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Introduction

Why Strut-Braced Wings?
• Increasing wing aspect ratio reduces lift-induced drag and can lead to 

significant fuel savings

• Aspect ratio can be increased to 20 or more if supported by strut or truss

• NASA is investigating strut-braced wing configurations to meet its N+3 
goals of reducing fuel burn by 60%
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Boeing/NASA 4.5%-Scaled Truss-Braced Wing Model in 
NASA Ames 11-Foot Transonic Tunnel



Introduction

Challenges with Strut-Braced Wings
• Wing-strut aerodynamic coupling has tendency for shock to develop in 

juncture region at transonic conditions

• Shock in juncture region increases drag and can lead to separation

4PADRI Workshop 



PADRI Workshop

Goal of Workshop:
• Explore candidate flow control technologies and 

optimization strategies to minimize shock wave 
and interference drag in wing-strut juncture 
region

• Apply and evaluate drag reduction strategies to 
simplified strut-braced wing configuration at 
transonic conditions

Flight Conditions:
• Mach = 0.72, 𝛼 = 1 deg., altitude = 30,000 ft.

• Adjust angle of attack of configuration with drag 
reduction mechanism to maintain initial total lift
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Wing:
• Can only alter between spanwise region of 14.5 m < Y < 17.5 m

• Cannot be modified: upper surface, twist, chord length

• Original lower surface cannot be penetrated

Strut:
• Can only alter between spanwise region of 14.5 m < Y < 17.5 m

• Cannot be modified: maximum thickness, chord, spanwise wing 
attachment location, length of vertical portion
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PADRI Workshop Constraints

Region of allowed 
modifications
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Baseline Evaluation



Analysis Tools

Unstructured grid generation: VGRID
• Triangulated surface grid, tetrahedral volume cells
• Advanced layers in viscous regions, advancing front in outer flow
• Grid clustering control via line and volume sources

Navier-Stokes flow solver: USM3D
• Unstructured tetrahedral volume grid
• Cell-centered upwind scheme, no limited used
• Spalart-Allmaras (SA) turbulence model
• Passive or active porous surface boundary conditions available
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Grid Flow Solver Turbulence Model Total Elements

Workshop TAU SA 59.3 million

VGRID USM3D SA 31.0 million

View of wing/strut lower surface

y+

Baseline Grid Comparison

Workshop Grid VGRID Grid
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Workshop Grid VGRID Grid

Surface mesh 
view of 

wing/strut 
lower surface

Volume mesh 
view of 

wing/strut slice 
at Y = 15.0 m

Baseline Grid Comparison
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CL

CD Cm

Baseline USM3D Solution Convergence
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Wing

Strut

Y = 15.0 m
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Baseline Solution Comparison: Pressure
Y = 16.5 m
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Wing

Baseline Solution Comparison: Skin Friction

Strut

Y = 15.0 m Y = 16.5 m
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Y = 15.0 m

Y = 16.5 m

Workshop Solution USM3D Solution

Baseline Solution Comparison: Mach Contour



• USM3D and Workshop baseline solutions are generally 
in good agreement

• Results at Y = 16.5 m show some difference in shock 
strength and separation extent, not enough information 
on Workshop solution to assess cause of differences

• Initial studies with USM3D using multiple grids and grid 
generators showed similar differences with Workshop 
solution at Y = 16.5 m

• Final grid for design studies chosen based on 
reasonable size and stronger shock (conservative)
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Baseline Solution Comparison Summary
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Approaches to Drag Reduction



CDISC Design Method

• Knowledge-based design uses prescribed flow/geometry sensitivity 
derivatives

• Flow constraints automatically generate target pressure distributions 
from current analysis pressures

• Geometry constraints incorporate multidisciplinary influences

• Modular Linux script approach allows easy coupling of CDISC with a 
wide range of flow solvers (USM3D, CART3D, MSES, OVERFLOW, 
CFL3D, PMARK, FUN3D, etc.)
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• Design time ≈ analysis time (1-3 orders of magnitude faster than 
optimization)

• Allows use of same level of geometric and flow physics fidelity in 
design and analysis
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CDISC Applications for Drag Reduction

• Drag Prediction Workshop 
(DPW) W1 Wing

• Gulfstream G650

• FAST-MAC National Transonic 
Facility model

• D8 “Double Bubble”

• Truss-Braced Wing

• Lockheed Martin Advanced 
Hybrid Wing Body

• Boeing High Speed Slotted Wing
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Reduced shock 
strength

Reduced shock 
strength

Aggregate Drag Reduction (counts)

DPW W1 Multipoint Design Results
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CDISC Applications for Laminar Flow
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NJWB CRM

GL-10 “Greased Lightning”
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CDISC Flow Chart
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CDISC Constraints Used in SBW Design

Flow Constraints:
• Mach levels limits

– Mshock < 1.0 on wing
– Mshock < 1.1 on strut

• Modified Uniform Distribution 
(MUD) to unload strut

• CP smoothing

21PADRI Workshop 

Geometry Constraints:
• Section (t/c)max and leading-edge 

radius fixed

• Curvature limits, surface and 
twist smoothing for realistic 
geometry

• “Hard surface” restriction applied 
to wing lower surface

c#,%&'( = 	
0.49
k ∗ (M34567−1);.<=

where k is surface curvature, shows that
Mshock < 1.1 produces less than 1 count of wave drag

(AIAA 2011-3527)
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Y = 14.5 m

Y = 17.5 m

0.5 m
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CDISC Design Station Layout

Wing Strut

31 2 4 5

Y = 14.5 m
Y = 16.5 m

0.5 m
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Example of CDISC Design Process

Strut at Y = 15 m
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Baseline
Analysis

USM3D Convergence for CDISC Design

Cm
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CDISC Results: Wing at Y = 15.0 m



26PADRI Workshop 

CDISC Results: Wing at Y = 16.5 m



27PADRI Workshop 

CDISC Results: Strut at Y = 15.0 m
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CDISC Results: Strut at Y = 16.5 m
Upper surface
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Y = 15.0 m

Y = 16.5 m

Baseline CDISC

CDISC Results: Mach Contour
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Y = 15.0 m

Y = 16.5 m

Baseline CDISC

CDISC Results: Entropy Contour
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CDISC Results: M = 1.1 Shock Isosurface

Baseline CDISC



• CDISC CHANL constraint creates a flat-sided channel between the 
wing lower surface and the strut upper surface

• Wing lower surface flattened while remaining outside of original airfoil, 
extent based on amount of supersonic flow  

• Strut rotated down slightly, then cambered to make most of upper 
surface flat

• Lower surface curvature constrained while maintaining original 
maximum t/c

• No target pressures used, only 1 CDISC cycle required

➔ Wing-only, strut-only, and wing-strut cases run, wing-strut case had 
the most drag reduction
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One-Shot Design Approach
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Mach = 1

0.10.1

Define lower surface region to be flattened
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One-Shot Design Process for Wing
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Baseline airfoil
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One-Shot Design Process for Wing
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Add flattened region
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One-Shot Design Process for Wing
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Blend flattened region into rest of lower surface
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One-Shot Design Process for Wing
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Smooth corners
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One-Shot Design Process for Wing
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Baseline airfoil
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One-Shot Design Process for Strut
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Rotate airfoil down to align upper surface ordinate at x/c = 0.05
with the ordinate at the upper surface trailing edge
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One-Shot Design Process for Strut
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Flatten upper surface ordinates from x/c = 0.05 to the trailing 
edge while maintaining the baseline thickness distribution
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One-Shot Design Process for Strut
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One-Shot Design Process for Strut
Smooth corners
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Baseline
Analysis

USM3D Convergence for CDISC Design

Cm
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One-Shot Results: Wing at Y = 15.0 m
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One-Shot Results: Wing at Y = 16.5 m
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One-Shot Results: Strut at Y = 15.0 m
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One-Shot Results: Strut at Y = 16.5 m
Upper surface
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Y = 15.0 m

Y = 16.5 m

Baseline One-Shot

One-Shot Results: Mach Contour
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Y = 15.0 m

Y = 16.5 m

Baseline One-Shot

One-Shot Results: Entropy Contour
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One-Shot Results: M = 1.1 Shock Isosurface

Baseline One-Shot
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Configuration CL CD 𝚫CD 𝚫CD,wing 𝚫CD,strut

Baseline 0.427 0.0238 - - -

CDISC (wing and strut) 0.426 0.0226 -0.0012 -0.0007 -0.0004

One-Shot (wing) 0.427 0.0234 -0.0004 -0.0006 0.0002

One-Shot (strut) 0.427 0.0228 -0.0010 -0.0006 -0.0003

One-Shot (wing and strut) 0.427 0.0225 -0.0013 -0.0010 -0.0002
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Force Results for Design Cases
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Approaches to Drag Reduction



Passive Porosity (PASSPORT) Concept

• Originally developed in the 1980s for shock-boundary layer 
interaction control

• Applications include shock strength reduction and aerodynamic flow 
control

• Pressure differences on the outer surface “communicate” through the 
plenum

• Small amounts of flux through the porous surface alters its effective 
aerodynamic shape
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Porous 
Outer 
Surface

Solid 
Inner 
Surface

Plenum 
Region

External Flow
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Application of Porous Boundary Condition

Porous control effector wind tunnel test
• NACA 0012 airfoil section

• NASA Langley 8-Foot Transonic Pressure Tunnel

• 1.08% average porosity on full-chord upper surface
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cn

cd

M = 0.74, Rec = 4 million

PADRI Workshop Reference: NASA TP 3591
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Y = 16.5 m
Y = 14.0 m
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Porous Patch Locations

• 15% porosity on each patch

• Porous patches extending from Y = 14.5 m to 16.5 m

• Wing lower surface x/c = 0.4 – 0.5

• Strut upper surface x/c = 0.4 – 0.6 

• Cases run with porous patch on wing-only, strut-only, and wing-strut

• Wing-strut case had most drag reduction

Y = 16.5 m
Y = 14.0 m
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USM3D Convergence for Porous Case

Cm
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USM3D Convergence for Porous Case
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Porous Results: Wing at Y = 15.0 m
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Porous Results: Wing at Y = 16.5 m
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Porous Results: Strut at Y = 15.0 m
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Porous Results: Strut at Y = 16.5 m
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Y = 15.0 m

Y = 16.5 m

Baseline Porous

Porous Results: Mach Contour
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Y = 15.0 m

Y = 16.5 m

Baseline Porous

Porous Results: Entropy Contour
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Porous Results: M = 1.1 Shock Isosurface

Baseline Porous
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Configuration CL CD 𝚫CD 𝚫CD,wing 𝚫CD,strut

Baseline 0.427 0.0238 - - -

Porous (wing) 0.427 0.0237 -0.0001 0.0006 -0.0006

Porous (strut) 0.427 0.0235 -0.0003 -0.0002 -0.0001

Porous (wing and strut) 0.427 0.0237 -0.0001 0.0005 -0.0006
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Force Results for Porous Cases
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Approaches to Drag Reduction
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Configuration CL CD 𝚫CD
Baseline 0.427 0.0238 -

CDISC (wing and strut) 0.426 0.0226 -0.0012
One-Shot (wing and strut) 0.427 0.0225 -0.0013

Porous (strut) 0.427 0.0235 -0.0003

Summary of Drag Reduction Approaches

Baseline CDISC

One-Shot Porous

PADRI Workshop M = 1.1 Shock Isosurface
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Wave Drag Function on Wing Lower Surface

Baseline

One-Shot Porous

CDISC
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Separation Function on Wing Lower Surface

Baseline

One-Shot Porous

CDISC
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Wave Drag Function on Strut Upper Surface

Baseline

One-Shot Porous

CDISC
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Separation Function on Strut Upper Surface

Baseline

One-Shot Porous

CDISC



Off-Design Performance
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Design CL
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Concluding Remarks



• USM3D and Workshop baseline solutions appeared to be similar, 
more information needed to assess minor differences

• Both CDISC and One-Shot design approaches were effective at 
reducing shock strength and flow separation in the design region

• CDISC required about the same time as the baseline analysis, 
One-Shot required less than a third of that

• The porous cases all had weakened shocks on the component(s) 
to which porosity was applied, but flow separation occurred from 
the porous region to the trailing edge, negating the wave drag 
benefits

• As the above methods are passive, no operational penalty is 
expected, though manufacturing costs could be increased
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Concluding Remarks

Contact:    richard.l.campbell@nasa.gov



• Use the One-Shot case as a starting point for optimization or 
further refinement with CDISC

• Design entire strut, perhaps including a spanwise loading 
constraint

• Investigate both passive and active approaches to eliminating the 
flow separation associated with porosity

• Look at off-design performance, perhaps a multipoint design
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Potential Follow-On Work

Contact:    richard.l.campbell@nasa.gov



Contact:    richard.l.campbell@nasa.gov


