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Abstract. We formulate a linear programming approach to the limit analysis of discrete
element models of masonry structures. Numerical results show the ability of the given procedure
to predict the limit value of the multiplier of variable horizontal forces, which are applied to
masonry walls in association with a fixed vertical loading.

1 INTRODUCTION

Discrete element models of masonry structures that generalize the thrust line construction
to 3D systems of general shape are frequently encountered in the literature (refer, e.g., to
[1, 2, 3, 4, 5, 6] and references therein). The limit analysis of such structures, subjected to a
combination of fixed loads and variable forces that grow proportionally to a scalar multiplier
λ, is usually performed through suitable generalizations of the well known master safe theorem
of Heyman for masonry arches [7, 8, 9] The present work enriches this literature by presenting
a linear programming (LP) procedure for the limit analysis of ‘strut nets’ formed by pairwise
connections of the points of application of forces acting on truss models of masonry structures.
The given procedure generalizes recent results dealing with cable web models [10]. The limiting
values of the load scaling factor, which ensure existence of compression-only supporting truss
structures, are identified with the lower bounds of the collapse multipliers of the variable forces
[8, 9]. Numerical examples illustrate the application of the given LP algorithm to the prediction
of the limit multiplier of horizontal forces that act on benchmark examples of masonry walls, in
association with fixed vertical loading.
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2 A LINEAR PROGRAMMING APPROACH TO THE LIMIT ANALYSIS OF
STRUT NETS

Let us consider a strut net S consisting of a complete web formed by the pairwise connections
of a set of N nodes X = (x1, ..., (xN ), such that it results

||xi − xj || ≤ ℓ (1)

ℓ denoting a maximum connection length (figure 1).
We write the equilibrium problem of S into the following matrix form

AP = λ F + G (2)

where A is the equilibrium matrix of the complete web [11]; P is the vector of the axial forces
carried by the members of S; G is the vector of the fixed nodal forces; and F is the vector of
the nodal forces growing proportionally to the scalar multiplier λ. The following assumes that
the equilibrium problem of S admits solution for λ = 0.
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Figure 1: Maximum connection distance ℓ between the nodes of the complete web.

We account for the presence of constraints imposing that selected nodal displacements of S
are zero by dropping the equilibrium equations associated with such degrees of freedom into (2)
(see, e.g., [12], page 75). Post-multiplying both members of equation (2) by F (through a scalar
product) and solving for λ, we obtain

λ =
1

F 2
AP · F − 1

F 2
F ·G (3)

with F 2 = F · F, (·) denoting the symbol of the scalar product between vectors.
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We search for the limit load multiplier of the proportional loads F by solving the following
LP problem

maximize
P

λ̄ = C̄ ·P

subject to

{
ĀP = F̄
lb ≤ P ≤ ub

, (4)

Here, we have set

C̄ =
1

F 2
ATF; Ā = A − F⊗ F

F 2
A; F̄ = G − F ·G

F 2
F (5)

where AT denotes the transpose of A, and we have employed the ⊗ symbol to denote the tensor
product between matrices. In Eqn. (5), lb is a vector with all −∞ entries, while ub is a vector
with all 0 entries. If problem (4) admits an optimal solution, we compute a first limit load
multiplier λ+ of S through

λ+ = λ̄+ − 1

F 2
F ·G (6)

where λ̄+ is the optimal value of the objective function λ̄. By turning problem (4) into a
minimization problem we next obtain a second limit load multiplier λ−. The vector of axial
forces P that corresponds to prescribing λ = λ+ (or λ = λ−) in the complete web (limit load
strut net) is given by the solution of the LP problem (4).

3 Numerical results

The following sections present applications of the above LP procedure to problems dealing
with the equilibrium of 2D and 3D models of masonry walls. It is easy to show that it results
λ+ = −λ− = λlim in all the examples that follow.

3.1 Masonry wall under vertical loading and a concentrated horizontal force

Let us consider a rectangular masonry wall with horizontal span L, height h and thickness
th, which is subject to a uniformly distributed vertical load q (per unit length L) on the top side
of the middle section, and a horizontal force F = λqL applied to a corner of this section (see
section 3.2 of [4]). We lump the vertical load q in correspondence to the seven nodes shown in
figure 2a, and discretize the bottom side of the wall by introducing an equal number of nodes
vertically aligned with those of the top side. The bottom nodes are fixedly constrained. Figure
2a shows the complete web S assumed for the current example, which is formed by all the
pairwise connections of the top and bottom nodes (ℓ =

√
L2 + h2). The LP problem (4) returns

λlim = 1/3, which corresponds to the exact solution of the continuum problem [4]. The strut
net corresponding to the limit load of S is shown in figure 2b. Upon inserting a third row of
seven nodes at the mid-height of the wall in the complete web (figure 2c), we obtain a limit load
strut net that more closely approximates the distribution of forces at collapse for the continuous
problem [4]. The latter features the reactive part of the wall separated by the non-reactive part
through the curve Γ marked with a red dashed line in figure 2d.
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Figure 2: Limit analysis problem of a discrete element model of a masonry wall loaded by a uniform
vertical load and a concentrated horizontal force. (a) The complete web is formed by all the pairwise
connections of seven nodes placed on the top and bottom sides of the middle section. (b) The limit load
multiplier λlim = λ+ = −λ− is equal to 1/3, as in the exact solution of the continuum problem [4].
The distribution of compression forces in correspondence to the limit load is supported by struts placed
above a diagonal of the panel. (c) A more refined complete web is obtained by introducing a third row of
seven nodes at the mid-height of the wall. (c) The limit load strut net corresponding to such a web more
accurately follows the discontinuity line Γ that characterizes the distribution of forces at collapse for the
continuum problem, which is marked by a dashed red line [4]. When adopting the refined complete web,
one again obtains λlim = 1/3.

3.2 C-shaped wall

A second and final example deals with a C-shaped masonry wall loaded out-of-plane by
inertial forces induced by the horizontal shaking of the base of the wall [13]. The frontal panel
of the examined C-wall has a span of 630 mm, while the lateral panels have 350 mm span. The
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height of the wall is 345 mm and the thickness of the blocks is 23 mm. We introduce a strut
net model formed by all the the pairwise connections of the nodes shown in figure 3a, over one
half of the wall (due to symmetry). Constant vertical forces gi and variable horizontal forces
fi = λgi are applied to the nodes of such a strut net, which respectively model the action of
self weight, and an equivalent static description of the inertia forces generated by the horizontal
motion of the wall [13] (here, λ denotes the ratio between the horizontal acceleration applied
at the base of the wall and the gravitational acceleration). The limit load strut net depicted
in figure 3a corresponds to λlim = 0.1127, and has been determined through the LP procedure
illustrated in section 2. A shake table test conducted on a physical model composed of wooden
masonry [15, 13] showed the occurrence of sliding movements between the blocks for λ greater
than 0.125. We are therefore led to observe that the limit load strut net of figure 3a well captures
the no-tension response of the wall, before sliding phenomena occur. In particular, one notes
the absence of diagonal struts in such a model in correspondence to the top central region of the
frontal panel, and the top-corner region of the lateral panel, where the experiment illustrated in
[15, 13] highlights out-of-plane collapse of the blocks (compare figures 3a,b with figure 3c). The
strut net model is therefore able to predict the regions where the sliding motion of the blocks
may occur, due to insufficient compaction forces, even if it does not model such a phenomenon
directly. As anticipated, the experimental results presented in [15, 13] highlight that the an
appreciable relative sliding motion of the blocks initiates for λ ≈ 0.125. It leads to the out-of-
plane collapse of the wall for λ = 0.178 (the experimental collapse configuration is illustrated in
figure 3c).

1

(a) (c)(b)

Figure 3: (a,b) Different views of the strut net model of a C-shaped dry-jointed masonry wall under the
action of constant vertical forces gi, acting on a grid of 67 nodes (one-half of the wall is modeled), and
horizontal forces fi = λgi. The displayed strut net is associated with the limit load multiplier λlim =
0.1127. (c) Collapse configuration observed on a physical sample tested on a tilting table (reproduced
with permission from [13]). (Online version in color.)

4 CONCLUSIONS

The LP procedure presented in this work permits the limit analysis of 2D and 3D discrete
element models of masonry structures. We address the generalization of such a procedure
to problems dealing with multiply-connected domains, as well as the modeling of elastic and
dynamic effects, to future work.
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