtained from those results according to the Spanish regulation [1].
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The same process was applied to the locations of the AoI, six of which resulted in
Class 1 hazard (Figure 15c). This classification was taken as the reference to assess the ML
model prediction.

4.3.2. Potential Hazard with the ML Model

Table 8 shows the confusion matrix of the potential hazard for the 56 AoI. The results
for all metrics considered are similar to those reported for the test set except for precision,
i.e., the model overestimated the number of positives. The model correctly predicted 91%
of the AoI.

Table 8. Confusion matrix for the RF model. El Rubial off-stream reservoir.

Predicted Class

0 1 Precision Recall F2 Accuracy

Observed
class

0 46 4
1 1 5 0.556 0.833 0.758 0.911

Figure 16 shows the predictions of the ML model. Five of the AoI near the off-stream
reservoir are correctly identified (TP), and four AoI are misclassified (FP; Figure 17a). The
observed AoI classified as Class 1 located most south was not correctly predicted by the
ML model (FN; Figure 17b).
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The misclassified AoI (FP and FN) were further examined. All FP are located in Section
B in the simplified geometry, where the transversal slope is assumed to be null. However,
the cross sections extracted from the DEM used in the Iber model (Figure 18) show that the
AoI are located at higher elevations than the surrounding terrain, which means that the
actual transversal slope is not zero. This could be the cause of the misclassification of the
ML model.
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Figure 19 shows the terrain profile on the FN (ID 34). The AoI is located on the bank
of the main channel, which means that the water depth is likely to be high. However, it is
far from the main channel in the simplified geometry (Figure 17b), which is the probable
source of the misclassification by the ML model.
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Figure 20a shows the predicted classification of potential hazard for the complete area
of study. The Class 1 areas observed with the complete method (Figure 15c) and those
predicted with the ML model present similar patterns, with a broad area considered as
Class 1 near the reservoir. However, the ML model predicted most of the main channel as
Class 1.
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area of study; (b) probability of Class 1 for the area of study predicted by the ML model.

Figure 20b shows the results of the ML model as probability of Class 1. Most of the
area predicted as Class 1 in the vicinity of the reservoir shows probabilities between 0.5 and
0.6, i.e., with high uncertainty. Higher values (more reliable predictions) are recorded in
the main channel.

5. Discussion

Automating the generation of geometries and the execution of calculations in Iber ob-
tained a useful database for training ML models. The developed process offers possibilities
for the application of Iber in other types of analyses in which cases need to be systematically
executed, such as probabilistic studies or sensitivity analyses [58–61]. Similar processes are
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already in application to generate training sets for ML surrogate models in hydrological
studies [62–64], as well as to analyse the effect of breach properties on the floodplain [65,66].

The calibration of the RF models was performed by means of grid search over the
parameters to choose, and the best combination was selected based on the OOB error. The
results showed small variation in the OOB error among combinations, which confirms
previous findings regarding the robustness of the algorithm [52]. The interpretation of
the model in terms of the variable importance agrees with engineering intuition since the
location of the AoI relative to the reservoir and the main channel were identified as the
most relevant.

By contrast, the class distribution in the training set showed a clear effect on the per-
formance of the models. RF-OS was trained with approximately 120,000 Class 1 samples,
while the RF-US dataset had around 50,000 samples. The large training set for RF-OS pro-
duced an overestimation of Class 1, which led to lower accuracy and precision scores. Both
methods can be further tuned to obtain more accurate models in general and in particular,
to improve some of the accuracy indexes. For example, our results already showed that
SMOTE is better for recall and worst for precision. However, the overall performance for
practical applications is more dependent on other aspects, as described later.

In addition, the effect of the class distribution was associated with the Manning
coefficient. For a given reservoir and domain, higher values of Manning result in low
velocity and risk and thus in more points belonging to Class 0 (Figure 3). This also implies
that the majority of samples in RF-OS are artificial, i.e., generated by k-nearest neighbours.
Consequently, high amount of FP is reported for RF-OS. Additionally, the probability class
analysis showed lower confidence of predictions (probabilities close to 0.5) in cases with
larger Manning coefficients (Figure 8). The results in terms of class probability provide
additional information that can be considered for decision making. In this regard, other
algorithms more specifically developed for considering uncertainty may also be useful,
such as deep Gaussian processes [67,68].

The use of regression ML models could be considered as an alternative to the proposed
procedure, i.e., models to predict the numerical value of water depth and velocity. The
drawback of this approach is that it would be necessary to use two models in parallel for
both variables involved in the risk estimation. In addition, the problem of imbalanced
training set remains, as there would be a much higher number of points with low (Class 0)
versus high (Class 1) velocity and depth. Although there are procedures to balance training
sets for regression, the process should be performed twice for both variables.

The results of Iber models have been considered as the reference solution (“ground
truth” in machine learning terminology) throughout this work. This allowed for analysing
the prediction capacity of the algorithm itself and the effect of aspects such as the training
parameters and the balance of the sample or the threshold. The models used for the
validation set follow the same scheme as those in the training set, defined in Figure 1. This
is reflected in the similarity between the results obtained for the test set (Table 4) and the
validation set (Table 5) for all the indices considered.

On the contrary, the case of the El Rubial reservoir presents relevant differences with
respect to the artificial geometries. First, the parameterization of the geometry implies a rel-
evant simplification of the real terrain: a constant cross-section of the main channel is used,
the roughness is unique for the entire model, and average values are taken for longitudinal
and transverse slopes of sections B and C. This implies a loss of accuracy. However, the
results regarding the classification suggest that the main cause of the discrepancy is the
resolution of the DEM used, which is higher in the complete (5 m) than in the simplified
model (30 m). This is clearly the origin of the observed FN (Figure 19) and is related to the
FN recorded in the vicinity of the reservoir.

The definition of section B, where all FP are located, is also influential in prediction
accuracy. While no transversal slope is considered in this section in the parameterized
geometry, the profiles from the high-resolution DEM (Figure 18) show a slope towards the
northeast that conveys the main flow towards that area in the complete model, away from
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the AoI, which remains unaffected. This is not considered in the simplified model, which
results in a large area classified as Class 1 in the vicinity of the reservoir (Figure 20).

Although the developed model is based on the risk criteria defined by Spanish regu-
lations, the methodology can be directly applied to other criteria, such as those proposed
by Smith et al. [69]. The models from the training database could be used with the only
change of adapting the class of each point to the criteria used based on the water velocity
and depth. It would suffice to train a new model with the adjusted classification, which has
a low computational cost.

A limitation of the methodology and the simplified model is due to the dimensions
of the domain considered and, in general, to the ranges of variation used to define the
parameters of the models in the training set (Table 1). Although they have been selected to
represent the most common geometry of this type of reservoirs and its surrounding terrain,
there may be cases with dimensions outside these ranges, either for the reservoir or the
terrain (dimensions of the main channel or slopes). It is well known that ML-based models
are unreliable when applied to cases outside the range of variation of the training data.
This can be solved by expanding the training database with more cases with wider ranges
of variation. As mentioned before, the cases already calculated can be used to train new,
more accurate ML models.

The application of the ML model to a real case led to the development of a step-by-step
procedure based on the open-source software QGIS (Figure 11). Although the definition
of the parameters of the simplified geometry and the location of the AoI involve several
steps involving GIS tools, the process is simpler and faster to implement than the complete
method. In addition, the necessary information can also be obtained from free online tools,
with lower requirements in terms of time and software.

Despite the described limitations of the model and the differences with the actual El
Rubial reservoir, the ML model correctly predicted 91% of the AoI. This accuracy is higher
than that obtained in related studies [12,13], although they cannot be directly compared
due to the existing differences. Correct identification of parameters and selection of DEM is
critical for the performance of the model: DEM with a small resolution can result in a more
detailed drainage network and a better selection of the main channel.

6. Summary and Conclusions

A simplified methodology is presented to estimate the zones with risk to human life
in case of a failure of an off-stream reservoir, based on the Spanish regulations (Class 0:
no risk, Class 1: risk). The methodology makes use of a surrogate ML model based on RF
and trained with a set of artificial cases automatically generated and run with Iber. Given
the results for maximum flow velocity and depth, points are classified as a function of the
risk to human life. The inputs to the ML model include geometrical parameters of the
reservoir and surrounding area and the location of the AoI concerning the reservoir and
the main channel.

The imbalanced distribution of classes in the training had a great effect in the per-
formance of the surrogate models. Two approaches were assessed to alleviate this issue:
SMOTE and random undersampling. Although the accuracy and OOB error rate of both
RF models were similar, the use of different balanced datasets affects the model’s capacity
to predict the risk zones. The RF-US model presented measures of accuracy higher than
0.8 and a superior capacity to estimate Class 1 areas. The model was assessed with a
validation dataset, analysing the influences of the Manning coefficient, class probability
and operating point of the RF model.

The analysis of the ROC curve and variation of the operating point to estimate risk
areas showed that lowering the decision threshold could enhance the F2 score, especially
in cases with larger roughness. However, this leads to an overestimation of risk areas. The
selection of the operating point depends on the nature of the case and the preferences of
the modeller.
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The application of the ML model to a real case showed the needed efforts to extract
the input data. The identification of the main flow path and location of AoI are essential for
accurate predictions. The results are highly dependent on the quality of the geometrical
information provided: the resolution of the DEM and the similarities between the simplified
and the actual geometry. The best choice should be a trade-off between desired accuracy
and available resources. Nonetheless, the simplified methodology can be applied in any
setting and requires less time and computational resources. Therefore, the simplified RF
model can be useful for owners and administrations of off-stream reservoirs to prioritize
the allocation of resources to carry out detailed classification studies or to make investments
to increase safety.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152416/s1, Section S1: Figure S1: Maps of classification of
risk with RF-OS and RF-US for the test set; every figure is named with the RF model, its ID and land
use, Table S1: Parameters test set. Section S2: Figure S2: Maps of the probability of Class 1 with RF-US
for the validation set; every figure is named with its ID and land use, Table S2: Parameters validation
set. Section S3: Guide for computing the input data for the ML model using QGIS. Refs [55,70–77] are
cited in Supplementary Materials.
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